Perfor mance Char acterization
of M etacomputing Systems

or

How we ar e approaching
the perfor mance study of a metasystem

Emilio Hernandez and Mariela Curiel
Universidad Simon Bolivar
Caracas, Venezuela

. Performance modeling issues in metasystems
. Application performance
- Metasystem performance

» Case study: SUMA (Scientific Ubiquitous
Metacomputing Architecture)

Performance modeling issuesin
metasystems

« Applications
. Different sources of overhead

. Standardization of metrics on heterogeneous
platforms

- Need of both deterministic and probabilistic
performance models

Metasystem perfor mance issues

 Metasystem itself

- Define what is metasystem performance

- Need of services for estimating metasystem
performance factors

- Impact of parallel execution models on networks
designed for client-server execution models

Application Performance

Application performance
components

- Metasystem overhead

.« Queuing, file transfers, communication setup,
compilation of portable code, results transfer, etc.

. Overhead produced by external load
- Node sharing, network sharing. etc.
. Application performance

- Communication, computation, |/O

Application performance

It is hard to model/predict application
performance if

. execution platform power is not known

. actual execution platform changes every time we
run an application

- metasystem overhead is not known

. we do not know how external load affects the
execution of applications

Application performance

e execution platform power is not known

- execution platform performance should be model ed,
thisiseasier if platforms are predefined

- there should be services to know the performance
parameters of the execution platforms

- the users should be able to specify (minimum)
performance reguirements. they could predict (an
upper bound of) execution time

Application performance

« actual execution platform changes every time
we run our application

. We can provide services for selecting previous
used platform

- we could define "similar" platforms in terms of
performance => the users could define
performance requirements instead of selecting
orevious used platforms

Application performance

 Metasystem overhead is not known

- we must model "pure" metasystem overhead
. gueuing time
. program and data transfer time
- other "administrative" time, e.g. authentication

. We should provide services to obtain information
on metasystem overhead

Application performance

o external load affects the execution of applications

- 1solate platforms from external load

. characterize external |loads in order to model impact
on application performance

- we can define "isolation” levels for platforms

- |11: isolated platforms, no external load
. 12: platforms in which we can model external load
. 13: platforms in which we can not model external load

An approach for performance
analysissfmodeling

A metasystem is a complex system.

- Divide and conquer

- Model different factors separately, as far as possible

- Combine deterministic and probabilistic performance
models

. Galning insight from measurements

. Use performance monitoring agents

. Define services for obtaining performance information
(e.g. application performance profiles)

%
I——iF—=—

Basic performance model

A simple model for application execution time:

Tiimel app,platt 10 Otime! app,plat;t | plusMtinme! app,plat.t |
Where:
-Ttime means " Total execution time of application”
-app means "parameters that characterize the application”
-plat means "parameters that characterize the platform"
-t means "time" asin "time of day"

-Otime means "execution time of application with Overhead
produced by external load at t"

-Mtime means "pure" Metasystem overhead time

%

I——iF—=—

« At least,app should include factors such as

« Number of processes
- Memory usage characterization parameters
- Computation characterization parameters, e.g. number of

- Communication characterization parameters, e.g. number

- 1/O characterization parameters, e.g., number of I/O

app

floating point operations
of messages and bytes transmitted

operations and bytes transferred

» At least,plat should include factors such as

« Number of nodes
- Memory characterization parameters (size)
- Computation characterization parameters, e.g. in terms of

- Communication characterization parameimers e.g. in terms of

- 1/O characterization parameters

plat

asymptotic performance parameters

asymptotic performance parameters or LogP parameters

Otime(app,plat,tod)

We can model Otime using a probabilistic approach

Otire{ app,plat,t i1 f (Eloadit}, plat, app
or we can combine probabilistic and deterministic models
Otime{ app,plat,t I f{Eload(t), ltime{ app,plat), app)

Where:

-Eload means "external |oad"
-Itime means "execution time if platform were | solated"
-f can be estimated by solving, for example, a queuing model

%
I—i————

Otime(app,plat,tod)

. |If the platform isisolated (11), then

Otime(app,plat,t) = [time(app,plat)
- Models to estimate Otime can be probabilistic
In 12 platforms

. The metasystem should provide services for
helping estimate Otime

Eload(t)

- Returns alist of measured factors representing
resource usage

- Needs a set of performance monitoring agents to
make the measurements

- The metasystem should provide services for
obtaining Eload

Eload(t)

*» The external workload can be characterized by using
- Averaging

. Specifying dispersion

- Single-parameter histograms
- Multiparameter histograms

- Principal-component analysis
- Markov models

. Clustering

%

(0=

Mtime(app,plat,t)

- Mtime gives execution time of the metasystem

. Modelsto estimate this factor can be
probabilistic

. Effect on the design of the metasystem:

. services to estimate Mtime should be provided

| time(app,plat)

Models to estimate this factor may be deterministic (e.g.
LogP, v)

For more accurate estimations, the user should be ableto
obtain performance profiles of previous executions

Effect on the design of the metasystem:

. services get plat from the metasystem
. servicesto specify plat as a minimum requirement
. servicesto obtain application performance profiles

M etasystem Perfor mance

%

M etasystem Perfor mance

e Back to basics:

- What Is the performance information we should
provide in commands like "top"?

- Does it make sense to characterize/model the
nerformance of a whole metasystem?

- Which performance metrics are appropriate to
describe a metasystem?

- Benchmarks. Can we develop benchmarks for
metasystem comparison?

I——iF—=—

Platform performance

. A platform is a subset of machines that belong to the
metasystem, on which we can run parallel applications

- A metasystem may be composed of a set of execution
platforms, not necessarily a partition

- Execution platforms may be modeled by benchmarks
that estimate plat parameters

- Metasystem performance may be characterized in
terms of performance measurements obtained from the
platforms (best, average, etc.)

| mpact on existing networ ks

. Distributed execution model on networks designed for
a client-server execution model

- Communication between processes as well as program
and file load will affect normal function of networks

- Reducing the impact

- Execution of parallel programs on isolated platforms

- Metasystem communication channels different from best-
effort channel (still, metasystem applications may interfere
with each other)

Scientific Ubiquitous M etacomputing Ar chitecture

. Executes Java bytecode with MPI calls
- Built on top of VM and Corba

. Executes parallel programs in predefined
platforms

- |solation levels are defined for platforms

SUMA design

Application Performance Analysis

» Application performance profiles

. Servicesto obtain performance profiles

- SUMA metrics and formats for post-mortem
performance profiles

. More ambitious:

. post-mortem performance profiles of parallel applications,
for space-time diagrams like in upshot

. dynamic performance profiles like in paradyn

%
I——iF—=—

Mtime(app,plat) in SUMA

o Mtime(app,plat) is SUMA Core performance

e Particular features

- SUMA Coreis(going to be) adistributed application

. Its performance highly depends on Corba
performance

- acombination of performance monitoring and a
gueuing model can be used to model Mtime

| time(app,plat) In SUM A

. Itime(app,plat) Is the application execution time
on aisolated SUMA execution platform

. Java Virtual Machine performance
- Computation performance
- Communication performance

. |/O performance
- If remote |/O is used the execution platformisnot 11

Otime(app,plat,t) in SUM A

. Estimated by specialized SUMA clients

. Performance monitoring agents running on the
Execution Servers and SUMA core provide the
Eload parameters

. plat is provided by SUMA services

. app is provided by the user (probably with the
help of automatic tools)

Conclusions

- SUMA: dual challenge

- model what we design
. design what we can model

- Main effects of this approach on SUMA design

- Predefined parallel platforms (computer clusters within
SUMA)

. Isolation levels
- SUMA clients designed to help estimate performance

