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� Although clock rate gains have been 
impressive, architectural features have also 
contributed significantly to performance 
improvement.

� At the instruction level, compilers play a 
crucial role in exploiting the power of the 
target machine.



� And, with SMT and SMP machines 
growing in popularity, automatic 
transformation and analysis at the thread 
level will become increasingly important. 



� Advances in compiler technology can have a 
profound impact
� By improving performance.
� By facilitating programming without hindering 

performance.

� For example, average performance improvement 
of advanced compiler techniques at the instruction 
level for the IA-64 is ~3. This is beyond what can 
be achieved by traditional optimizations. 



� Scientific Computing has had a very 
important influence on compiler 
technology.
� Fortran I (1957)
� Many classical optimizations

� strength reduction
� Common subexpression elimination
� �

� Dependence analysis



� Relative commercial importance of 
scientific computing is declining.
� End of Cold War
� Increasing volume of �non-numerical� 

applications



� Every optimizing compiler does:
� Program analysis
� Transformations

� The result of the analysis determines which 
transformations are possible, but the number of 
possible valid transformations is unlimited.

� Implicit or explicit heuristics are used to 
determine which transformations to apply.



� Program analysis is well understood for some 
classes of computations such as simple dense 
computations.

� However, compilers usually do a poor job in some 
cases, especially in the presence of irregular 
memory accesses.

� Program analysis and transformation is built on a 
solid mathematical foundation, but building the 
engine that drives the transformations is an 
obscure craft. 



� Compiler Techniques for Very High Level 
Languages

� Advanced Program Analysis Techniques
� Static Performance Prediction and 

Optimization Control



1. Compiling Interactive Array 
Languages (MATLAB)

Joint work with 
George Almasi (Illinois), Luiz De Rose (IBM Research),             

Vijay Menon (Cornell), Keshav Pingali (Cornell)



� Many computational science applications 
involve matrix manipulations.

� It is, therefore, appropriate to use array 
languages to program them.

� Furthermore, interactive array languages 
like APL and MATLAB are very popular 
today. 



(continued)

� Their environment includes easy to use facilities 
for input of data and display of results.

� Interactivity facilitates debugging and 
development. 
� Increased software productivity.

� But interactive languages are usually interpreted. 
� Performance suffers.



� Generation of high-performance code for 
serial and parallel architectures

� Efficient extraction of information from the 
high-level semantics of MATLAB

� Use of the semantic information in order to 
improve compilation



� MATLAB does not require declarations
� Static and dynamic type inference

� Variables can change characteristics during 

execution time



� Type inference needs to determine the following 
variable properties:
� Intrinsic type: logical, integer, real, or complex
� Rank: scalar, vector, or matrix
� Shape: size of each dimension

� For more advanced transformations (not 
implemented)  it also will be useful to determine:
� Structure: lower triangular, diagonal, etc



Test programs Problem size Source
Successive Overrelaxation                (SOR) 420x420 a
Preconditioned CG                            (CG) 420x420 a
Generation of a 3D-Surface             (3D) 51x31x21 d
Quasi-Minimal Residual                  (QMR) 420x420 a
Adaptive Quadrature                        (AQ) 1Dim (7) b
Incomplete Cholesky Factorization (IC) 400x400 d
Galerkin (Poisson equation)            (Ga) 40x40 c
Crank-Nicholson (heat equation)    (CN) 321x321 b
Two body problem
  4th order Runge-Kutta                    (RK)

3200
steps c

Two body problem
  Euler-Cromer method                    (EC)

6240
steps c

Dirichlet (Laplace’s equation)         (Di) 41x41 b
Finite Difference (wave equation)   (FD) 451x451 b
Source:
  a. “Templates for the Solution of Linear Systems
      Building Blocks for Iterative Methods”, Barrett et. Al.
  b. “Numerical Methods for Mathematics, Science and
      Engineering, John H. Mathews
  c. “Numerical Methods for Physics”, A. Garcia
  d. Colleagues



 Prog. MATLAB MCC F 90 H. W.
 SOR 18.12 18.14 2.733 0.641
 CG 5.34 5.51 0.588 0.543
 3D 34.95 11.14 3.163 3.158
 QMR 7.58 6.24 0.611 0.562
 AQ 19.95 2.30 1.477 0.877
 IC 32.28 1.35 0.245 0.052
 Ga 31.44 0.56 0.156 0.154
 CN 44.10 0.70 0.098 0.097
 RK 20.60 5.77 0.038 0.025
 EC 8.34 3.38 0.012 0;007
 Di 44.17 1.50 0.052 0.050
 FD 34.80 0.37 0.031 0.031



11.21.4
SOR CG 3D QMR AQ IC Ga CN RK EC Di FD 

   1

   4

  10

  40

 100

 400

1000

S
pe

ed
up

 (
lo

g 
sc

al
e) MCC

FALCON

SGI Power Challenge



11.11.2SOR CG 3D QMR AQ IC Ga CN RK EC Di FD 

0

1

2

3

4

5

S
pe

ed
up

 o
f h

an
d−

w
rit

te
n 

ov
er

 F
A

LC
O

N

SGI Power Challenge



� MAJIC: (MAtlab Just-In-Time Compiler) 
interactive and fast
� combination interpreter/JIT compiler
� builds on top of FALCON techniques



Analysis
� Compile only code 

that takes time to 
execute (loops)

� type analysis and 
value/limit 
propagation

� recompile only when 
source has changed

Code Generation
� naïve (per AST node) 

JIT code generation
� uses built-in 

MATLAB functions 
where possible

� average compile time: 
20ms per line of 
MATLAB source



� JIT SMP parallelism: 
lightweight 
dependence analysis, 
execution on multiple 
Solaris LWPs

� speculative lookahead
compilation: hiding 
compilation time from 
user

� exact shape/value 
propagation: allows 
precise unrolling for 
�small vector� 
operations
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2. Compiling Tensor Product Language
Joint work with 

Jeremy Johnson (Drexel), Robert Johnson (MathStar), Jose Moura 
(CMU), Viktor Prasanna (SC), Manuela Veloso (CMU)



In 1964, Cooley and Tukey presented a divide 
and conquer algorithm for computing f=Fnx. 
Their algorithm is based on
Theorem. Let n=rs, 0≤k1,l2<r,0 ≤k2,l1<s, then

Repeated application to n=2t, for example, 
leads to an O(n log n) algorithm, called the 
Fast Fourier Transform (FFT), for computing 
f=Fnx. 
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Let A be an m×m matrix and B an n×n matrix. Then A⊗ B is the 
mn×mn matrix defined by the block matrix product

For example, if

then
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Theorem

Example
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Associativity

Multiplicative Property

Commutation Theorem

Stride Permutations
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Formula Generator

TPL Formulas

TPL Compiler

Executable Program

Performance Evaluator

Search Engine



#subname F4
( compose

( tensor (F 2) (I 2) )
( T 4 2 )
( tensor (I 2) (F 2) )
( L 4 2 ) )



subroutine F4(y,x)

implicit complex*16(f)

complex*16 y(4),x(4)

f0 = x(1) + x(3)

f1 = x(1) - x(3)

f2 = x(2) + x(4)

f3 = x(2) - x(4)

f4 = (0.0d0,-1.0d0) * f3

y(1) = f0 + f2

y(3) = f0 - f2

y(2) = f1 + f4

y(4) = f1 - f4

end



subroutine F4L(y,x)

implicit complex*16(f)

complex*16 y(4),x(4),t1(4)

do i0 = 0, 1

t1(2*i0+1) = x(i0+1) + x(i0+3)

t1(2*i0+2) = x(i0+1) - x(i0+3)

end do

t1(4) = (0.0d0,-1.0d0) * t1(4)

do i0 = 0, 1

y(i0+1) = t1(i0+1) + t1(i0+3)

y(i0+3) = t1(i0+1) - t1(i0+3)

end do

end



1. Analysis of Explicitly Parallel 
Programs
Joint work with 

Samuel Midkiff (IBM Research and Jaejin Lee (Michigan State)

J. Lee, D. Padua, and S. Midkiff. Basic Compiler Algorithms for Parallel Programs. ACM SIGPLAN 1999 Symposium on Principles and Practice
of Parallel Programming (PPoPP). 



Shared Memory Parallel Programming

� A global shared address space between threads
� Communication between threads: 

� reads and writes of shared variables

flag = 1
do while (flag==0)
end do



Incorrect Constant Propagation

b = 0
f = 0
g = 0
s = 0
cobegin

f = 1
wait(g)

||
do while (f==0)
end do

post(g)
coend
print s

s = b

b = 3

b = 4

b = 3

f = 1

wait(g)

s = b

do while (f==0)
end do

b = 4

post(g)

α

γ
α

ββ

γ

s = 4
� To avoid this incorrect propagation, we can 

conservatively assume wait(g) modifies 
variable b, but this cannot handle busy-wait 
synchronization.



Incorrect Loop Invariant Code Motion

• x = a + 1 is a loop invariant in classical sense, but 
moving it outside makes the loop infinite.

a = 0
x = 0
y = 0
cobegin

y = a + 1

||
a = 1

coend

x = a + 1
do while (x <> 2)
end do

do while (x <> 2)
x = a + 1

end do
α



Incorrect Dead Code Elimination

� An instruction I is dead if it computes values that are not 
used in any executable path starting at I.

� Eliminating flag = 1 in Thread 1 makes the while loop 
in Thread 2 infinite. 

flag = 1 do While (flag==0)
end do

Thread 1 Thread 2

α



Incorrect Compilation

� The compiler makes the busy-wait loop infinite.

C$DOACROSS SHARE(a,e,k), LOCAL(I,j)
do I = 2, n

do j = 2, n

a(I,j) = a(I,j-1) + a(I-1,j)
e(I,j) = 1

end do
end do

do while (e(I-1,j) .ne. 1)
end do

W/O optimization
$33: R13 ←←←← e(I-1,j)

if R13 <> 1 goto $33

W/ optimization
R13 ←←←← e(I-1,j)

$33:
if R13 <> 1 goto $33



Concurrent Static Single Assignment 
Form (Cont.)

� A π-function of the form π(v1,�,vn) for a shared variable v
is placed where there is a use of the shared variable with δt

conflict edges. n is the number of reaching definitions to 
the use of v through the incoming control flow edges and 
incoming conflict δt edges.

� The CSSA form has the following properties:
� All uses of a variable are reached by exactly one (static) 

assignment to the variable.
� For a variable, the definition dominates the uses if they are not 

arguments of  φ-, π-, and ψ-functions.



Concurrent Static Single Assignment 
Form (Cont.)

b = 0
f = 0
g = 0
s = 0
cobegin

b = 3
f = 1
wait(g)

||
do while (f==0)
end do
b = 4
post(g)

coend
print s

b0=0
f0=0
g0=0
s0=0

b1=3

f1=1

exit

entry

wait(g)

cobegin

coend

t0=π(b1,b2)
s1=t0

print s1

post(g)

b2=4

t1=π(f0,f1)
t1==0

δo

δo

σ

δt

δa

δt

δa

δa

δt

T
F

b3=ψ(b1,b2)

s = b



� We compute a set Prec[n] of nodes m, which is 
guaranteed to precede n during execution.

� Computing the exact execution ordering:
� NP-hard problem
� An iterative approximation algorithm

� Common ancestor algorithm



Common Ancestor Algorithm 
[Emrath,Ghosh, and Padua, IEEE Software, 1992]

� Originally, a trace based algorithm, but we use it for static analysis.
� Data flow equations:
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2. Analysis of Conventional 
Programs to Detect Parallelism

Joint work with 
W. Blume(HP), J. Hoeflinger (Illinois), R. Eigenmann (Purdue), P. 

Petersen (KAI), and P. Tu



� Powerful high-level restructuring for 
parallelism and locality enhancement.

� Language constructs based on early 
research on detection of parallelism.

� Analysis and transformations important for 
instruction-level parallelism



� In 1989-90, we did experiments on the 
effectiveness of automatic parallelization for an 
eight-processor Alliant FX/80 and the Cedar 
multiprocessor.

� We translated the Perfect Benchmarks using KAP-
Cedar, a version of KAP modified at Illinois. The 
speedups obtained for the Alliant are shown next.

R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the Automatic Parallelization of Four Perfect Benchmark Programs. 
Lecture Notes in Computer Science 589. Springer-Verlag. 1992.

R. Eigenmann, J. Hoeflinger, and D. Padua. On the Automatic Parallelization of the Perfect Benchmarks. IEEE TPDS. 9(1). 1998.
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� As can be seen, the speedups obtained were 
dismal.

� However, we found that there is much parallelism 
in the Perfect Benchmarks and, more importantly, 
that it can be detected automatically.

� In fact, after applying by hand a few automatable
transformations, we obtained the following results.
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� Three classes of automatable transformations were 
found to be of importance in the previous study:

� Recognition and translation of idioms
� Dependence analysis
� Array privatization
� Transformations similar but weaker than those we 

applied by hand were applied by KAP.



� Given the program:
do i=1,n 

do j=1,m

S:   A(f(i,j),g(i,j))=...

T:   ...             =A(p(i,j),q(i,j))+ ...

end do

end do



� To determine if there is a flow dependence from S 
to T, we need to  determine whether the system of 
equations:

f(i,j) = p(i',j')
g(i,j)=q(i',j')

has a solution under the constraints
n≥i, i' ≥ 1, m ≥ j, j' ≥ 1, and (i',j') ≥(i,j)



� Loop-carried dependences preclude transformation into 
parallel form.

� They also preclude some important transformations.
� For example, statement S can be removed from the loop if 

f(i) is never 2
do i=1,n 

S: A(f(i))=...

T: Q=A(2)

...

end do 



� Many techniques have been developed to 
answer this question efficiently.

� Banerjee's test suffices in most situations 
where the subscript expressions are a linear 
function of the loop indices. 

P.Petersen and D. Padua  Static and Dynamic Evaluation of Data Dependence Analysis
Techniques. IEEE TPDS. 7(11). Nov. 1996.



� However, there are situations where traditional 
dependence analysis techniques, including
Banerjee's test,  fail. Two cases we found in our 
experiments are:

� Nonlinear subscript expressions. These could be 
present in the original source code or generated by 
the translator when replacing induction variables.

� Indexed arrays.



� An example of nonlinear subscript expression 
from OCEAN:

do j=0,n-1

do k=0,x(j)

do m=0,128

...

p=258*n*k+128*j+m+1

A(p)=A(p)-A(p+129*n)

A(p+129*n)=...

...



� Example of indexed array from TRACK

do i=1,n

...

jok= ihits(1,i)

nused(jok)=nused + 1

...

end do
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� Each processor cooperating in the execution 
of a loop has a separate copy of all private 
variables.

� A variable can be privatized -- that is, 
replaced by a private variable -- if in every 
loop iteration the variable is always 
assigned before it is fetched. 



� Example of privatizable scalar:
do k=...

s = A(k)+1

B(k) = s**2

C(k) = s-1

end do

� Example of privatizable array:
do k=...

do j=1,m

s(j) = A(k,j)+1

end do

do j=1,m

B(k,j) = s(j)**2

C(k,j) = s(j)-1

end do

end do



� Commercial compilers are effective at 
identifying privatizable scalars.

� However, we found a number of cases 
where array privatization is necessary for 
loop parallelization.

� New techniques were developed to deal 
effectively with array privatization.



� Significant progree is possible
� But few research groups are still focusing 

on this problem
� An experimental approach is crucial for 

progress.
� Need good benchmarks (also desperately 

needed for research on compilers for explicitly 
parallel programs)



3. Dependence Analysis



� Analysis of non-affine subscript 
expressions.

� Compile-Time analysis of Index Arrays

� Analysis of Java Arrays



3a. Analysis of non-affine subscript 
expressions

Joint work with 
Y. Paek (KAIST) and J. Hoeflinger (Illinois)

Y. Paek, J. Hoeflinger, and D. Padua. Simplification of array access patterns for compiler optimization. 
SIGPLAN�98 Conference on Programming Language Design and Implementation (PLDI)



� Traditional data dependence analysis for 
arrays:
� form dependence equation
� solve equation, taking into account constraints

DO I=1,N
A(I) = . . . 
. . .   = A(I+N)

END DO

I = I� + N

Given that   1 <= I <= N
and        1 <= I� <= N



� Tradition is successful, but limited.
� coupled subscripts and non-affine subscripts

cause problems
� non-loop parallelization has become important
� interprocedural parallelization has become 

important
� Specifically, the system-solving paradigm is 

too limiting.



� We can precisely represent any regular 
integer sequence by:
� its starting value,
� an expression for the difference between 

successive elements of the sequence,
� the total number of elements.

do I=1,N
A(2**I)

end do
S.O.S.=2,4,8,16,. . .2

N
Start: 2
S     - S    = 2
# elements: N

I+1 I
I



1
span   , . . .    , spand

stride 1 , . . . , stride d

+ base offset



REAL A(N)
DO I=1,N

A(I) . . .
END DO

+ I - 1
0

0
+ 0

N-1

1

expand

CALL X(A(I)) + I - 1
0

0

SUBROUTINE X(Z)
REAL Z(*)
. . . 

+ 0
M-1, T*M

1,     M

+ I - 1
M-1, T*M

1,     MREAL A(N)



If a given loop index causes the subscripting offset sequence to
produce the same element more than once, then the LMAD
is said to have an overlap due to that loop index.

This corresponds to a loop-carried dependence.

do I = 1,N
do J = 1, M

A(J) =  . . . 
end do

end do

Real A(25)
do I = 0,4

do J = 0, 5
A(I+3*J) = 

end do
end do



3c. Analysis of Java Arrays
Joint work with 

Paul Feautrier (U. Versailles) and Peng Wu (Illinois)



� Traditional loop-level optimizations are not 
directly applicable to Java arrays

� Multi-dimensional Java arrays may have irregular 
shapes
� combness analysis

� Common use of  reference (�pointers�), 
� a pointer-based dependence test



...

blocking,
loop unrolling,
loop interchange,
loop fusion,
parallelization,
...

Fortran style optimizations

Index-based 
DD test 

alias/shape 

Fortran

Java
exception 



level-1, level-2, level-3 comb level-1, level-2 comb

Combness analysis: analyze the shape of an array



� If a is a comb of level-1only, loop-i is parallelizable
� If a is a comb of level-2 only, loop-j is parallelizable
� If a is a comb of level-1 and level-2, the loop-nest-i-j is 

parallelizable

...
int a[n][n][n];
...
for ( int i = 0; I<n; I++)
for (int j = 0; j<n; j++)

for (int k = 0; k<n; k++)
a[i][j][k] = a[i][j][k] + 1;



Joint work with 
D. Reed (Illinois) and C. Cascaval (Illinois)



� Provide the compiler with information to 
enable performance related optimizations

� Predict the execution time of scientific 
Fortran programs, with reasonable 
accuracy, using architecture independent 
models

� Rapid performance tuning tool
� Architecture evaluation



� Fast performance estimation results with 
reasonable accuracy
� light load on the compiler 
� rapid feedback to the user

� Abstract models (symbolic expressions), as 
a function of 
� program constructs
� input data set
� architecture parameters



� Model different parts of the system 
independently

� Each model generates one or more terms in 
a symbolic expression

� Advantages
� simplicity
� modularity
� extensibility






