
Performance Characterization
of Metacomputing Systems

or

How we are approaching
the performance study of a metasystem

Emilio Hernández and Mariela Curiel
Universidad Simón Bolívar

Caracas, Venezuela

Agenda

• Performance modeling issues in metasystems

• Application performance

• Metasystem performance

• Case study: SUMA (Scientific Ubiquitous
Metacomputing Architecture)

Performance modeling issues in
metasystems

• Applications
• Different sources of overhead

• Standardization of metrics on heterogeneous
platforms

• Need of both deterministic and probabilistic
performance models

Metasystem performance issues

• Metasystem itself
• Define what is metasystem performance

• Need of services for estimating metasystem
performance factors

• Impact of parallel execution models on networks
designed for client-server execution models

Application Performance

Application performance
components

• Metasystem overhead
• Queuing, file transfers, communication setup,

compilation of portable code, results transfer, etc.

• Overhead produced by external load
• Node sharing, network sharing. etc.

• Application performance
• Communication, computation, I/O

Application performance

• It is hard to model/predict application
performance if
• execution platform power is not known

• actual execution platform changes every time we
run an application

• metasystem overhead is not known

• we do not know how external load affects the
execution of applications

Application performance

• execution platform power is not known
• execution platform performance should be modeled,

this is easier if platforms are predefined
• there should be services to know the performance

parameters of the execution platforms
• the users should be able to specify (minimum)

performance requirements: they could predict (an
upper bound of) execution time

Application performance

• actual execution platform changes every time
we run our application
• we can provide services for selecting previous

used platform

• we could define "similar" platforms in terms of
performance => the users could define
performance requirements instead of selecting
previous used platforms

Application performance

• Metasystem overhead is not known
• we must model "pure" metasystem overhead

• queuing time
• program and data transfer time
• other "administrative" time, e.g. authentication

• we should provide services to obtain information
on metasystem overhead

Application performance
• external load affects the execution of applications

• isolate platforms from external load

• characterize external loads in order to model impact
on application performance

• we can define "isolation" levels for platforms
• I1: isolated platforms, no external load
• I2: platforms in which we can model external load
• I3: platforms in which we can not model external load

An approach for performance
analysis/modeling

• A metasystem is a complex system.

• Divide and conquer
• Model different factors separately, as far as possible
• Combine deterministic and probabilistic performance

models

• Gaining insight from measurements
• Use performance monitoring agents
• Define services for obtaining performance information

(e.g. application performance profiles)

Basic performance model

Ttime app,plat,t = Otime app,plat,t plusMtime app,plat,t

A simple model for application execution time:

Where:
•Ttime means "Total execution time of application"
•app means "parameters that characterize the application"
•plat means "parameters that characterize the platform"
•t means "time" as in "time of day"
•Otime means "execution time of application with Overhead
produced by external load at t"
•Mtime means "pure" Metasystem overhead time

 app

• At least, app should include factors such as
• Number of processes
• Memory usage characterization parameters
• Computation characterization parameters, e.g. number of

floating point operations
• Communication characterization parameters, e.g. number

of messages and bytes transmitted
• I/O characterization parameters, e.g., number of I/O

operations and bytes transferred

plat

• At least, plat should include factors such as
• Number of nodes
• Memory characterization parameters (size)
• Computation characterization parameters, e.g. in terms of

asymptotic performance parameters
• Communication characterization parameters, e.g. in terms of

asymptotic performance parameters or LogP parameters
• I/O characterization parameters

r
'

, n1/2

Otime(app,plat,tod)

Otime app,plat,t = f Eload t ,plat, app

We can model Otime using a probabilistic approach

Where:
•Eload means "external load"
•Itime means "execution time if platform were Isolated"
•f can be estimated by solving, for example, a queuing model

Otime app,plat,t = f Eload t ,Itime app,plat ,app

or we can combine probabilistic and deterministic models

Otime(app,plat,tod)

• If the platform is isolated (I1), then
 Otime(app,plat,t) = Itime(app,plat)

• Models to estimate Otime can be probabilistic
in I2 platforms

• The metasystem should provide services for
helping estimate Otime

Eload(t)

• Returns a list of measured factors representing
resource usage

• Needs a set of performance monitoring agents to
make the measurements

• The metasystem should provide services for
obtaining Eload

Eload(t)

• The external workload can be characterized by using

• Averaging
• Specifying dispersion
• Single-parameter histograms
• Multiparameter histograms
• Principal-component analysis
• Markov models
• Clustering

Mtime(app,plat,t)

• Mtime gives execution time of the metasystem

• Models to estimate this factor can be
probabilistic

• Effect on the design of the metasystem:
• services to estimate Mtime should be provided

Itime(app,plat)

• Models to estimate this factor may be deterministic (e.g.
LogP, , etc.)

• For more accurate estimations, the user should be able to
obtain performance profiles of previous executions

• Effect on the design of the metasystem:

• services get plat from the metasystem
• services to specify plat as a minimum requirement
• services to obtain application performance profiles

r ' ,n1/2

Metasystem Performance

Metasystem Performance

• Back to basics:
• What is the performance information we should

provide in commands like "top"?

• Does it make sense to characterize/model the
performance of a whole metasystem?

• Which performance metrics are appropriate to
describe a metasystem?

• Benchmarks: Can we develop benchmarks for
metasystem comparison?

• A platform is a subset of machines that belong to the
metasystem, on which we can run parallel applications

• A metasystem may be composed of a set of execution
platforms, not necessarily a partition

• Execution platforms may be modeled by benchmarks
that estimate plat parameters

• Metasystem performance may be characterized in
terms of performance measurements obtained from the
platforms (best, average, etc.)

Platform performance

Impact on existing networks

• Distributed execution model on networks designed for
a client-server execution model

• Communication between processes as well as program
and file load will affect normal function of networks

• Reducing the impact
• Execution of parallel programs on isolated platforms
• Metasystem communication channels different from best-

effort channel (still, metasystem applications may interfere
with each other)

SUMA
Scientific Ubiquitous Metacomputing Architecture

• Executes Java bytecode with MPI calls

• Built on top of JVM and Corba

• Executes parallel programs in predefined
platforms

• Isolation levels are defined for platforms

SUMA design
Execution

Agent

Core

Execution
Agent

Admin.
Agents

Client
 stub

File
System

SUM
A

Client

SUMA core

Engine

Application
MonitorScheduler

Execution
Agent

Application Performance Analysis

• Application performance profiles
• Services to obtain performance profiles

• SUMA metrics and formats for post-mortem
performance profiles

• More ambitious:
• post-mortem performance profiles of parallel applications,

for space-time diagrams like in upshot
• dynamic performance profiles like in paradyn

Mtime(app,plat) in SUMA

• Mtime(app,plat) is SUMA Core performance

• Particular features
• SUMA Core is (going to be) a distributed application

• its performance highly depends on Corba
performance

• a combination of performance monitoring and a
queuing model can be used to model Mtime

Itime(app,plat) in SUMA

• Itime(app,plat) is the application execution time
on a isolated SUMA execution platform
• Java Virtual Machine performance

• Computation performance

• Communication performance

• I/O performance
• if remote I/O is used the execution platform is not I1

Otime(app,plat,t) in SUMA

• Estimated by specialized SUMA clients

• Performance monitoring agents running on the
Execution Servers and SUMA core provide the
Eload parameters

• plat is provided by SUMA services

• app is provided by the user (probably with the
help of automatic tools)

Conclusions

• SUMA: dual challenge
• model what we design
• design what we can model

• Main effects of this approach on SUMA design
• Predefined parallel platforms (computer clusters within

SUMA)
• Isolation levels
• SUMA clients designed to help estimate performance

