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♦ Look at trends in HPC
�Top500 statistics

♦ NetSolve
�Example of grid middleware

♦ Performance on today�s architecture
�ATLAS effort

♦ Tools for performance evaluation
�Performance API (PAPI)
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- Started in 6/93 by JD,Hans W. Meuer           
and Erich Strohmaier

- Basis for analyzing the HCP market
- Quantify observations 
- Detection of trends
(market, architecture, technology)
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- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC�xy in November
Meeting in Mannheim in June

- All data available from www.top500.org
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♦ A way for 
tracking trends
�in performance
�in market
�in classes of 
HPC systems
�Architecture
�Technology

♦ Original classes of 
machines
�Sequential
�SMPs
�MPPs
�SIMDs

♦ Two new classes
�Beowulf-class 

systems
�Clustering of SMPs

and DSMs 
�Requires additional 

terminology
� �Constellation�
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Cluster of ClustersCluster of Clusters

♦ An ensemble of N nodes each comprising 
p computing elements

♦ The p elements are tightly bound shared 
memory (e.g. smp, dsm)

♦ The N nodes are loosely coupled, i.e.: 
distributed memory

♦ p is greater than N
♦ Distinction is which                               

layer gives us the most                          
power through parallelism

4TF Blue Pacific SST 
3 x 480 4-way SMP nodes
3.9 TF peak performance 
2.6 TB memory
2.5 Tb/s bisectional bandwidth
62 TB disk
6.4 GB/s delivered I/O bandwidth
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RANK MANU-
FACTURER COMPUTER 

RMAX
[GF/S]

INSTALLATION SITE COUNTRY YEAR AREA OF 
INSTALLATION # PROC

1  Intel ASCI Red 2379.6 Sandia National Labs 
Albuquerque 

USA 1999 Research 9632 

2 IBM 
ASCI Blue-
Pacific SST, 

IBM SP 604E
2144 Lawrence Livermore 

National Laboratory USA 1999 Research 5808 

3 SGI ASCI Blue 
Mountain 

1608 Los Alamos National Lab USA 1998 Research 6144 

4 SGI T3E 1200 891.5 Government USA 1998 Classified 1084 

5 Hitachi SR8000 873.6 University of Tokyo Japan 1999 Academic 128 

6 SGI T3E 900 815.1 Government USA 1997 Classified 1324 

7 SGI Orgin 2000 690.9 Los Alamos National Lab 
/ACL 

USA 1999 Research 2048 

8 Cray/SGI T3E 900 675.7 Naval Oceanographic 
Office, Bay Saint Louis USA 1999 Research  

Weather 1084 

9 SGI T3E 1200 671.2 Deutscher Wetterdienst Germany 1999 Research  
Weather 

812 

10 IBM SP Power3 558.13 UCSD/San Diego 
Supercomputer Center, 

IBM/Poughkeepsie 

USA 1999 Research 1024 
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♦ Clustering of shared memory machines for                      
scalability
� Emergence of PC commodity systems

� Pentium/Alpha based, Linux or NT driven
� �Supercomputer performance at mail-order prices�

� Beowulf-Class Systems (Linux+PC)
� Distributed Shared Memory (clusters of                   

processors connected)
� Shared address space w/deep memory hierarchy

♦ Efficiency of message passing and data parallel           
programming
� Helped by standards efforts such as PVM, MPI,                  

Open-MP and HPF
♦ Many of the machines as a single user environments
♦ Pure COTS
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RANK MANU-
FACTURER COMPUTER RMAX INSTALLATION SITE COUNTRY YEAR AREA OF

INSTALLATION
#

PROC

33 Sun HPC 450
Cluster

272.1 Sun, Burlington USA 1999 Vendor 720

34 Compaq Alpha Server SC 271.4 Compaq Computer Corp.
Littleton USA 1999 Vendor 512

� � � � � � � � �

44 Self-made Cplant Cluster 232.6 Sandia National
Laboratories USA 1999 Research 580

� � � � � � � � �

169 Self-made Alphleet Cluster 61.3 Institute of Physical and
Chemical Res. (RIKEN) Japan 1999 Research 140

� � � � � � � � �

265 Self-made Avalon Cluster 48.6 Los Alamos National Lab/
CNLS USA 1998 Research 140

� � � � � � � � �
351 Siemens  hpcLine Cluster 41.45 Universitaet Paderborn/PC2 Germany 1999 Academic 192

� � � � � � � � �
454 Self-made Parnass2 Cluster 34.23 University of Bonn/

Applied Mathematic
Germany 1999 Academic 128
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♦ Allow networked resources to be integrated 
into the desktop.

♦ Not just hardware, but also make available 
software resources.

♦ Locate and �deliver� software or solutions to 
the user in a directly usable  and 
�conventional� form.

♦ Part of the motivation - software 
maintenance
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♦ Three basic scenarios:
�Client, servers and                                     

agents anywhere on Internet (3(10)-150(80-ws/mpp)-Mcell)

�Client, servers and agents on an Intranet
�Client, server and agent on the same 

machine
♦ �Blue Collar� Grid Based Computing

�User can set things up, no �su� required
�Doesn�t require deep knowledge of network 

programming
♦ Focus on Matlab users

�OO language, objects are matrices (pse, eg os)

�One of the most popular desktop systems for 
numerical computing, 400K Users
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� No knowledge of networking involved
� Hide complexity of numerical software
� Computation location transparency
� Provides access to Virtual Libraries :

� Component grid-based framework
� Central management of library resources
� User not concerned with most up-to-date version
� Automatic tie to Netlib repository in project

� Provides synchronous or asynchronous calls
(User level parallelism)



�

call NETSL(�DGESV()�,NSINFO,
N,1,A,MAX,IPIV,B,MAX,INFO)

Asynchronous Calls also available

>> define sparse matrix A
>> define rhs
>> [x, its] = netsolve('itmeth',�petsc�, A, rhs, 1.e-6



http://www.cs.utk.edu/netsolve

� Framework to easily  add arbitrary software ...
� Many numerical libraries being integrated by the 

NetSolve team 
� Many software being integrated by users

Agent : 
� Gateway to the computational servers

Computational Server :
� Various Software resources installed on

various Hardware Resources
� Configurable and Extensible : 

� Performs  Load Balancing  among the resources



http://www.cs.utk.edu/netsolve

NetSolve agent :
predicts the execution times and  sorts the servers

Prediction for a server based on :
� Its distance over the network

- Latency and Bandwidth
- Statistical Averaging

� Its performance (LINPACK benchmark)
� Its workload
� The problem size and the algorithm complexity

Cached data 
Quick estimate

workload out of date ?
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University of Tennessee�s Grid Prototype: University of Tennessee�s Grid Prototype: 
ScalableScalable IntracampusIntracampus Research Grid:Research Grid: SInRGSInRG
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netsl(�command1�, A, B, C);
netsl(�command2�, A, C, D);
netsl(�command3�, D, E, F);

Client Server

command1(A, B)

result C

Client Server

command2(A, C)

result D

Client Server

command3(D, E)

result F

netsl_begin_sequence( );
netsl(�command1�, A, B, C);
netsl(�command2�, A, C, D);
netsl(�command3�, D, E, F);
netsl_end_sequence(C, D);

Client Server

sequence(A, B, E)

Server

Client Server
result F

input A,
intermediate output C

intermediate output D,
input E
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NetSolve
Client

NetSolve Servers

NetSolve Agent

NetSolve Services

MDS

GASS

GRAM

Client-Proxy
Interface

NetSolve
Proxy

Client-Proxy
Interface
Globus
Proxy

Client-Proxy
Interface

Ninf
Proxy

Client-Proxy
Interface

Legion
Proxy

Ninf
Services Legion

Services
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♦ Kerberos used to maintain Access 
Control Lists and manage access to 
computational resources.

♦ NetSolve properly handles authorized 
and non-authorized components together 
in the same system.

♦ In use by DOD Modernization program 
at Army Research Lab
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♦ Multiple requests to single problem.

♦ Previous Solution:

♦ New Solution:
�� Single call to netsl_farm( );Single call to netsl_farm( );

� Many calls to netslnb( );    /* non-blocking */



SCIRun torso 
defibrillator 
application
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(A bit in the future)(A bit in the future)

� NetSolve examines the 
user�s data together 
with the resources 
available (in the grid 
sense) and makes 
decisions on best time 
to solution 
dynamically.

� Decision based on size 
of problem, 
hardware/software, 
network connection 
etc.

� Method and 
Placement. 

Dense

Rectangular General Symmetric

Sparse

Matrix
type

Direct Iterative

GeneralSymmetric

Symmetric General

♦♦ x =x = netsolvenetsolve(�linear system�,A,b)(�linear system�,A,b)
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Where Does the Performance Go? orWhere Does the Performance Go? or
Why Should I Cares About the Memory Hierarchy?Why Should I Cares About the Memory Hierarchy?

µProc
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♦ By taking advantage of the principle of locality:
� Present the user with as much memory as is available in 

the cheapest technology.
� Provide access at the speed offered by the fastest 

technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Level
2 and 3
Cache

(SRAM)

O
n-C

hip
C

ache
1s 10,000,000s  

(10s ms)
100,000 s
(.1s ms)

Speed (ns): 10s 100s
100s

Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s 
(10s sec)

10,000,000 s
(10s ms)

Ts

Distributed
Memory

Remote 
Cluster
Memory



33

♦ Today�s processors can achieve high-performance, but 
this requires extensive machine-specific hand tuning. 

♦ Hardware and software have a large design space 
w/many parameters
� Blocking sizes, loop nesting permutations, loop unrolling 

depths, software pipelining strategies, register allocations, 
and instruction schedules. 

� Complicated interactions with the increasingly sophisticated 
micro-architectures of new microprocessors.

♦ About a year ago no tuned BLAS for Pentium for Linux.
♦ Need for quick/dynamic deployment of optimized routines.
♦ ATLAS - Automatic Tuned Linear Algebra Software

� PhiPac from Berkeley
� FFTW from MIT (http://www.fftw.org)
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♦ An adaptive software architecture
�High-performance
�Portability
�Elegance

♦ ATLAS is faster than all other portable BLAS 
implementations and it is comparable with 
machine-specific libraries provided by the vendor.
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(DGEMM n = 500)(DGEMM n = 500)

♦ ATLAS is faster than all other portable BLAS 
implementations and it is comparable with 
machine-specific libraries provided by the vendor.
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♦ Code is iteratively 
generated & timed until 
optimal case is found.  
We try:
� Differing NBs
� Breaking false 

dependencies
� M, N and K loop unrolling

♦ Designed for RISC arch
� Super Scalar
� Need reasonable C 

compiler
♦ Takes ~20 minutes to run

♦ Two phases:
� Probes the systems for 

system features
� Does a parameter study

♦ On-chip multiply optimizes 
for:
� TLB access
� L1 cache reuse
� FP unit usage
� Memory fetch
� Register reuse
� Loop overhead 

minimization
♦ New model of HP 

programming where 
critical code is machine 
generated using 
parameter optimization.
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♦ Software Release, available today:
�Level 1, 2, and 3 BLAS implementations
�See: www.netlib.org/atlas/

♦ Near Future:
�Multi-treading
�Optimize message passing system
�Extend these ideas to Java directly
�Sparse Matrix-Vector ops

♦ Futures:
�Runtime adaptation

�Sparsity analysis
� Iterative code improvement

�Specialization for user applications
�Adaptive libraries
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♦ Timing and performance evaluation 
has been an art
�Resolution of the clock
�Issues about cache effects
�Different systems

♦ Situation about to change
�Today�s processors have internal 
counters
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♦ Hidden from users.
♦ On most platforms the APIs, if 
they exist, are not appropriate for 
a common user, functional or well 
documented.

♦ Existing performance counter APIs
�Cray T3E
�SGI MIPS R10000
�IBM Power series
�DEC Alpha pfm pseudo-device interface
�Windows 95, NT and Linux
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�Cycle count
�Floating point 

instruction count
�Integer instruction 

count
�Instruction count
�Load/store count
�Branch taken / not 

taken count
�Branch mispredictions

�Pipeline stalls due to 
memory subsystem

�Pipeline stalls due to 
resource conflicts

�I/D cache misses for 
different levels 

�Cache invalidations
�TLB misses
�TLB invalidations
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♦ Performance    
Application    
Programming     
Interface

♦ The purpose of PAPI is 
to design, standardize 
and implement a portable 
and efficient API to 
access the hardware 
performance monitor 
counters found on most 
modern microprocessors

♦ Used by Tau (A. Malony) and
SvPablo (D. Reed)
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♦ Application is instrumented with PAPI
�One simple �call�

♦ Will be layered over the best existing 
vendor-specific APIs  for these 
platforms

♦ Sections of code that are of interest 
are designated with specific colors
� Using a call to mark_perfometer(�color�)

♦ Application is started and a Java window 
containing the Perfometer application is 
also started



PerfometerPerfometer

Call Perfometer()



46

♦ Top500
� Hans W. Meuer, Mannheim U
� Erich Strohmaier, UTK

♦ NetSolve
� Dorian Arnold, UTK
� Susan Blackford, UTK
� Henri Casanova, UCSD
� Michelle Miller, UTK
� Ganapathy Raman, UTK
� Sathish Vadhiyar, UTK

♦ ATLAS
� Clint Whaley, UTK
� Antoine Petitet, UTK

♦ PAPI
� Shirley Browne, UTK
� Nathan Garner, UTK
� Kevin London, UTK
� Phil Mucci, UTK

For additional                 
information see�
www.top500.org
www.netlib.org/atlas/
www.netlib.org/netsolve/
www.cs.utk.edu/~dongarra/
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NetSolve Agent

Software RepositoryComputational Resources

http://www.cs.utk.edu/netsolve/
NetSolve Client
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♦ List of Top 100 Clusters 
�IEEE Task Force on Cluster Computing
�Interested in assembling a list of the Top n 

Clusters
�Based on current metric
�Starting to put together software to 

facilitate running and collection of data.
♦ Sparse Benchmark

�Look at the performance in terms of sparse 
matrix operations

�Iterative solvers
�Beginning to collect data
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♦ Tool integration
� Globus - Middleware infrastructure (ANL/SSI)
� Condor - Workstation farm (U Wisconsin)
� NWS - Network Weather Service (U Tennessee)
� SCIRun - Computational steering (U Utah)
� Ninf - NetSolve-like system, (Tsukuba U)

♦ Library usage
� LAPACK/ScaLAPACK - Parallel dense linear solvers
� SuperLU/MA28 - Parallel sparse direct linear solvers(UCB/RAL)
� PETSc/Aztec - Parallel iterative solvers (ANL/SNL)
� Other areas as well (not just linear algebra)

♦ Applications
� MCell - Microcellular physiology (UCSD/Salk)
� IPARS - Reservoir Simulator (UTexas, Austin)
� Virtual Human - Pulmonary System Model (ORNL)
� RSICC - Radiation Safety sw/simulation (ORNL)
� LUCAS - Land usage modeling (U Tennessee)
� ImageVision - Computer Graphics and Vision (Graz U)
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PETScPETScPETScPETSc SuperLSuperLSuperLSuperLUUUUSPOOLESSPOOLESSPOOLESSPOOLES
MA2MA2MA2MA28888

♦ Iterative and direct solvers: 
PETSc, Aztec, SuperLU, Ma28, �

♦ Support for compressed row/column 
sparse matrix storage  --
significantly reduces network data 
transmission

♦ Sequential and parallel 
implementations available


