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Motivation

� Software systems are 
� becoming more complex
� being built from component parts
� running in complex and varied environments

� Tools are required to
� understand the behavior of such systems
� react to changing environments
� manage software components
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dyninstAPI

� API for runtime code patching
� new code can be added to a program while it executes
� permits instrumentation and modification of 

programs

� Provides processor independent abstractions
� same patching can be applied to multiple systems

� Includes meta-instrumentation
� tracks overhead on inserted code
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Applications of Runtime Code Patching

� Performance measurement
� Recording application behavior

� Correctness debugging
� Fast conditional breakpoints
� Data breakpoints

� Execution driven simulation
� Architecture studies

� Testing
� Code coverage testing
� Forcing hard to execute paths to be taken
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Advantages of Runtime Code Patching

� No forethought needed
� No user inserted probes
� No special compiling or linking
� Start anytime during execution

� Only insert code when needed
� No wasted checks for �disabled� code
� Can add new code during execution
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API Library

� Provides:
� Functions for control of mutatee
� Runtime code generation
� Information about mutatee

� A set of C++ classes
� Bpatch_thread
� BPatch_image
� BPatch_snippet
� BPatch_variableExpr
� BPatch_block
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Representing Code Snippets

� Platform Independent Representation
� Same code can be inserted into apps on any system

� Simple Abstract Syntax Tree
� Can refer to application state (variables & params)
� Includes simple looping construct
� Permits calls to application subroutines

� Type Checking
� Ensures that snippets are type compatible
� Based on structural equivalence

� allows flexibility when adding new code
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Snippet Example
if (flagVar == 0) fdVar = open(filename, ...)

BPatch_ifExpr

BPatch_constExpr(0)BPatch_variableExpr
flagVar

BPatch_boolExpr(BPatch_eq, �)

BPatch_VariableExpr
fdVar

BPatch_arithExpr(BPatch_assign, �)

BPatch_constExpr(0666)

BPatch_constExpr(filename)

BPatch_constExpr(O_WRONLY | O_CREAT)

B
Pa

tc
h_

Ve
ct

or

BPatch_funcCallExpr

BPatch_function �open�
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Type Support in Dyninst

� Access to local (stack) variables
� Complex types

� non-integer scalars
� structures
� arrays

� Correctness debugging
� print contents of data structures
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Implementation

� Use Compiler debugger info (stab records)
� access to user defined types
� information about local variables
� type information for all variables
� line number to text segment address mapping

� Incremental parsing
� parse stabs for a module on first use

� dyninst User can define types
� allows the creation of new types for patched code
� permits reconstruction of stripped symbols
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API Example
// find all variables defined in an image
BPatch_Vector<BPatch_variableExpr *> vars = 

appImage->getGlobalVariables()

for (i=0; i < vars->size(); i++) {
BPatch_variableExpr *v = (*vars)[i];
switch (v->getType()->type()) {

case BPatch_scalar:
printf(�%s is a scalar of type %s\n�, v->getName(),

v->getType()->getName());
case BPatch_structure:

FieldVector *fields = v->getType()->getComponents();
for (j=0; j < fields->size(); j++) {

Bpatch_field *f = (*fields)[j];
printf(�field %s is of type %s\n�, f->getName(),

f->getType()->getName());
}  }   }
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Code Coverage Testing Using Dyninst

� Code Coverage
� identifies source code lines not executed 
� ensures each basic block is taken at least once 

� Using Dyninst
� Allows use on arbitrary binaries
� Permits removing code once a block is covered

� Long running programs can be tested faster
� Permits incremental instrumentation

� First instrument function entry
� On first call, instrument function�s blocks
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Using Dominators to Reduce Counters

�instrument basic blocks that are leaf nodes in dominator tree

�Also instrument basic blocks with outgoing edge(s) to blocks not dominated 
by them
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Postgres with Wisconsin benchmark
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Slow down
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Dyner Command Utility
� TCL-based command line tool

� provides access to most dyninst features
� easier to program for simple applications
� can be used as a simple command-line debugger

� fast conditional breakpoints
� dynamic addition of printfs

� Command Summary
� declare: create a new variable in the application
� cbreak: insert conditional breakpoint
� print: show contents of application data structures
� at: insert a code snippet into the application
� load, run, exit: process creation and manipulation
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TCL Command Example

% load application
% declare int counter
% at main entry { counter = 0; }
% at importantFunc entry { counter++; }
% at main exit { 

printf(�function called %d times\n�, 
counter); 

} 
% run
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Dyninst Status

� Supported platforms
� SPARC (Solaris)
� x86 (Solaris, Linux, NT)
� Alpha (Tru64 UNIX)
� MIPS (IRIX)
� Power/PowerPC (AIX)

� Software available on the web
� http://www.cs.umd.edu/projects/dyninstAPI
� Includes TCL command tool (soon)
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Expanding the Application/System 
Interface

Past Model:
Start program execution, hope for best

New Model:
Application exposes alternatives

different algorithms/parameters
performance expectations for options

System adapts application to optimize execution
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Harmony Structure
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Features of Harmony RSL

� Bundles
� primary unit of adaptation
� mutually exclusive sets of application options

� Resource Requirements
� expected utilization for each option and resource

� Performance Prediction
� expected performance of selected bundles
� allows optimizing multiple applications on a system
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Bundles

� node
� CPU speed/disk capacity/available memory

� link
� latency/bandwidth/protocol between nodes

� communication
� entire application�s communication requirements

� performance
� entire application�s performance 

� granularity
� switching between options at runtime
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Harmony API

harmony_startup(<unique id>, <use interrrupts>)

harmony_bundle_setup(“<bundle definition>”)

void *harmony_add_variable(“name”, <default>, <type>, <func>)

harmony_wait_for_update()

harmony_end()

Used by application to:
� define options
� learn of harmony selections
� receive information about the environment
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Architecture of Harmony Implementation
Harmony Process
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Example: Client-Server Database

ClientQuery-
Shipping

Server

ClientData-
Shipping Server
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Database Bundle
harmonyBundle Dbclient:1 where {

{QS {node server
{seconds 9}
{memory 20}}

{node client  
{seconds 1}
{memory 42}}

{link client server 2}
}

{DS {node server
{seconds 1}
{memory 20}}

{node client
{memory >=17}
{seconds 9}}

{link client server {44 + (client.memory > 24 ? 24 : 
client.memory) - 17}}

}
}
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Client Response Times
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Results from PSTSWM

� Solves nonlinear shallow water equations
� Contains many options:

� Multiple algorithms embedded in the code 
� Problem-specific options
� Communication Parameters

  All Combinations
Size Nodes Min Max 
T42L16 4 0.75 1.52 
T42L16 8 0.50 1.03 
T85L32 4 9.55 20.89 
T85L32 8 5.99 11.41 
 

Best Combinations
Min Max

0.75 1.49 
0.50 0.77
9.55 15.38
5.99 7.90
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Current Work

� Application resource usage
� potential, not necessarily achievable
� user, compiler, profiling

� Performance prediction
� structural models
� POEMS, AppLeS

� Scheduling!
� Heuristics

� More applications
� real-time vision, web server, video server
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Active Harmony Conclusions

� Launch and forget is not sufficient:
� Capacities are dynamic
� Demands are dynamic

� System-directed adaptation gives us:
� Complete information
� Handles to running applications

� But requires:
� Application restructuring (or layering, i.e. DSM)
� Detailed resource requirements
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