
Fuzz Revisited Page 26Copyright © 1995 Barton P. Miller

For More Information

The full technical report can be found at:

ftp://grilled.cs.wisc.edu/technical_papers/fuzz-revisited.ps.Z

The fuzz tools, scripts, test data file, test results, and bug listings can be found at:

ftp://www.cs.wisc.edu/~paradyn/fuzz-revisited/

(check the READ_ME file)

Fuzz Revisited Page 25Copyright © 1995 Barton P. Miller

Discussion

Why aren’t companies using this type of testing? It’s easy and mostly automatic.

It’s good that all of the re-tested systems got better. But why not much better?

Why are some of the exact 1990 bugs still present in today’s systems?

GUI (X Window) applications are at least as bad as the basic utilties. Should these (more
modern) programs be better?

Why are the Linux and GNU results noticeably better than the commerical systems?

Do they just have an easier job or is there a fundemental difference, such as culture,
talent, environment, communications?

Do we require SATAN-like publicity and tools to cause change?

Will the software industry follow the same path as the automobile and steel industries?

Fuzz Revisited Page 24Copyright © 1995 Barton P. Miller

Summary of Malloc Test Results

Tested programs in /bin and /usr/ucb on our SunOS 4.1.3 system:

• 53 of these programs used malloc().

• We could crash 25 of the 53 (47%).

Utilities that Crashed

bar df login rup tsort

cc finger ls ruptime users

checknr graph man rusers vplot

ctags iostat mkstr sdiff w

deroff last rsh symorder xsend

Fuzz Revisited Page 23Copyright © 1995 Barton P. Miller

Malloc and Friends

Intercept the calls to malloc()

Randomly change the returned value to zero: simulating lack of virtual memory.

program libjig C library

malloc(...); void *

(sym table modified)

void *malloc(...) {

randomly return zero or rv;

}

FZ_malloc(...) {

. . .

}

rv=FZ_malloc(...);

Fuzz Revisited Page 22Copyright © 1995 Barton P. Miller

Malloc and Friends

A common programming error is to not check return values from library and system calls.

Two of the most common areas that we’ve seen are I/O and memory allocation calls.

As an example, we looked at the use of memory allocation routines:

calloc(), malloc(), and realloc()

Fuzz Revisited Page 21Copyright © 1995 Barton P. Miller

Summary of X Window Test Results

List of Utilities Tested

bitmap netscape xclock xev xman xpostit xweather

emacs puzzle xconsole xfig xmh xsnow xxgdb

ghostview rxvt xcutsel xfontsel xminesweepxspread

idraw xboard xditview xgas xneko xterm

mosaic xcalc xdvi xgc xpaint xtv

mxrn xclipboard xedit xmag xpbiff xv

X Utility

Input Data Stream Type

Random Messages
(Type 1)

Garbled Messges
(Type 2)

Random Events
(Type 3)

Legal Events
(Type 4)

tested 38 38 38 38

crash/hang 1 10 18 16

% 3% 26% 47% 42%

Fuzz Revisited Page 20Copyright © 1995 Barton P. Miller

Four Types of X Testing

1. Completely Random Messages:

A random series of bytes in a message.

2. Garbled Messages:

Randomly insert, delete, or modify parts of the message stream.

3. Random Events:

Keeps track of messageX Protocol message. Randomly insert or modify events with
valid size and opcodes. Sequence number, time stamp, and payload may be random.

4. Legal Events:

Protocol conformant messages, logically correct individually and in sequence. Valid
values X-Y coordinates, window geometry, parent/child relationships, event time
stamps, and sequence numbers.

Fuzz Revisited Page 19Copyright © 1995 Barton P. Miller

Intercepting the X Windows Message Stream

We control the messages going to the X application and server by interposing our “xjig”
tester.

X ServerX Appl

xjig

Fuzz Revisited Page 18Copyright © 1995 Barton P. Miller

X Window Applications and Servers

Most modern applications have graphical interfaces, so we didn’t want to ignore the
X-Window system.

The window display is controlled by a server process.

Communication from the application (client) to the server is by request messages.

Communication from the server to the application is by events (fixed format messages).

We used the same, simple crash/hang criteria.

Fuzz Revisited Page 17Copyright © 1995 Barton P. Miller

Network Services

We tested a wide variety of network services (everything we found in /etc/services).

We connected to and sent random input to each of these services.

We used the same, simple crash/hang criteria.

• Nothing (?) exciting to report: couldn’t crash any that we tested!

• We informally did this type of testing 3 to 4 years ago and crashed two services.

Someone seems to be worried enough to do intense testing.

Fuzz Portjig Service

Fuzz Revisited Page 16Copyright © 1995 Barton P. Miller

Signed Characters

Number conversions can cause problems;

“char” is a signed, 8-bit integer on (most) UNIX systems.

From eqn (file “lookup.c”):
register int h;
...
register char *s = name;

for (h = 0; *s != ’\0’;)
h += *s++;

h %= TBLSIZE;

The value pointed to by s is a signed character and h is an integer. If a character pointed
to
by s may has its high-order bit on, h will be negative.

Fuzz Revisited Page 15Copyright © 1995 Barton P. Miller

Dangerous Input Functions

The notorious gets() is still with us!

Multiple occurrences in ftp and telnet, e.g.:

gets(line)

From the Solaris 2.3 manual page:

When using gets(), if the length of an input line exceeds the size of s, indeterminate
behavior may result. For this reason, it is strongly recommended that gets() be avoided
in favor of fgets().

Of course, fgets() should be used.

Even new languages, like C++ are not immune:
char buff[BUFSIZE];

cin >> buff;

You can use “cin.width” function, but this requires extra effort; the default case has
dangerous behavior.

Fuzz Revisited Page 14Copyright © 1995 Barton P. Miller

Pointer/Array Example 3:

During string processing, from bibtex (file “strpascal.c”):

void
null_terminate(s)
char *s;
{

while (*s != ’ ’) s++;
...

Again (!), the loop does not check the size of the array.

Fuzz Revisited Page 13Copyright © 1995 Barton P. Miller

Pointer/Array Example 2

Array subscripting error during input, from in cb (file “cb.c”):

char string[200];
...
while ((cc = getch()) != c) {

string[j++] = cc;
...

}

The termination condition ignores the size of the buffer (string).

Fuzz Revisited Page 12Copyright © 1995 Barton P. Miller

Pointer/Array Example 1

From ctags in file “ctags.c”:

char line[4*BUFSIZ];
...

sp = line;
...
do {

*++sp = c = getc(inf);
} while ((c != ’\n’) && (c != EOF));

Note that the termination condition does not test the size of array (line) being used.

Fuzz Revisited Page 11Copyright © 1995 Barton P. Miller

join OU sN

lex sShHaUGL AN

look shu HO N

m4 HU N

Mail N

make h

nroff SHOU AIN

plot O sh N

prolog sh

ptx sShH A

refer shU AHN

spell sha SOU N

spline N

strings O

style ShH N

telnet sShaU AIN

tsort sha N

ul sShHOUL AIN

uniq sShaU IN

units SshaO AIN

vgrind N

Utility Array/Pointer Input Functions Signed Characters Divide by Zero EOF Check Others No Source Code

Fuzz Revisited Page 10Copyright © 1995 Barton P. Miller

Utility Array/Pointer Input Functions Signed Characters Divide by Zero EOF Check Others No Source Code

adb sShHO

as a N

bc N

bib S

cb haU AN

cc N

ccom ON

checkeq A

col O SU sha AIN

colcrt A

csh sha

ctags O L N

dbx L s

dc G IN

deroff sShaOU N

diction ShHU N

ditroff s SHOU AN

eqn sShHU AIN

ex h

fmt N

ftp sShaOU AIN

indent sh SHOGL AN

Fuzz Revisited Page 9Copyright © 1995 Barton P. Miller

Programming Errors

The same basic kinds of programming errors found in 1990 dominated the 1995 results:

1. Array/Pointer: walking off the end of an array (with either pointers or subscripts) is very
popular.

2. Dangerous input functions: our friend gets() is still around. And has a C++ cousin!

3. Signed characters: the printable ASCII characters need only 7 bits. Dangerous to
assume.

4. Divide (mod) by zero: the “mod” operator is a divide; must still check the divisor.

5. EOF checks: end-of-files do not always occur at convienent places.

6. Others: ignoring return codes, importing errors ...

7. No source code: we didn’t always have source code for the crashed utitlities. Sigh.

Fuzz Revisited Page 8Copyright © 1995 Barton P. Miller

Summary of Basic Test Results

Utility
SunOS HP-UX AIX Solaris SGI Ultrix NEXT GNU Linux

90 95 90 95 90 95 95 95 95 95 95 95

tested 77 80 72 74 49 74 70 60 80 75 45 55

crash/hang 22 18 24 13 12 15 16 9 17 32 3 5

% 29% 23% 33% 18% 24% 20% 23% 15% 21% 43% 7% 9%

Fuzz Revisited Page 7Copyright © 1995 Barton P. Miller

Equivalent Utility Names

Generic Name(s) SGI Ultrix NEXT GNU Linux

as gas gas

awk gawk

bib/bibtex

cc gcc gcc

ccom cfe cfe cc1obj cc1

compress gzip

dbx gdb gdb gdb

ditroff/troff ptroff

eqn/deqn neqn neqn geqn

ex/vi

lex flex flex

plot psplot

sh bash

soelim gsoelim

tbl/dtbl gtbl

yacc bison

Fuzz Revisited Page 6Copyright © 1995 Barton P. Miller

List of Systems Tested

Identifying
Letter

Study Vendor Architecture Kernel

s 1990
Sun Microsystems

Sun 4/110 SunOS 3.2 and 4.0

S 1995 SPARCstation 10/40 SunOS 4.1.3

h 1990
Hewlett Packard

HP 9000/330 4.3 BSD

H 1995 HP 9000/705 HP-UX 9.01

a 1990
IBM

PS/2-80 AIX 1.1

A 1995 RS6000 AIX 3.2

O 1995 Sun Microsystems SPARCstation 10/40 Solaris 2.3

I 1995 Silicon Graphics Indy IRIX 5.1.1.2

U 1995 DEC DECstation 3100 Ultrix v4.3a rev 146

N 1995 NEXT Colorstation (MC68040) NEXTSTEP 3.2

G 1995 GNU, Free Software Foundation SunOS 4.1.3 & NEXTSTEP 3.2

L 1995 Linux Cyrix i486 Slackware 2.1.0

Fuzz Revisited Page 5Copyright © 1995 Barton P. Miller

So, What Did We Find?

• All three previously-tested versions of UNIX made noticeable improvements, but . . .

. . . their failure rate is still distressingly high (18-23%).

• Many of the bugs that we found in 1990 are still in the code releases of 1995.

• 15 to 43% of the utilities on the commercial versions of UNIX that (Sun, IBM, SGI, DEC,
and NEXT) crashed.

• 9% of the utilities on the freely-distributed Linux version of UNIX crashed (2nd lowest).

• Only 7% of the public GNU utilities crashed (lowest!).

• None of the network services that we tested crashed.

• 3% of X-Window applications crashed on purely random input data streams.

42% of the applications crash given random, but legal X-event streams.

• None of the X-Window servers that we tested crashed.

Fuzz Revisited Page 4Copyright © 1995 Barton P. Miller

Motivation

Our recent experiences hinted that things had not gotten a lot better, so . . .

• We tested lots (9) versions of UNIX, included 3 systems previously tested.

• And what about X-window applications? We tested almost 40 of those. And X servers
too.

• And what about network services (like ftpd, rlogind, and telnetd)? We tested those too.

• And we even tested system-library calls to malloc().

Life had gotten better in some ways, but mostly the results were pretty distressing!

Fuzz Revisited Page 3Copyright © 1995 Barton P. Miller

Motivation

In 1990 (see Dec. CACM), we tested almost 90 utility programs on 6 versions of UNIX.

• These systems included: 4.3BSD, SunOS 3.2, SCO’s Xenix, IBM ‘s AOS and AIX 1.1,
and Sequent’s Dynix 3.0.

Simple (really, really, simple) automated tests: just feed the programs random inputs:

And we could crash or hang from 25% to 33% of the UNIX utilities that we tested.

“Crash” means terminated with core dump.

“Hang” means loops continuous with no apparent end.

VERY SIMPLE reliability criteria!

We also identified and categorized the cause of each crash or hang.

Applicationfuzz

Fuzz Revisited Page 2Copyright © 1995 Barton P. Miller

Fuzz Revisited Page 1Copyright © 1995 Barton P. Miller

Making Real Programs Explode:
A Simple Application of Random Testing

Barton P. Miller
bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street

Madison, WI 53706-1685

On leave:

Electrical Engineering Department
Stanford University
Stanford, CA 94305

bart@wis.stanford.edu

