
David A. Padua
University of Illinois at Urbana-

Champaign

� Although clock rate gains have been
impressive, architectural features have also
contributed significantly to performance
improvement.

� At the instruction level, compilers play a
crucial role in exploiting the power of the
target machine.

� And, with SMT and SMP machines
growing in popularity, automatic
transformation and analysis at the thread
level will become increasingly important.

� Advances in compiler technology can have a
profound impact
� By improving performance.
� By facilitating programming without hindering

performance.

� For example, average performance improvement
of advanced compiler techniques at the instruction
level for the IA-64 is ~3. This is beyond what can
be achieved by traditional optimizations.

� Scientific Computing has had a very
important influence on compiler
technology.
� Fortran I (1957)
� Many classical optimizations

� strength reduction
� Common subexpression elimination
� �

� Dependence analysis

� Relative commercial importance of
scientific computing is declining.
� End of Cold War
� Increasing volume of �non-numerical�

applications

� Every optimizing compiler does:
� Program analysis
� Transformations

� The result of the analysis determines which
transformations are possible, but the number of
possible valid transformations is unlimited.

� Implicit or explicit heuristics are used to
determine which transformations to apply.

� Program analysis is well understood for some
classes of computations such as simple dense
computations.

� However, compilers usually do a poor job in some
cases, especially in the presence of irregular
memory accesses.

� Program analysis and transformation is built on a
solid mathematical foundation, but building the
engine that drives the transformations is an
obscure craft.

� Compiler Techniques for Very High Level
Languages

� Advanced Program Analysis Techniques
� Static Performance Prediction and

Optimization Control

1. Compiling Interactive Array
Languages (MATLAB)

Joint work with
George Almasi (Illinois), Luiz De Rose (IBM Research),

Vijay Menon (Cornell), Keshav Pingali (Cornell)

� Many computational science applications
involve matrix manipulations.

� It is, therefore, appropriate to use array
languages to program them.

� Furthermore, interactive array languages
like APL and MATLAB are very popular
today.

(continued)

� Their environment includes easy to use facilities
for input of data and display of results.

� Interactivity facilitates debugging and
development.
� Increased software productivity.

� But interactive languages are usually interpreted.
� Performance suffers.

� Generation of high-performance code for
serial and parallel architectures

� Efficient extraction of information from the
high-level semantics of MATLAB

� Use of the semantic information in order to
improve compilation

� MATLAB does not require declarations
� Static and dynamic type inference

� Variables can change characteristics during

execution time

� Type inference needs to determine the following
variable properties:
� Intrinsic type: logical, integer, real, or complex
� Rank: scalar, vector, or matrix
� Shape: size of each dimension

� For more advanced transformations (not
implemented) it also will be useful to determine:
� Structure: lower triangular, diagonal, etc

Test programs Problem size Source
Successive Overrelaxation (SOR) 420x420 a
Preconditioned CG (CG) 420x420 a
Generation of a 3D-Surface (3D) 51x31x21 d
Quasi-Minimal Residual (QMR) 420x420 a
Adaptive Quadrature (AQ) 1Dim (7) b
Incomplete Cholesky Factorization (IC) 400x400 d
Galerkin (Poisson equation) (Ga) 40x40 c
Crank-Nicholson (heat equation) (CN) 321x321 b
Two body problem
 4th order Runge-Kutta (RK)

3200
steps c

Two body problem
 Euler-Cromer method (EC)

6240
steps c

Dirichlet (Laplace’s equation) (Di) 41x41 b
Finite Difference (wave equation) (FD) 451x451 b
Source:
 a. “Templates for the Solution of Linear Systems
 Building Blocks for Iterative Methods”, Barrett et. Al.
 b. “Numerical Methods for Mathematics, Science and
 Engineering, John H. Mathews
 c. “Numerical Methods for Physics”, A. Garcia
 d. Colleagues

 Prog. MATLAB MCC F 90 H. W.
 SOR 18.12 18.14 2.733 0.641
 CG 5.34 5.51 0.588 0.543
 3D 34.95 11.14 3.163 3.158
 QMR 7.58 6.24 0.611 0.562
 AQ 19.95 2.30 1.477 0.877
 IC 32.28 1.35 0.245 0.052
 Ga 31.44 0.56 0.156 0.154
 CN 44.10 0.70 0.098 0.097
 RK 20.60 5.77 0.038 0.025
 EC 8.34 3.38 0.012 0;007
 Di 44.17 1.50 0.052 0.050
 FD 34.80 0.37 0.031 0.031

11.21.4
SOR CG 3D QMR AQ IC Ga CN RK EC Di FD

 1

 4

 10

 40

 100

 400

1000

S
pe

ed
up

 (
lo

g
sc

al
e) MCC

FALCON

SGI Power Challenge

11.11.2SOR CG 3D QMR AQ IC Ga CN RK EC Di FD

0

1

2

3

4

5

S
pe

ed
up

 o
f h

an
d−

w
rit

te
n

ov
er

 F
A

LC
O

N

SGI Power Challenge

� MAJIC: (MAtlab Just-In-Time Compiler)
interactive and fast
� combination interpreter/JIT compiler
� builds on top of FALCON techniques

Analysis
� Compile only code

that takes time to
execute (loops)

� type analysis and
value/limit
propagation

� recompile only when
source has changed

Code Generation
� naïve (per AST node)

JIT code generation
� uses built-in

MATLAB functions
where possible

� average compile time:
20ms per line of
MATLAB source

� JIT SMP parallelism:
lightweight
dependence analysis,
execution on multiple
Solaris LWPs

� speculative lookahead
compilation: hiding
compilation time from
user

� exact shape/value
propagation: allows
precise unrolling for
�small vector�
operations

1

10

100

1000

adapt cgopt crnich dirich finedif galrkn icn mei orbec orbrk qmr sor

MAJIC speedups FALCON speedups

2. Compiling Tensor Product Language
Joint work with

Jeremy Johnson (Drexel), Robert Johnson (MathStar), Jose Moura
(CMU), Viktor Prasanna (SC), Manuela Veloso (CMU)

In 1964, Cooley and Tukey presented a divide
and conquer algorithm for computing f=Fnx.
Their algorithm is based on
Theorem. Let n=rs, 0≤k1,l2<r,0 ≤k2,l1<s, then

Repeated application to n=2t, for example,
leads to an O(n log n) algorithm, called the
Fast Fourier Transform (FFT), for computing
f=Fnx.

�� +=+
2

1211

1

21)))((()(2121
k

rlklk

k

slk wrkkxwwslly

Let A be an m×m matrix and B an n×n matrix. Then A⊗ B is the
mn×mn matrix defined by the block matrix product

For example, if

then

()

�
�
�

�

�

�
�
�

�

�

=

=
≤≤

⊗

BaBa

BaBa

BaBA

mmm

m

mjiji

,1,

,11,1

,1,

�

���

�

�
�
�
�

�

�

�
�
�
�

�

�

=⊗

2222212222212121

1222112212211121

2212211222112111

1212111212111111

babababa
babababa
babababa
babababa

BA

�
�

�
�
�

�
=

2221

1211

aa
aa

A �
�

�
�
�

�
=

2221

1211

bb
bb

Band

Theorem

Example

rs
rsr

rs
ssrrs LFITIFF)()(⊗⊗=

is a diagonal matrix

is a stride permutation

rs
sT

rs
rL

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−

−

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
−

=

⊗⊗=

1000
0010
0100
0001

1100
1100
0011
0011

1000
0100
0010
0001

1010
0101
1010
0101

)()(4
222

4
4224 LFITIFF

Associativity

Multiplicative Property

Commutation Theorem

Stride Permutations

)()(CBACBA ⊗⊗=⊗⊗

))((
))((

BIIABA
DCBABDAC

mn ⊗⊗=⊗
⊗⊗=⊗

mn
n

mn
m LABLBA)(⊗=⊗

rst
st

rst
t

rst
s LLL =

Formula Generator

TPL Formulas

TPL Compiler

Executable Program

Performance Evaluator

Search Engine

#subname F4
(compose

(tensor (F 2) (I 2))
(T 4 2)
(tensor (I 2) (F 2))
(L 4 2))

subroutine F4(y,x)

implicit complex*16(f)

complex*16 y(4),x(4)

f0 = x(1) + x(3)

f1 = x(1) - x(3)

f2 = x(2) + x(4)

f3 = x(2) - x(4)

f4 = (0.0d0,-1.0d0) * f3

y(1) = f0 + f2

y(3) = f0 - f2

y(2) = f1 + f4

y(4) = f1 - f4

end

subroutine F4L(y,x)

implicit complex*16(f)

complex*16 y(4),x(4),t1(4)

do i0 = 0, 1

t1(2*i0+1) = x(i0+1) + x(i0+3)

t1(2*i0+2) = x(i0+1) - x(i0+3)

end do

t1(4) = (0.0d0,-1.0d0) * t1(4)

do i0 = 0, 1

y(i0+1) = t1(i0+1) + t1(i0+3)

y(i0+3) = t1(i0+1) - t1(i0+3)

end do

end

1. Analysis of Explicitly Parallel
Programs
Joint work with

Samuel Midkiff (IBM Research and Jaejin Lee (Michigan State)

J. Lee, D. Padua, and S. Midkiff. Basic Compiler Algorithms for Parallel Programs. ACM SIGPLAN 1999 Symposium on Principles and Practice
of Parallel Programming (PPoPP).

Shared Memory Parallel Programming

� A global shared address space between threads
� Communication between threads:

� reads and writes of shared variables

flag = 1
do while (flag==0)
end do

Incorrect Constant Propagation

b = 0
f = 0
g = 0
s = 0
cobegin

f = 1
wait(g)

||
do while (f==0)
end do

post(g)
coend
print s

s = b

b = 3

b = 4

b = 3

f = 1

wait(g)

s = b

do while (f==0)
end do

b = 4

post(g)

α

γ
α

ββ

γ

s = 4
� To avoid this incorrect propagation, we can

conservatively assume wait(g) modifies
variable b, but this cannot handle busy-wait
synchronization.

Incorrect Loop Invariant Code Motion

• x = a + 1 is a loop invariant in classical sense, but
moving it outside makes the loop infinite.

a = 0
x = 0
y = 0
cobegin

y = a + 1

||
a = 1

coend

x = a + 1
do while (x <> 2)
end do

do while (x <> 2)
x = a + 1

end do
α

Incorrect Dead Code Elimination

� An instruction I is dead if it computes values that are not
used in any executable path starting at I.

� Eliminating flag = 1 in Thread 1 makes the while loop
in Thread 2 infinite.

flag = 1 do While (flag==0)
end do

Thread 1 Thread 2

α

Incorrect Compilation

� The compiler makes the busy-wait loop infinite.

C$DOACROSS SHARE(a,e,k), LOCAL(I,j)
do I = 2, n

do j = 2, n

a(I,j) = a(I,j-1) + a(I-1,j)
e(I,j) = 1

end do
end do

do while (e(I-1,j) .ne. 1)
end do

W/O optimization
$33: R13 ←←←← e(I-1,j)

if R13 <> 1 goto $33

W/ optimization
R13 ←←←← e(I-1,j)

$33:
if R13 <> 1 goto $33

Concurrent Static Single Assignment
Form (Cont.)

� A π-function of the form π(v1,�,vn) for a shared variable v
is placed where there is a use of the shared variable with δt

conflict edges. n is the number of reaching definitions to
the use of v through the incoming control flow edges and
incoming conflict δt edges.

� The CSSA form has the following properties:
� All uses of a variable are reached by exactly one (static)

assignment to the variable.
� For a variable, the definition dominates the uses if they are not

arguments of φ-, π-, and ψ-functions.

Concurrent Static Single Assignment
Form (Cont.)

b = 0
f = 0
g = 0
s = 0
cobegin

b = 3
f = 1
wait(g)

||
do while (f==0)
end do
b = 4
post(g)

coend
print s

b0=0
f0=0
g0=0
s0=0

b1=3

f1=1

exit

entry

wait(g)

cobegin

coend

t0=π(b1,b2)
s1=t0

print s1

post(g)

b2=4

t1=π(f0,f1)
t1==0

δo

δo

σ

δt

δa

δt

δa

δa

δt

T
F

b3=ψ(b1,b2)

s = b

� We compute a set Prec[n] of nodes m, which is
guaranteed to precede n during execution.

� Computing the exact execution ordering:
� NP-hard problem
� An iterative approximation algorithm

� Common ancestor algorithm

Common Ancestor Algorithm
[Emrath,Ghosh, and Padua, IEEE Software, 1992]

� Originally, a trace based algorithm, but we use it for static analysis.
� Data flow equations:

][][][

}){][(][

otherwise }){][(

node coend a is if }){][(
][

),(

),(

),(

nPrecnPrecnPrec

mmPrecnPrec

mmPrec

nmmPrec
nPrec

synccont

Enm
sync

Enm

Enm
cont

sync

cont

cont

∪=

∪=

�
�

�
�

�

∪

∪
=

∈

∈

∈

�

�

�

post(g)
wait(g)

cobegin

post(g)

wait(g)

post(g)

post(g)

c==3

2. Analysis of Conventional
Programs to Detect Parallelism

Joint work with
W. Blume(HP), J. Hoeflinger (Illinois), R. Eigenmann (Purdue), P.

Petersen (KAI), and P. Tu

� Powerful high-level restructuring for
parallelism and locality enhancement.

� Language constructs based on early
research on detection of parallelism.

� Analysis and transformations important for
instruction-level parallelism

� In 1989-90, we did experiments on the
effectiveness of automatic parallelization for an
eight-processor Alliant FX/80 and the Cedar
multiprocessor.

� We translated the Perfect Benchmarks using KAP-
Cedar, a version of KAP modified at Illinois. The
speedups obtained for the Alliant are shown next.

R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the Automatic Parallelization of Four Perfect Benchmark Programs.
Lecture Notes in Computer Science 589. Springer-Verlag. 1992.

R. Eigenmann, J. Hoeflinger, and D. Padua. On the Automatic Parallelization of the Perfect Benchmarks. IEEE TPDS. 9(1). 1998.

flo52 arc2d bdna dyfesm adm mdg mg3d ocean qcd spec77 track trfd

0

1

2

3

4

5

6

7

8

9

10

Automatic

� As can be seen, the speedups obtained were
dismal.

� However, we found that there is much parallelism
in the Perfect Benchmarks and, more importantly,
that it can be detected automatically.

� In fact, after applying by hand a few automatable
transformations, we obtained the following results.

flo52 arc2d bdna dyfesm adm mdg mg3d ocean qcd spec77 track trfd

0

5

10

15

20

Automatic Manual

� Three classes of automatable transformations were
found to be of importance in the previous study:

� Recognition and translation of idioms
� Dependence analysis
� Array privatization
� Transformations similar but weaker than those we

applied by hand were applied by KAP.

� Given the program:
do i=1,n

do j=1,m

S: A(f(i,j),g(i,j))=...

T: ... =A(p(i,j),q(i,j))+ ...

end do

end do

� To determine if there is a flow dependence from S
to T, we need to determine whether the system of
equations:

f(i,j) = p(i',j')
g(i,j)=q(i',j')

has a solution under the constraints
n≥i, i' ≥ 1, m ≥ j, j' ≥ 1, and (i',j') ≥(i,j)

� Loop-carried dependences preclude transformation into
parallel form.

� They also preclude some important transformations.
� For example, statement S can be removed from the loop if

f(i) is never 2
do i=1,n

S: A(f(i))=...

T: Q=A(2)

...

end do

� Many techniques have been developed to
answer this question efficiently.

� Banerjee's test suffices in most situations
where the subscript expressions are a linear
function of the loop indices.

P.Petersen and D. Padua Static and Dynamic Evaluation of Data Dependence Analysis
Techniques. IEEE TPDS. 7(11). Nov. 1996.

� However, there are situations where traditional
dependence analysis techniques, including
Banerjee's test, fail. Two cases we found in our
experiments are:

� Nonlinear subscript expressions. These could be
present in the original source code or generated by
the translator when replacing induction variables.

� Indexed arrays.

� An example of nonlinear subscript expression
from OCEAN:

do j=0,n-1

do k=0,x(j)

do m=0,128

...

p=258*n*k+128*j+m+1

A(p)=A(p)-A(p+129*n)

A(p+129*n)=...

...

� Example of indexed array from TRACK

do i=1,n

...

jok= ihits(1,i)

nused(jok)=nused + 1

...

end do

arc2d

bdna

flo52

mdg

ocean

trfd

applu

appsp

hydro2d

su2cor

swim

tfft2

tomcatv

wave5

cloud3d

cmhog

0 1 2 3 4 5 6 7 8 9 Speedup

0 1 2 3 4 5 6 7 8 9

Polaris
PFA

� Each processor cooperating in the execution
of a loop has a separate copy of all private
variables.

� A variable can be privatized -- that is,
replaced by a private variable -- if in every
loop iteration the variable is always
assigned before it is fetched.

� Example of privatizable scalar:
do k=...

s = A(k)+1

B(k) = s**2

C(k) = s-1

end do

� Example of privatizable array:
do k=...

do j=1,m

s(j) = A(k,j)+1

end do

do j=1,m

B(k,j) = s(j)**2

C(k,j) = s(j)-1

end do

end do

� Commercial compilers are effective at
identifying privatizable scalars.

� However, we found a number of cases
where array privatization is necessary for
loop parallelization.

� New techniques were developed to deal
effectively with array privatization.

� Significant progree is possible
� But few research groups are still focusing

on this problem
� An experimental approach is crucial for

progress.
� Need good benchmarks (also desperately

needed for research on compilers for explicitly
parallel programs)

3. Dependence Analysis

� Analysis of non-affine subscript
expressions.

� Compile-Time analysis of Index Arrays

� Analysis of Java Arrays

3a. Analysis of non-affine subscript
expressions

Joint work with
Y. Paek (KAIST) and J. Hoeflinger (Illinois)

Y. Paek, J. Hoeflinger, and D. Padua. Simplification of array access patterns for compiler optimization.
SIGPLAN�98 Conference on Programming Language Design and Implementation (PLDI)

� Traditional data dependence analysis for
arrays:
� form dependence equation
� solve equation, taking into account constraints

DO I=1,N
A(I) = . . .
. . . = A(I+N)

END DO

I = I� + N

Given that 1 <= I <= N
and 1 <= I� <= N

� Tradition is successful, but limited.
� coupled subscripts and non-affine subscripts

cause problems
� non-loop parallelization has become important
� interprocedural parallelization has become

important
� Specifically, the system-solving paradigm is

too limiting.

� We can precisely represent any regular
integer sequence by:
� its starting value,
� an expression for the difference between

successive elements of the sequence,
� the total number of elements.

do I=1,N
A(2**I)

end do
S.O.S.=2,4,8,16,. . .2

N
Start: 2
S - S = 2
elements: N

I+1 I
I

1
span , . . . , spand

stride 1 , . . . , stride d

+ base offset

REAL A(N)
DO I=1,N

A(I) . . .
END DO

+ I - 1
0

0
+ 0

N-1

1

expand

CALL X(A(I)) + I - 1
0

0

SUBROUTINE X(Z)
REAL Z(*)
. . .

+ 0
M-1, T*M

1, M

+ I - 1
M-1, T*M

1, MREAL A(N)

If a given loop index causes the subscripting offset sequence to
produce the same element more than once, then the LMAD
is said to have an overlap due to that loop index.

This corresponds to a loop-carried dependence.

do I = 1,N
do J = 1, M

A(J) = . . .
end do

end do

Real A(25)
do I = 0,4

do J = 0, 5
A(I+3*J) =

end do
end do

3c. Analysis of Java Arrays
Joint work with

Paul Feautrier (U. Versailles) and Peng Wu (Illinois)

� Traditional loop-level optimizations are not
directly applicable to Java arrays

� Multi-dimensional Java arrays may have irregular
shapes
� combness analysis

� Common use of reference (�pointers�),
� a pointer-based dependence test

...

blocking,
loop unrolling,
loop interchange,
loop fusion,
parallelization,
...

Fortran style optimizations

Index-based
DD test

alias/shape

Fortran

Java
exception

level-1, level-2, level-3 comb level-1, level-2 comb

Combness analysis: analyze the shape of an array

� If a is a comb of level-1only, loop-i is parallelizable
� If a is a comb of level-2 only, loop-j is parallelizable
� If a is a comb of level-1 and level-2, the loop-nest-i-j is

parallelizable

...
int a[n][n][n];
...
for (int i = 0; I<n; I++)
for (int j = 0; j<n; j++)

for (int k = 0; k<n; k++)
a[i][j][k] = a[i][j][k] + 1;

Joint work with
D. Reed (Illinois) and C. Cascaval (Illinois)

� Provide the compiler with information to
enable performance related optimizations

� Predict the execution time of scientific
Fortran programs, with reasonable
accuracy, using architecture independent
models

� Rapid performance tuning tool
� Architecture evaluation

� Fast performance estimation results with
reasonable accuracy
� light load on the compiler
� rapid feedback to the user

� Abstract models (symbolic expressions), as
a function of
� program constructs
� input data set
� architecture parameters

� Model different parts of the system
independently

� Each model generates one or more terms in
a symbolic expression

� Advantages
� simplicity
� modularity
� extensibility

