@ SUMA

JieiiLiiic WRiGuituus Meldluiipuiing Arcneciune

" SUMA: A Scientific Metacomputer

Cardinale, Yudith Baquero, Eduardo
Figueira, Carlos Berbin, Luis

Hernandez, Emilio Bouza, Roberto
Gamess, Eric

Garcia, Pedro

Universidad Simon Bolivar

L % MOTIVATION

i » % In 1999, a couple of projects from USB
received funding from a strategic alliance
between the government and the Oil industry
(Agenda Petroleo): one from Chemistry and
another from Geophysics.

Ve wanted to build a system that

o

Provides uniform access, from researchers’
desktop computers, to campus distributed
heterogeneous resources

Efficiently supports high level scientific
programming

Offers evolved services (performance, fault
tolerance, specialized clients)

BASIC FEATURES

Execution architecture composed by
(heterogeneous) clusters, workstations,
specialized hardware, loosely interconnected

Executes Java byte code, both sequential
and parallel

Support for fault tolerance and recovery

Provides for efficient execution and
performance modeling

Built on standard, flexible, and portable
platforms: Java, CORBA, OO approach

CONTENTS

#* _Execution basics

#* System architecture

#* SUMA Components

Performance

#* Fault Tolerance

Parallel execution

Current prototype

Conclusions and future work

Execution basics

#* [wo execution modes:

On-line: a program is supplied to SUMA (e.qg.
SUMAjava main.class). Input and output are
redirected to the client machine from the remote
node

Off-line: all classes and input files needed by the
application are packed and delivered for
execution. Results can be obtained later

A number of execution attributes can be
provided along with the program. For
Instance, scheduling constraints, classes and
data files to be preloaded, etc.

Execution basics (inside SUMA)

Once the main class of the program for
execution is given to SUMA from a client
machine

transparently, SUMA finds a server (i.e., a cluster

or machine) for execution and sends a request
message to that server.

an execution agent at the designated server starts
execution of the program, dynamically loading the
required classes and input data from the client, as
well as sending back the output.

In case of off-line jobs, output is kept in SUMA
until requested by the user.

)
L
>
e
O
)
=
L
O
-
©
-
)
e
7))
>
7))

mz_muzm Imﬂ:pm:uw

SUMA Components: Core

Coordinates execution

Receives Execution Unit object from client
stub

Checks for permission
Asks scheduler for suitable server

Delivers Execution Unit to designated
server

Interacts with Application Monitor
Handles results, in case of off-line jobs

#
=

j SUMA Components: Core
ﬁ

Scheduler:

Obtains status and load information from
the servers.

Responds to the Engine requests, based

on the applications’ requirements.

Maintains load balance between the
servers.

SUMA Components: Core

@ _ Application Monitor:
% Consists of a Coordinator and several
i Application Monitor Slaves

Receives status information from
Execution Agents (crash, exit, ...)

Provides information for implementing

Fault Tolerance (based on checkpointing and
recovery)

Performance modeling and profiling

SUMA Components: Execution Agent
P i

% # One per server, concurrent.
& #* Registers itself in the Resource Control

,;s- ~ % Executes programs

Receives Execution Unit from the Engine.

Starts execution, possibly loading classes
and files dynamically from the client.

Sends result to the client.

\ * = For a parallel platform, the Execution
’ Agent plays the role of the front end.

"% SUMA Components: Administration

#* Resource control:

Used for registration of SUMA resources,
l.e., servers.

Keeps static and dynamic information
about the servers, such as memory size,
available libraries, load, etc.

User control:
Used for user registration.
Allows user authentication.

"% SUMA Components: Client stub

ﬁr % » The client stub is a library for SUMA clients
"% implementation.

-
S
i
iy
P
et

e

P

o . * Provides services for on-line and off-line
"9 execution, retrieving results and performance
i profiles.

Creates and delivers the Execution Unit and

Information Unit.
Serves callbacks from Execution Agents.
Two types of clients: User and Administrator.

% Performance

¥ L
)

5
E S

P&
-

ﬁ‘
)

-
S
i
iy
P
et

SUMA optimizations

% Keep pool of processes at servers, with
iy pre-loaded virtual machines

Remote class loading and pre-loading
Compiling to native code at servers
Others (see Parallel execution)

=
o

. ¥ Performance

Application performance feedback

Provides the user with relevant
information concerning performance of
application execution (e.g., architecture,

etc.)

Allows for performance tuning,
architecture selection, etc.

"’i* Fault Tolerance
:?
#

#* At two levels

SUMA level, by replicating SUMA
components.

Execution server level, by providing
checkpointing and recovery, both
sequential and parallel.

Parallel execution

Parallel platforms in SUMA are
predefined clusters.
A parallel platform must provide:
MPI
Numerical libraries

Support for executing parallel Java
applications with calls to mpidava.

Parallel execution: services

mpiJava is a group of Java classes that allow
us to call a native implementation of MPI (1.1)
from Java.

plapackJava is a set of Java classes that
allows users to call the functions of PLAPACK

from Java
#* plapackSUMA and mpiSUMA are

Implementations of the libraries above using
Cygnus Java compiler

Parallel execution: experiment

Results of comparing execution of PLAPACK
interfaces (Java and C implementations)

#* [he experiment consists of solving a linear algebra
problem (LU factorization) on a cluster of 8 Pentium |l
(400 MHz) with 512 Mbytes of RAM, connected with
100 Mbps Ethernet

Size (bytes) 50 100 500 1000 4000 6000
PLAPACK+gcc(s) 0.49 0.87 5.94 13.63 242.72 674.03
plapackJava (s) 0.59 1.01 6.18 13.75 243.45 674.78
plapackSuma (s) 0.52 0.89 6.01 13.65 242.87 674.15

Current prototype

Centralized Core, public domain CORBA
iImplementation (JacORB 1.14), JDK 1.2,
Cygnus compiler.

Implementations of mpidJava on LAM, for
Linux.

Straightforward scheduling and fault
tolerance.

Runs on Solaris and Linux

analas payads

ugnedndde sy sanoeg- 158nbaI S KD 1 $Ir0ae 03 DL o
L Y1 531 1534 Jeul By se |om se paomssed pue

USINISXG Ayl saeday- UDRIMENE Y1 J0) SRyRag- WO} 5I950 JUT SILLIA-

103INO)

0

sul|

Sy UGN AU

0] JRU) UORND&E spues-
JUBBY UoLINDEKg

¥ 10} JBNpayag i) suty-
qof arepnea o}

TOFUDD) 1951 Suy) SI5NDay-

JIMY VOINDOXT AL SpULS-
SINAIDE HULY- IO

JO JuR-uo ue S1sanbay-

BUIBUZ i0} S2YOIRSS-

U UOKINIANT SpPHNg-

siglsweed S

| j Conclusions and future work
ﬁ

Basic, expandable, flexible platform for
executing Java bytecode, with support
for efficient parallel execution

Long list of future developments.\We will
focus on fault tolerance, and
performance tuning and modeling

