
Cardinale, Yudith
Figueira, Carlos
Hernández, Emilio

Baquero, Eduardo
Berbín, Luis
Bouza, Roberto
Gamess, Eric
García, Pedro

Universidad Simón Bolívar

� In 1999, a couple of projects from USB
received funding from a strategic alliance
between the government and the Oil industry
(Agenda Petróleo): one from Chemistry and
another from Geophysics.

� We wanted to build a system that
� Provides uniform access, from researchers�

desktop computers, to campus distributed
heterogeneous resources

� Efficiently supports high level scientific
programming

� Offers evolved services (performance, fault
tolerance, specialized clients)

� Execution architecture composed by
(heterogeneous) clusters, workstations,
specialized hardware, loosely interconnected

� Executes Java byte code, both sequential
and parallel

� Support for fault tolerance and recovery
� Provides for efficient execution and

performance modeling
� Built on standard, flexible, and portable

platforms: Java, CORBA, OO approach

� Execution basics
� System architecture
� SUMA Components
� Performance
� Fault Tolerance
� Parallel execution
� Current prototype
� Conclusions and future work

� Two execution modes:
� On-line: a program is supplied to SUMA (e.g.

SUMAjava main.class). Input and output are
redirected to the client machine from the remote
node

� Off-line: all classes and input files needed by the
application are packed and delivered for
execution. Results can be obtained later

� A number of execution attributes can be
provided along with the program. For
instance, scheduling constraints, classes and
data files to be preloaded, etc.

� Once the main class of the program for
execution is given to SUMA from a client
machine
� transparently, SUMA finds a server (i.e., a cluster

or machine) for execution and sends a request
message to that server.

� an execution agent at the designated server starts
execution of the program, dynamically loading the
required classes and input data from the client, as
well as sending back the output.

� in case of off-line jobs, output is kept in SUMA
until requested by the user.

Engine:
� Coordinates execution
� Receives Execution Unit object from client

stub
� Checks for permission
� Asks scheduler for suitable server
� Delivers Execution Unit to designated

server
� Interacts with Application Monitor
� Handles results, in case of off-line jobs

Scheduler:
� Obtains status and load information from

the servers.
� Responds to the Engine requests, based

on the applications� requirements.
� Maintains load balance between the

servers.

Application Monitor:
� Consists of a Coordinator and several

Application Monitor Slaves
� Receives status information from

Execution Agents (crash, exit, ...)
� Provides information for implementing

� Fault Tolerance (based on checkpointing and
recovery)

� Performance modeling and profiling

SUMA Components: Execution Agent

�One per server, concurrent.
�Registers itself in the Resource Control
�Executes programs

� Receives Execution Unit from the Engine.
� Starts execution, possibly loading classes

and files dynamically from the client.
� Sends result to the client.

�For a parallel platform, the Execution
Agent plays the role of the front end.

�Resource control:
� Used for registration of SUMA resources,

i.e., servers.
� Keeps static and dynamic information

about the servers, such as memory size,
available libraries, load, etc.

�User control:
� Used for user registration.
� Allows user authentication.

� The client stub is a library for SUMA clients
implementation.

� Provides services for on-line and off-line
execution, retrieving results and performance
profiles.

� Creates and delivers the Execution Unit and
Information Unit.

� Serves callbacks from Execution Agents.
� Two types of clients: User and Administrator.

SUMA optimizations
� Keep pool of processes at servers, with

pre-loaded virtual machines
� Remote class loading and pre-loading
� Compiling to native code at servers
� Others (see Parallel execution)

Application performance feedback
� Provides the user with relevant

information concerning performance of
application execution (e.g., architecture,
etc.)

� Allows for performance tuning,
architecture selection, etc.

�At two levels
� SUMA level, by replicating SUMA

components.
� Execution server level, by providing

checkpointing and recovery, both
sequential and parallel.

�Parallel platforms in SUMA are
predefined clusters.

�A parallel platform must provide:
� MPI
� Numerical libraries

�Support for executing parallel Java
applications with calls to mpiJava.

�mpiJava is a group of Java classes that allow
us to call a native implementation of MPI (1.1)
from Java.

� plapackJava is a set of Java classes that
allows users to call the functions of PLAPACK
from Java

� plapackSUMA and mpiSUMA are
implementations of the libraries above using
Cygnus Java compiler

� Results of comparing execution of PLAPACK
interfaces (Java and C implementations)

� The experiment consists of solving a linear algebra
problem (LU factorization) on a cluster of 8 Pentium II
(400 MHz) with 512 Mbytes of RAM, connected with
100 Mbps Ethernet

Size (bytes) 50 100 500 1000 4000 6000
PLAPACK+gcc (s) 0.49 0.87 5.94 13.63 242.72 674.03

plapackJava (s) 0.59 1.01 6.18 13.75 243.45 674.78

plapackSuma (s) 0.52 0.89 6.01 13.65 242.87 674.15

� Centralized Core, public domain CORBA
implementation (JacORB 1.14), JDK 1.2,
Cygnus compiler.

� Implementations of mpiJava on LAM, for
Linux.

� Straightforward scheduling and fault
tolerance.

� Runs on Solaris and Linux

�Basic, expandable, flexible platform for
executing Java bytecode, with support
for efficient parallel execution

�Long list of future developments.We will
focus on fault tolerance, and
performance tuning and modeling

