
1University of Maryland

Runtime Program Evolution

Jeff Hollingsworth

© Copyright 2000, Jeffrey K. Hollingsworth, All Rights Reserved.

2University of Maryland

Motivation

� Software systems are
� becoming more complex
� being built from component parts
� running in complex and varied environments

� Tools are required to
� understand the behavior of such systems
� react to changing environments
� manage software components

3University of Maryland

dyninstAPI

� API for runtime code patching
� new code can be added to a program while it executes
� permits instrumentation and modification of

programs

� Provides processor independent abstractions
� same patching can be applied to multiple systems

� Includes meta-instrumentation
� tracks overhead on inserted code

4University of Maryland

Applications of Runtime Code Patching

� Performance measurement
� Recording application behavior

� Correctness debugging
� Fast conditional breakpoints
� Data breakpoints

� Execution driven simulation
� Architecture studies

� Testing
� Code coverage testing
� Forcing hard to execute paths to be taken

5University of Maryland

Advantages of Runtime Code Patching

� No forethought needed
� No user inserted probes
� No special compiling or linking
� Start anytime during execution

� Only insert code when needed
� No wasted checks for �disabled� code
� Can add new code during execution

6University of Maryland

Machine
Dependent
Code

Structure of the Dyninst Library

Mutator Mutatee

Mutator App

API

Dyninst
Code

Ptrace or procfs

Application
Code

Snippets

Run-time Library

7University of Maryland

API Library

� Provides:
� Functions for control of mutatee
� Runtime code generation
� Information about mutatee

� A set of C++ classes
� Bpatch_thread
� BPatch_image
� BPatch_snippet
� BPatch_variableExpr
� BPatch_block

8University of Maryland

Representing Code Snippets

� Platform Independent Representation
� Same code can be inserted into apps on any system

� Simple Abstract Syntax Tree
� Can refer to application state (variables & params)
� Includes simple looping construct
� Permits calls to application subroutines

� Type Checking
� Ensures that snippets are type compatible
� Based on structural equivalence

� allows flexibility when adding new code

9University of Maryland

Snippet Example
if (flagVar == 0) fdVar = open(filename, ...)

BPatch_ifExpr

BPatch_constExpr(0)BPatch_variableExpr
flagVar

BPatch_boolExpr(BPatch_eq, �)

BPatch_VariableExpr
fdVar

BPatch_arithExpr(BPatch_assign, �)

BPatch_constExpr(0666)

BPatch_constExpr(filename)

BPatch_constExpr(O_WRONLY | O_CREAT)

B
Pa

tc
h_

Ve
ct

or

BPatch_funcCallExpr

BPatch_function �open�

10University of Maryland

Type Support in Dyninst

� Access to local (stack) variables
� Complex types

� non-integer scalars
� structures
� arrays

� Correctness debugging
� print contents of data structures

11University of Maryland

Implementation

� Use Compiler debugger info (stab records)
� access to user defined types
� information about local variables
� type information for all variables
� line number to text segment address mapping

� Incremental parsing
� parse stabs for a module on first use

� dyninst User can define types
� allows the creation of new types for patched code
� permits reconstruction of stripped symbols

12University of Maryland

API Example
// find all variables defined in an image
BPatch_Vector<BPatch_variableExpr *> vars =

appImage->getGlobalVariables()

for (i=0; i < vars->size(); i++) {
BPatch_variableExpr *v = (*vars)[i];
switch (v->getType()->type()) {

case BPatch_scalar:
printf(�%s is a scalar of type %s\n�, v->getName(),

v->getType()->getName());
case BPatch_structure:

FieldVector *fields = v->getType()->getComponents();
for (j=0; j < fields->size(); j++) {

Bpatch_field *f = (*fields)[j];
printf(�field %s is of type %s\n�, f->getName(),

f->getType()->getName());
} } }

13University of Maryland

Code Coverage Testing Using Dyninst

� Code Coverage
� identifies source code lines not executed
� ensures each basic block is taken at least once

� Using Dyninst
� Allows use on arbitrary binaries
� Permits removing code once a block is covered

� Long running programs can be tested faster
� Permits incremental instrumentation

� First instrument function entry
� On first call, instrument function�s blocks

14University of Maryland

1

2

3

4

5

6

7

CFG Dominator Tree
1

2

3 4

5 7

6

Using Dominators to Reduce Counters

�instrument basic blocks that are leaf nodes in dominator tree

�Also instrument basic blocks with outgoing edge(s) to blocks not dominated
by them

15University of Maryland

Postgres with Wisconsin benchmark

0

20

40

60

80

100

120

140

160

180

ex
ec

uti
on

 tim
e(

se
c)

original 0 2 10 25deletion interval(sec)

execution time for postgres

all basic blocks
dominator info

coverage for postgres

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81

time(interval)

pe
rc

en
ta

ge

percentage

16University of Maryland

Slow down

0

5

10

15

sl
ow

do
wn

 r
at

io

postgres vortex perl mk88sim ijpeg

tested programs

slow down ratio wrt. original execution

purecov

all basic blocks

dominator info

17University of Maryland

Dyner Command Utility
� TCL-based command line tool

� provides access to most dyninst features
� easier to program for simple applications
� can be used as a simple command-line debugger

� fast conditional breakpoints
� dynamic addition of printfs

� Command Summary
� declare: create a new variable in the application
� cbreak: insert conditional breakpoint
� print: show contents of application data structures
� at: insert a code snippet into the application
� load, run, exit: process creation and manipulation

18University of Maryland

TCL Command Example

% load application
% declare int counter
% at main entry { counter = 0; }
% at importantFunc entry { counter++; }
% at main exit {

printf(�function called %d times\n�,
counter);

}
% run

19University of Maryland

Dyninst Status

� Supported platforms
� SPARC (Solaris)
� x86 (Solaris, Linux, NT)
� Alpha (Tru64 UNIX)
� MIPS (IRIX)
� Power/PowerPC (AIX)

� Software available on the web
� http://www.cs.umd.edu/projects/dyninstAPI
� Includes TCL command tool (soon)

20University of Maryland

Expanding the Application/System
Interface

Past Model:
Start program execution, hope for best

New Model:
Application exposes alternatives

different algorithms/parameters
performance expectations for options

System adapts application to optimize execution

21University of Maryland

Harmony Structure

Tuning
Control

Applications
and Libraries

System

Controller

Capacities and
Requirements

Tuning
Options

Tuning
Control

Availabilities and
Requirements

Metric
Interface

Resource
Requirements

22University of Maryland

Features of Harmony RSL

� Bundles
� primary unit of adaptation
� mutually exclusive sets of application options

� Resource Requirements
� expected utilization for each option and resource

� Performance Prediction
� expected performance of selected bundles
� allows optimizing multiple applications on a system

23University of Maryland

Bundles

� node
� CPU speed/disk capacity/available memory

� link
� latency/bandwidth/protocol between nodes

� communication
� entire application�s communication requirements

� performance
� entire application�s performance

� granularity
� switching between options at runtime

24University of Maryland

Harmony API

harmony_startup(<unique id>, <use interrrupts>)

harmony_bundle_setup(“<bundle definition>”)

void *harmony_add_variable(“name”, <default>, <type>, <func>)

harmony_wait_for_update()

harmony_end()

Used by application to:
� define options
� learn of harmony selections
� receive information about the environment

25University of Maryland

Architecture of Harmony Implementation
Harmony Process

Application
Options

Performance
Data

Option
Instantiation

C Code

Option Selection
 (TCL Code)

Send/Recv (TCP)

Application Process Application Process

Parameters

(e.g., cache size)

Alternative

Algorithms

Harmony Library

Application Code

Parameters

(e.g., cache size)

Alternative

Algorithms

Harmony Library

Application Code

26University of Maryland

Example: Client-Server Database

ClientQuery-
Shipping

Server

ClientData-
Shipping Server

27University of Maryland

Database Bundle
harmonyBundle Dbclient:1 where {

{QS {node server
{seconds 9}
{memory 20}}

{node client
{seconds 1}
{memory 42}}

{link client server 2}
}

{DS {node server
{seconds 1}
{memory 20}}

{node client
{memory >=17}
{seconds 9}}

{link client server {44 + (client.memory > 24 ? 24 :
client.memory) - 17}}

}
}

28University of Maryland

Client Response Times

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900
Time [s]

Re
sp

on
se

 ti
m

e
[s

]

Client #1
Client #2
Client #3

Clients added one at a time:
� First two clients run with query-shipping
� Third client flips all to data-shipping

29University of Maryland

Results from PSTSWM

� Solves nonlinear shallow water equations
� Contains many options:

� Multiple algorithms embedded in the code
� Problem-specific options
� Communication Parameters

 All Combinations
Size Nodes Min Max
T42L16 4 0.75 1.52
T42L16 8 0.50 1.03
T85L32 4 9.55 20.89
T85L32 8 5.99 11.41

Best Combinations
Min Max

0.75 1.49
0.50 0.77
9.55 15.38
5.99 7.90

30University of Maryland

Current Work

� Application resource usage
� potential, not necessarily achievable
� user, compiler, profiling

� Performance prediction
� structural models
� POEMS, AppLeS

� Scheduling!
� Heuristics

� More applications
� real-time vision, web server, video server

31University of Maryland

Active Harmony Conclusions

� Launch and forget is not sufficient:
� Capacities are dynamic
� Demands are dynamic

� System-directed adaptation gives us:
� Complete information
� Handles to running applications

� But requires:
� Application restructuring (or layering, i.e. DSM)
� Detailed resource requirements

32University of Maryland

Acknowledgements

� Co-PIs
� Pete Keleher (Harmony)
� Bart Miller (dyninst)

� Graduate Students
� Harmony - Heonsang Eom, Dejan Perkovic, Cristian Tapus
� dyninst - Bryan Buck, Mustafa Tikir

� Research Staff
� Mehmet Altinel

� Funding Agencies
� DARPA, DOE, DOD, NSF, NIST

33University of Maryland

