

Observations and Opportunities in Architecting

Shared Virtual Memory for Heterogeneous Systems

Abstract – Computing is becoming increasingly heterogeneous

with accelerators like GPUs being tightly integrated with CPUs

on the same die. Extending the CPU’s virtual addressing mech-

anism to these accelerators is a key step in making accelerators

easily programmable. In this work, we analyze, using real-sys-

tem measurements, shared virtual memory across the CPU and

an integrated GPU. We make several key observations and high-

light consequent research opportunities: (1) servicing a TLB

miss from the GPU can be an order of magnitude slower than

that from the CPU and consequently it is imperative to enable

many concurrent TLB misses to hide this larger latency; (2) di-

vergence in memory accesses impacts the GPU’s address trans-

lation more than the rest of the memory hierarchy, and research

in designing address translation mechanisms tolerant to this ef-

fect is imperative; and (3) page faults from the GPU are consid-

erably slower than that from the CPU and software-hardware

co-design is essential for efficient implementation of page faults

from throughput-oriented accelerators like GPUs. We present a

detailed measurement study of a commercially available inte-

grated APU that illustrates these effects and motivates future

research opportunities.

I. INTRODUCTION

Computing has witnessed a proliferation of accelerators
serving a diverse set of needs like cryptography, graphics, da-
tabases, regular expressions [2], [12], [14]. Accelerators often
enable significantly superior performance and power effi-
ciency for specific tasks, compared to general-purpose CPUs.
Consequently, accelerators are increasingly being integrated
with the CPU on the same die. Such tight integration allows
efficient offloading of computation to accelerators. Commer-
cial manufacturers like AMD, Apple, Intel, and Qualcomm,
today ship millions of processors with CPUs and GPUs tightly
coupled together on a single die. IBM’s CAPI [24] and
ARM®’s ACP [11] extend this concept to a plethora of third-
party accelerators.

A key challenge in harnessing the full potential of acceler-
ators in these heterogeneous processors is to make them easily
programmable. A crucial first step in addressing this challenge
is to enable shared (unified) coherent virtual memory across
CPUs and accelerators. Indeed, industry-promoted models
such as the Heterogeneous System Architecture (HSA) [26]
mandate shared virtual memory in an effort to make accelera-
tors a first-class computing element. This allows a pointer on
the CPU to be equally valid on an accelerator; thus avoiding
manual data copies. Importantly, it helps provide a program-
ming environment familiar to common programmers.

In this work, we present a detailed characterization and
analysis of a shared virtual memory system across the CPU
and the integrated GPU in a commercially available heteroge-
neous processor. To the best of our knowledge, this is the first
such study on a commercial platform. We study how the
CPU’s virtual memory is extended to the integrated-GPU in
three key aspects: (1) virtual-to-physical address translation;
(2) creation of new virtual-to-physical address mappings
through page faults; and (3) invalidation of stale address map-
pings through TLB (Translation Lookaside Buffer)
shootdowns. We use six applications that use the integrated-
GPU to perform computation. Although we focus on the GPU,
our key results are applicable to other throughput-orientated
accelerators.

Our measurements highlight several new research
opportunities in this space. (1) A TLB miss on the GPU can

be 25 slower than that on the CPU. Research into enabling
greater concurrency in servicing TLB misses from
throughput-oriented accelerators is critical to hide this latency;
(2) Poor locality in memory accesses, particularly from
divergent accesses within the same wavefront or warp,
impacts the GPU’s address translation hardware more than the
rest of the memory hierarchy. Research into divergence-
tolerant address translation mechanisms is important; (3) The
prefetching of address translations built into the industry
standard PCIe® specification may hurt performance under cer-
tain circumstances. More research into effective translation
prefetching for accelerators is necessary; (4) Servicing GPU
page faults can be significantly slower than that for CPU page
faults. Most of this added time is spent in the operating system
(OS) kernel, and likely can be designed out; (5) The latency
of a TLB shootdown on the GPU is comparable to that in the
CPU. Research into reducing TLB shootdown latency in het-
erogeneous systems needs to optimize both the CPU and GPU
shootdown. Several other such observations and research
opportunities are detailed throughout this work.

Section II provides background on how integrated-GPUs
perform basic virtual-memory operations. Section III de-
scribes our methodology and applications used. Section IV de-
scribes our analysis of address translation while Section V and
Section VI explore page fault and shootdown costs.

II. BACKGROUND: SHARED VIRTUAL MEMORY

Figure 1 depicts the system that we analyze in this work.
A hardware block called the IO Memory Management Unit
(IOMMU) services the address translation requests of the

 Jan Vesely#*, Arkaprava Basu#, Mark Oskin#, Gabriel H. Loh# Abhishek Bhattacharjee*

 #AMD Research *Department of Computer Science
 Advanced Micro Devices, Inc. Rutgers University
 {jan.vesely, arkaprava.basu, mark.oskin, gabriel.loh}@amd.com abhib@cs.rutgers.edu

GPU and other accelerators. The IOMMU resides in the pro-
cessor’s northbridge complex. The IOMMU can access the
same x86-64 page table structures used by processes running
on the CPU. This enables the accelerator to share the same set
of page tables (and thus the same virtual address space) as the
processes running on the CPU via the IOMMU. A software
driver in the OS executing on the CPU manages the IOMMU.
The runtime software, in coordination with the OS driver, sets
up the IOMMU to enable accelerators access to the same vir-
tual address spaces of the CPU. In the following subsections
we describe how basic virtual-memory operations are per-
formed by the integrated-GPU in this environment. Although
the following operations are explained for the GPU, similar
mechanisms are applicable to other accelerators and IO de-
vices.

A. GPU address translation

The GPU has its own TLB hierarchy that caches recently
used address translations. On a GPU TLB miss, a translation
request is sent as an ATS (Address Translation Service [17])
request packet over the PCIe®-based [27] internal interconnect
to the IOMMU. This interconnect carries PCIe® packets but
latency and bandwidth are not necessarily constrained by
PCIe®’s electrical specifications. The IOMMU has its own
TLB hierarchy which is checked first; on a miss there, a
hardware page table walker in the IOMMU checks the page
table. ATS requests are tagged with a process address space
identifier (PASID) and the IOMMU maintains a table that
matches PASIDs to page table base physical addresses. Once
the address is successfully translated, the IOMMU sends an
ATS response to the GPU. The protocol and packet formats
for ATS requests and responses are part of the PCIe® standard
specification and are the same across all accelerators.

The PCIe®’s ATS protocol enables devices (and accelera-
tors) to prefetch translation requests for up to eight contiguous
virtual address pages in a single ATS response from the
IOMMU. By default, the GPU in our system allows the
prefetch value to the maximum setting of eight.

Comparison with CPUs: In the CPU, per-core Memory man-
agement Units (MMUs) are responsible for address
translations. In contrast, the IOMMU services requests from
all accelerators. Unlike the CPU’s MMU, the IOMMU is not
tightly integrated with CPU’s data cache hierarchy. The data
caches may contain the most up-to-date translations but the
cached copies cannot be directly accessed by accelerators.

B. GPU page faults

If the IOMMU’s page table walker fails to find the desired
translation in the page table, it sends an ATS response to the
GPU notifying it of this failure. This in turn corresponds to a
page fault. In response, the GPU sends another request to the
IOMMU called a Peripheral Page Request (PPR). The
IOMMU places this request in a memory-mapped queue and
raises an interrupt on the CPU. Multiple PPR requests can be
queued before the CPU is interrupted. The OS must have a
suitable IOMMU driver to process this interrupt and the
queued PPR requests. In Linux, while in an interrupt context,
the driver pulls PPR requests from the queue and places them
in a work-queue for later processing. Presumably this design
decision was made to minimize the time spent executing in an
interrupt context, where lower priority interrupts would be dis-
abled. At a later time, an OS worker-thread calls back into the
driver to process page fault requests in the work-queue. Once
the requests are serviced, the driver notifies the IOMMU. In
turn, the IOMMU notifies the GPU. The GPU then sends an-
other ATS request to retry the translation for the original fault-
ing address.

Comparison with CPU: On the CPU, a hardware excep-
tion is raised on a page fault, which immediately switches to
the OS. In most cases in Linux, this routine services the page
fault directly, instead of queuing it for later processing. Con-
trast this with a page fault from an accelerator, where the
IOMMU has to interrupt the CPU to request service on its be-
half, and also note the several back-and-forth messages be-
tween the accelerator, the IOMMU, and the CPU. Further-
more, page faults on the CPU are generally handled one at a
time on the CPU, while for the GPU they are batched by the
IOMMU and OS work-queue mechanism.

C. GPU TLB shootdowns

The IOMMU plays a pivotal role in extending the TLB
shootdown process to GPUs. An OS driver monitors any
changes to virtual address mappings for address spaces shared
with the GPU and triggers a TLB shootdown when necessary.
The driver first sends a command to the IOMMU via a
memory-resident command queue to invalidate the stale map-
ping in the IOMMU’s TLB hierarchy. The driver then waits
for the IOMMU to confirm successful invalidation from the
IOMMU. Next, the driver commands the GPU (via the
IOMMU) to invalidate the stale mapping from its TLB. The
IOMMU hardware collects the completion notification of the
invalidation in the GPU’s TLB and forwards this information
to the OS. Note there can be two types of invalidation requests:
(1) requests to invalidate a given address mapping in the
TLBs, and (2) requests to flush all entries for a given address
space.

Figure 1. Heterogeneous system enabling shared virtual
memory across the CPU and the integrated-GPU.

MMU MMU

AcceleratorsGPUCPU

IOMMU

Memory

CPU
Core GPU

CPU
Core

Shared Virtual Address Space

VA0 VA0

“Pointer-is-a -Pointer”PA0

Memory Controller

H
et

er
o

ge
n

eo
u

s
 P

ro
ce

ss
o

r

Comparison with CPU: Historically, CPUs have used a va-
riety of mechanisms to perform remote TLB shootdowns. For
example, x86 processors use inter-processor interrupts (IPIs)
to keep per-core TLBs coherent. CPUs initiating TLB
shootdowns send IPIs to other CPUs in the system that may
have a stale entry. The IPI invokes the operating system on
those CPUs, which executes a handler to invalidate the local
per-CPU TLB. Just as the operating system can choose not to
send IPIs to processors that provably cannot have a stale map-
ping (e.g., they never executed the process), an efficiently con-
structed driver will selectively send shootdowns to the
IOMMU and the accelerators only if the address space was
shared.

In contrast, processors like ARM® and PowerPC® have
also employed dedicated TLB shootdown instructions in their
ISAs. In these cases, software on the shootdown initiator core
executes a TLB invalidation instruction, which is then broad-
cast to the other cores. Although the OS is typically not in-
voked in this approach, the downside is that broadcast signals
are often conservatively relayed to all system cores, constrain-
ing the scalability of this approach.

III. METHODOLOGY AND WORKLOADS

We run our experiments on a system with an AMD A10-
7850K APU (previously code-named “Kaveri”) as described
in Table 1. AMD A10-7850K APU is one of the first hetero-
geneous processor to support shared virtual memory across
the CPU and GPU. We measured TLB events and page table
walks using hardware performance counters. We designed a
software profiler to access these counters. We also instru-
mented the Linux IOMMU driver to measure the latency for
software events like page faults and TLB shootdowns.

Table 1. Description of experimental system.

CPU AMD A10-7850K APU, maximum core fre-
quency 3.7GHz.

GPU 8 compute units (CUs), maximum core fre-
quency 720 MHz

Memory DDR-3, 32GB (4×8GB), 1600 MHz

Soft-
ware

Linux 4.0 with Kernel Fusion Driver (KFD).
Heterogeneous System Architecture (HSA)
runtime, C++AMP compiler and OpenCL
stack on HSA.

We use six applications (described in Table 2) and two tar-
geted micro-benchmarks for this study. All the applications
and micro-benchmarks use the on-die integrated-GPU to per-
form their primary compute. All the data for the applications
reside in the system memory (DRAM) and uses shared virtual
addressing between the CPU and the GPU.

IV. ADDRESS TRANSLATION IN SHARED VIRTUAL MEMORY

We first analyze intricacies of the GPU address translation
under a controlled execution environment with custom micro-
benchmarks and then present performance measurements of
the applications.

A. Analyzing GPU’s address translation using micro-

benchmarks

We sought to answer two questions in the analysis using a
carefully designed micro-benchmark: (1) what is a typical
GPU TLB miss latency, and (2) how much concurrency is
supported by the hardware in servicing GPU TLB misses? An-
swers to these questions reveal potential performance bottle-
necks, particularly as shared virtual memory is scaled in future
heterogeneous systems.

Table 2. Description of applications used.

Applica-
tion

Description

B+ Tree
search
(BPT)

Searches 15M keys in a B+tree concurrently
on the GPU. The B+tree is pre-generated.

CoMD Molecular dynamics simulation that
evaluates the force acting on an atom due to
other atoms in the system. Force potential
computation is evaluated on the GPU.

miniAMR Applies a stencil calculation on the GPU to
a dense 3D array.

miniFE Assembles and solves a sparse linear-system
from the steady-state conduction equation
[16].

Graph500 BFS traversal on a Kronecker generated
graph. Bottom-up traversal uses the GPU.

XSBench Monte Carlo neutron transport across
macroscopic neutron cross sections.

Our micro-benchmark runs a kernel (GPU program) on the
integrated-GPU with a varying number of workitems. Each
workitem accesses 10,000 different memory locations in a
loop and performs a simple computation (XOR) on the data.
A stride (parameter) determines the distance (in bytes) be-
tween memory locations accessed by two consecutive ac-
cesses in each workitem. We execute the micro-benchmark
with one workitem with a stride of 64 bytes (cache line size)
and again with a stride of 4KB (page size). We use the hard-
ware performance counters to count the number of TLB and
cache misses. Table 3 lists the measurements. When executed
with a stride of 64 bytes (second row) each memory access
incurs a cache miss while every 64th access (4096/64) incurs
a TLB miss. With a stride of 4KB, every access incurs a cache
miss and a TLB miss (third row). Thus the difference between
these two executions is the number of TLB misses. Therefore,
we attribute the difference in the runtime between the two runs
to the additional TLB misses. We calculate that the latency of
servicing a GPU TLB miss that incurs a page walk by the
IOMMU to be 582 nanoseconds (last row). We further ran the
same micro-benchmark on the CPU with a single thread for
comparative analysis. Measurement on the CPU is presented
in the last column and we similarly calculate that latency of
the CPU’s TLB miss to be 23 nanoseconds. Thus, a TLB miss

from the GPU is about 25 slower than on a CPU. Several
reasons contribute to the longer latency of GPU TLB misses:
(1) TLB miss request and responses travel as PCIe® packets to

https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
https://github.com/HSAFoundation/HSA-Runtime-AMD
https://github.com/HSAFoundation/HSA-Runtime-AMD
http://www.mayankdaga.com/wp-content/uploads/2012/11/paper.pdf
http://www.mayankdaga.com/wp-content/uploads/2012/11/paper.pdf
http://www.mayankdaga.com/wp-content/uploads/2012/11/paper.pdf
http://www.exmatex.org/comd.html
https://github.com/arm-hpc/miniAMR
http://portal.nersc.gov/project/CAL/designforward.htm#MiniFE
http://www.graph500.org/
https://asc.llnl.gov/CORAL-benchmarks/Summaries/XS_Benchmark_Summary_v1.1.pdf

the IOMMU; (2) more levels (up to four here) of TLBs to
check; (3) the IOMMU’s page table walker does not have fast
access to CPU caches that might have the latest page table en-
tries; and (4) the resulting wavefront must be rescheduled for
execution on the GPU.

We then executed the micro-benchmark on the GPU with
an increasing number of workitems from 1 to 64 to estimate
the concurrency available in servicing TLB misses. Each
workitem accesses a distinct set of memory locations and thus
offers no opportunity to coalesce the accesses. The maximum
number of outstanding TLB misses (and the corresponding
page walk requests) at any given time is thus bounded by the
number of workitems. Figure 2 shows how the latency expe-
rienced by a wavefront on a GPU TLB miss scales with an
increasing number of workitems. Note that there is a signifi-
cant jump in the page walk latency beyond 16 workitems (and
thus, 16 outstanding page table walks). This suggests that in
our test hardware, the IOMMU allows up to 16 concurrent
page table walks, beyond which the latency of page walks in-
creases sharply due to queuing.

B. Measuring GPU’s address translation overhead

Next, we run six applications (Table 2) to measure and
analyze the overheads of the GPU’s address translation on real
workloads. We run each application with increasing memory
footprints to understand the scalability of the GPU’s address
translation overheads. We use hardware performance counters
to measure the number of GPU TLB misses and the number
of accesses to the page table by the IOMMU. We perform the
measurements of each application using 4KB (default) and
2MB pages. Larger pages reduce the number of TLB misses
and enable us to better understand the performance benefits of
reducing TLB misses.

Figure 3 depicts a summary of our measurements for each
application. The x-axis is the approximate memory footprint.
The plot’s right y-axis represents the GPU runtime, and the
left y-axis is the number of GPU TLB misses and the number
of accesses to the page table by the IOMMU per kilo
wavefront instructions (PKWI) executed on the GPU. A
wavefront instruction is a single-instruction-multiple-data
(SIMD) instruction executed by workitems (a.k.a GPU
threads) in a given wavefront (warp) in a lock-step fashion. In
one set of runs, the applications make use of 4KB pages (4k),
and in another set of runs the applications make use of larger
2MB pages (2m).

For example, we scale the memory footprint of the
workload BPT using different input sets, from 2 to 21 GB.
Observe that with 4KB pages, the GPU TLB miss rate goes up
from 0.5 to 4.4 misses per KWI [gTLB_MPKWI (4k)]. The
number of accesses to the page table goes up from 0.4 to 2
accesses per KWI [PTa_PKWI(4k)]. The GPU TLB misses
and the number of accesses to the IOMMU becomes
negligible if larger 2MB pages are used. Correspondingly,
there is up to an 11% reduction in execution time. We note
that PTa_PKWI counts the number of accesses to the in-
memory page table and not the number of page table walks. In
x86-64, a page table walk can incur upto four accesses to the
page table.

On the opposite end of the spectrum is graph500 (Figure
3(e)). There are at most 2.5 GPU TLB misses per KWI. A
larger page size (2MB) eliminates almost all TLB misses for
graph500, but there is no observable change in execution time.
This suggests that the GPU’s address translation overhead is
not a factor in graph500’s performance. We find that graph500
loads data from the memory to the GPU’s scratchpad or local
data store (LDS) in contiguous chunks, and thus amortizes
TLB misses well. Similar behavior is observed for miniFE
which also makes use of LDS. In contrast, BPT accesses data
more randomly and has less opportunity to amortize this cost.
Other applications (Figure 3(b)–(e)) show varying degrees of
sensitivity to the GPU’s address translation overheads.

In summary, BPT, CoMD, and miniAMR are sensisitive
to TLB miss rates. BPT, CoMD, and miniAMR, respectively,
achieve up to 11.9%, 9.7% to 4.6% improvement in runtimes
when TLB misses are significantly reduced. On the other
hand, graph500, miniFE, and XSBench are insensitive to
translation overheads.

Furthermore, preliminary experiments with a recently
released second generation APU suggests that while the
overall runtimes of applications have significantly improved,
the contribution of overheads due to address translation have
doubled. This suggests that with future improvement in the
rest of the coherent memory hierarchy the address translation
is likely to become the bottleneck, unless paid attention to.

Figure 2. Scaling of GPU TLB miss latency.

0

0.5

1

1.5

2

2.5

1 8 16 32 64

G
P

U
-T

LB
 m

is
s

la
te

n
cy

(p

e
r

w
av

e
fr

o
n

t)

Number of workitems/
Maximum number of outstanding GPU TLB misses

Table 3. Measurements of TLB miss latency.

Stride
(in bytes)

GPU CPU

Number
of TLB
misses

Running
time

(in sec)

Number
of TLB
misses

Running
time

(in sec)

64
(cache line
size)

166 12,707 1,412 134

4096
(page size)

10,010 18,444 15,938 477

TLB miss la-
tency
(calculated)

(18,444-12,707)/
(10,010 -166) =

0.58 s

(477-134)/
(15,938 -1412) =

0.023 s

C. Effect of locality on GPU’s address translation

 The effect of memory-access locality on shared-memory
heterogeneous applications is subtle. With sufficient applica-
tion concurrency and locality, a small number of TLB misses
do not affect performance. On a TLB miss, the GPU can

switch to another wavefront (warp) to hide the latency of the
resulting page walk. On the other hand, if every wavefront in-
curs a TLB miss (poor locality), or worse, if many workitems
(GPU thread) within a wavefront incur a TLB miss (called
“data divergence” in GPU terminology), then programs can be
highly sensitive to address-translation overhead.

Figure 4. GPU TLB miss rates and running time of unsorted versions of XSBench and BPT.

0

1

2

3

4

5

6

7

8

0

50

100

150

200

250

gTLB_MPKWI GPU runtime
time

G
P

U
 r

u
n

n
in

g
ti

m
e

 n
o

rm
al

iz
e

d

to
 t

h
at

 o
f

X
Sb

e
n

ch
 (

so
rt

e
d

)
u

si
n

g
4

K
B

 p
ag

e
s

G
P

U
 T

LB
 m

is
s

ra
te

s
n

o
rm

al
iz

e
d

 t
o

 t
h

at
 o

f
th

e

X
Sb

e
n

ch
 (

so
rt

e
d

)
u

si
n

g
4

K
B

p

ag
e

s

4KB 2MB 1GB

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

gTLB_MPKWI GPU running
time

G
P

U
 r

u
n

n
in

g
ti

m
e

 n
o

rm
al

iz
e

d

to
 t

h
at

 o
f

B
P

T
(s

o
rt

e
d

)
u

si
n

g
4

K
B

 p
ag

e
s

G
P

U
 T

LB
 m

is
s

ra
te

s
n

o
rm

al
iz

e
d

 t
o

 t
h

at
 o

f
th

e
 B

P
T

(s
o

rt
e

d
)

u
si

n
g

4
K

B
 p

ag
e

s

4KB 2MB 1GB

Figure 3. GPU TLB miss rates and impact of larger page size.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16 18 20 22
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7
g
T

L
B

_
M

P
K

W
I,

P

Ta
_
P

K
W

I

T
im

e
 o

n
 G

P
U

 (
s)

Approx. Memory footprint (GB)
(a) BPT

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20 25
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

g
T

L
B

_
M

P
K

W
I,

P

Ta
_
P

K
W

I

T
im

e
 o

n
 G

P
U

 (
s)

Approx. Memory footprint (GB)
(b) CoMD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8 9 10 11
 0

 5

 10

 15

 20

 25

 30

 35

g
T

L
B

_
M

P
K

W
I,

P

Ta
_
P

K
W

I

T
im

e
 o

n
 G

P
U

 (
s)

Approx. Memory footprint (GB)

(c) miniAMR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

g
T

L
B

_
M

P
K

W
I,

P

Ta
_
P

K
W

I

T
im

e
 o

n
 G

P
U

 (
s)

Approx. Memory footprint (GB)

(d) miniFE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 0

 2

 4

 6

 8

 10

 12

 14

g
T

L
B

_
M

P
K

W
I,

P

Ta
_
P

K
W

I

T
im

e
 o

n
 G

P
U

 (
s)

Approx. Memory footprint (GB)
(e) graph500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 6 8 10 12 14 16 18 20 22 24

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

g
T

L
B

_
M

P
K

W
I,

P

Ta
_
P

K
W

I

T
im

e
 o

n
 G

P
U

 (
s)

Approx. Memory footprint (GB)
(f) XSBench

Time on GPU (s)(2m)
Time on GPU (s)(4k)

gTLB_MPKWI(2m)
gTLB_MPKWI(4k)

PTa_PKWI(2m)
PTa_PKWI(4k)

1GB 1GB

(a) XSBench-unsorted (b) BPT-unsorted

To analyze how poor locality in memory accesses may
affect the GPU’s address translation, we used alternative
versions of XSBench and BPT. Both XSBench and BPT
perform concurrent searches on the GPU over a large data
structure (e.g., nuclear energy grid and B+ tree, respectively).
In the original versions, the search keys are sorted (on the
CPU) before performing the searches on the GPU. This
significantly increases the locality in the resulting execution
because adjacent workitems (GPU threads) in the same
wavefront, and wavefronts scheduled nearby in time access
the same memory pages. The alternative versions used in this
experiment (called XSBench-unsorted and BPT-unsorted)
perform the same work but without the pre-sorting step. Thus,
XSBench-unsorted and BPT-unsorted demonstrate
considerably less locality in their memory accesses.

Figure 4 shows the runtime and the TLB miss rates of
XSBench-unsorted and BPT-unsorted normalized to their cor-
responding original (sorted) versions. In Figure 4(a), the right
cluster of bars (using the right y-axis) shows the GPU running
time of XSBench-unsorted using different page sizes (4KB,
2MB, 1GB) normalized to the runtime of the original
XSBench (sorted) version using only 4KB pages. The left
cluster of bars (using the left y-axis) shows the corresponding
number for the GPU TLB misses per KWI. Figure 4(b) shows
the same data for BPT. Both workloads use the largest dataset
for this experiment.

We observe that there is a significant slowdown (6-25)
due to poor locality. This slowdown is due to poor locality in
address translation, caching, and DRAM. To isolate the im-
pact on the address translation we use large and huge pages to
alleviate TLB misses. For example, observe that with 1GB
pages, TLB misses are nearly non-existent (invisible in the
graphs) even for the unsorted versions, and correspondingly

the slowdown reduces from 6 to 1.5, and from 26 to 7
for XSBench-unsorted and BPT-unsorted, respectively. This

suggests the residual slowdowns (1.5 and 7) are due to the
effect of poor locality in the rest of the memory hierarchy (e.g.,
caches, memory bandwidth). This strongly indicates that poor
locality affects the GPU’s address translation far more than
the rest of the memory hierarchy. Research into divergence-
tolerant address translation mechanisms for throughput-ori-
ented accelerators is important.

D. Effect of address translation prefetching

As described in Section II.A, the GPU by default
prefetches translations for up to eight contiguous (4KB) pages
in each ATS request sent to the IOMMU. Figure 4 depicts the
runtime and the number of GPU TLB misses per KWI with
and without translation prefetching for two of the workloads:
XSBench-unsorted and miniAMR. In Figure 5(a), we find that
XSBench-unsorted incurs up to 24% more GPU TLB misses,

and consequently, nearly 3 performance degradation due to
translation prefetching. The contiguous prefetches are useless
for XSBench-unsorted’s nearly random accesses to large
amounts of data. Furthermore, the useless prefetches evict

useful translations from the GPU TLB and ultimately hurt per-
formance by increasing the number of page table walks. Con-
versely, we find that translation prefetching reduces the num-
ber of TLB misses for the majority of workloads studied. For
example, Figure 5(b), presents measurements for miniAMR.
We observe that prefetching translations aids miniAMR by re-
ducing the number of TLB misses by half. These measure-
ments suggest that the effectiveness of translation prefetching
is highly application-dependent and providing application-
aware or programmable prefetching would be prudent.

Observations and opportunities:

1. Latency of servicing a TLB miss is significantly

higher on a GPU than on a CPU (~25).

2. Increasing the number of concurrent page table walks

supported by the hardware is key to supporting diverse

heterogeneous applications.

3. Half of the programs we studied suffer performance

degradation from GPU address translation overheads.

4. Larger pages are effective in reducing TLB misses.

Heterogeneous software and hardware should en-

hance support for larger page sizes.

5. Divergence in memory accesses impacts address

translation overhead more than cache and DRAM la-

tency. Research into divergence-tolerant address

translation mechanisms for throughput-oriented ac-

celerators is important.

6. Prefetching address translations can degrade perfor-

mance for programs with poor locality. Application-

dependent translation prefetching is desirable.

Figure 5. Effect of translation prefetching on GPU's address translation mechanism.

 0

 20

 40

 60

 80

 100

 120

 140

 4 6 8 10 12 14 16 18 20 22 24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

gT
LB

_M
P

KW
I

T
im

e
on

 G
P

U
(s

)

Approx. Memory footprint (GB)
(a) XSBench-unsorted

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6 7 8 9 10 11

 0

 5

 10

 15

 20

 25

 30

 35

gT
LB

_M
P

KW
I

T
im

e
on

 G
P

U
(s

)

Approx. Memory footprint (GB)
(b) miniAMR

Time on GPU PREFETCH(s)
Time on GPU NO PREFETCH(s)

gTLB_MPKWI NO PREFETCH
gTLB_MPKWI PREFETCH

V. EXTENDING PAGE FAULTS TO GPUS

A key feature of virtual memory is the ability to establish
mappings between virtual and physical addresses on demand.
This defers committing physical memory until (and if)
needed. Page faults allow the operating system to consolidate
physical memory across multiple concurrently running
processes and enable memory over-commitment. This is
particularly useful, for example, when an application maps a
large input dataset to memory, but only ends up using a small
portion of it. Further, page faulting is key in enforcing page
permission changes and many advanced memory
management techniques like garbage collection and page
frame reclamation.

While the ability to perform page faults has been an inte-
gral part of a CPU’s virtual memory for decades, accelerators
like GPUs traditionally lacked such capability. AMD’s A10
APUs released in 2014 is one of the first commercial hetero-
geneous processors to support page faulting on the shared
memory from accelerators. However, today’s heterogeneous
applications are not written to utilize this new capability and
instead follow an OpenCL-like programming model. In time
this will change, but for now, we modified applications to uti-
lize this functionality to study its impact. We focus on soft-
page faults, which do not incur accesses to secondary storage.

A. Analyzing GPU page fault latency and throughput

We analyze the latency and throughput of GPU page faults
using a micro-benchmark. We instrumented the IOMMU
driver to perform the measurements. The micro-benchmark
generates a constant number (512,000) of soft-page faults
from the GPU. The soft page faults do not access the storage
and are generated by the first access to a page in memory. The
micro-benchmark is designed to generate faults in controlled
bursts by varying the number of workitems. When the micro-
benchmark is executed with ‘n’ workitems, it generates ‘n’
concurrent page fault requests from the GPU. Thus increasing
the value of ‘n’ generates larger bursts of concurrent page
faults. Figure 6 shows the measured latency and throughput of
servicing these GPU page faults. The total height of each bar
represents the average latency to service a page fault. The left

y-axis represents the page fault latency in microseconds. The
right y-axis represents throughput of servicing GPU page
faults. For example, with 64 workitems, the average latency to
service a page fault is around 100 microseconds and 260 page
faults are serviced per millisecond (throughput).

We make two key observations: (1) the average latency to
service a page fault increases from 5 microseconds to 140 mi-
croseconds with increasing number of concurrent page faults
from the GPU; and (2) the throughput of servicing GPU page
faults does not scale beyond 32 concurrent page faults. To put
these numbers in perspective, we executed the experiment on
the CPU (single-threaded) and found the typical page fault la-
tency on the CPU is around 1.7 microseconds. GPU page-

faults are 3-80 slower. Larger concurrency in servicing page
faults from the GPU can help amortize this high latency.

We breakdown the (software) latency to service a GPU
page fault in Figure 6. We divide the time to handle a GPU
page fault into three major parts: (1) “initialization”, the la-
tency for the OS driver to read the fault requests from the PPR
queue and pre-process it; (2) “processing”, the latency to find
a physical page and update the page table; (3) “schedule”, the
time between initialization and processing of a page fault re-
quest. We observe that only a small fraction of the time is
spent in actually processing the work to service a page fault.
The OS’s scheduling delay introduced by the asynchronous
handling of GPU page faults is the primary contributor to the
latency. This suggests that page faults from the GPU can be
handled more efficiently by modifying the OS driver to handle
the faults synchronously whenever possible.

Figure 7 shows the relationship between the CPU’s core
frequency and the latency to service a GPU page fault. The
height of each bar in the clusters represents average GPU-page
fault latency with the CPU running at the given frequency. We
observe that the latency to service a GPU page fault nearly
doubles when the CPU core frequency is reduced from
3.7GHz to 1.7GHz. In general, the graph shows that the GPU
page fault latency inversely scales linearly with the CPU’s
core frequency. This suggests that the CPU’s core frequency

Figure 6. Scaling of GPU page faults.

0

100

200

300

400

500

0

20

40

60

80

100

120

140

160

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

T
h

r
o

u
g

h
p

u
t

(N
u

m
b

e
r
 o

f
p

a
g

e
 f

a
u

lt
 s

er
v
ic

e
d

p

e
r
 m

il
i-

se
c

A
v
g

.
G

P
U

 p
a

g
e
 f

a
u

lt
 l

a
te

n
c
y

 (
in

 m
ic

r
o

-

se
c
)

Number of concurrent GPU page faults (number of

workitems)

Initialization_latency Processing_latency

Schedule_latency Throughput

Figure 7. Scaling of GPU page fault with CPU frequency.

0

50

100

150

200

250

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

A
vg

. G
P

U
 p

ag
e

 f
au

lt
 la

te
n

cy
(i

n
 m

ic
ro

-s
e

c)

Number of concurrent GPU page faults
(number of workitems)

1.7Ghz 2.4GHz 3.0GHz 3.7GHz

needs to scale up for faster servicing of GPU page faults and
the CPU power setting may affect GPU page fault behavior.

B. Physical memory consolidation through GPU page fault

We measured the reduction in the physical memory foot-
print through the use of on-demand page faults from the GPU
and measure its performance overhead.

We modified four applications (BPT, XSBench, CoMD
and Graph500) to utilize demand faulting of memory from the
GPU. These modifications include using memory-mapped
files, changes to the data structures, and memory allocation.
We did not modify miniFE and miniAMR as it was not prac-
tical to dynamically fault in data from the GPU to achieve
memory consolidation without major alterations to their code
bases.

Figure 8 depicts the reduction in physical memory
footprint through the use of page faults from the GPU. The
x-axis of each graph represents a given workload’s running
time on the GPU while the y-axis represents the physical
memory allocated to the workload at a given time. Each graph
has two lines representing two versions of each workload.
“GPU_PAGEFAULT”, is the modified version of a workload
that dynamically faults memory from the GPU.
“NO_GPU_PAGEFAULT”, represents the original version.
The difference between these two lines signifies opportunity
to save physical memory. In Figure 8(a), we observe that the
physical memory footprint of BPT reduces significantly with
GPU page faults. BPT performs concurrent searches on the
GPU over a pre-generated B+tree (size ~20GB). It is not

necessary to access the entire tree for finding the keys. Thus
the use of page faults from the GPU avoids unnecessarily
allocating physical memory for the entire tree. In Figure 8(b),
we observe that XSBench allows savings in physical memory
footprint during initialization, but memory footprint grows
quickly as the entire allocated memory is gradually accessed
over time. Deeper inspection into XSBench reveals that the
biggest contributor to its memory footprint is the data structure
for the nuclear energy grid. This energy grid is accessed to
perform concurrent cross-sectional lookups on the GPU. We
find that if a large number of lookups are performed (a
parameter, default 15M) at random cross-sections, then
eventually the entire energy grid is accessed. Thus the
physical memory usage with and without GPU page faults
converges. However, XSBench’s physical memory footprint
reduces substantially when a smaller number of lookups (e.g.,
500K) are performed. We find that there is very little scope
for consolidating physical memory for workloads like
graph500 and CoMD. In graph500, the entire graph data
structure is traversed and thus all of allocated memory is
accessed. Similarly, for CoMD the entire allocated memory is
needed by the GPU. Hence, the potential for reducing memory
footprint varies across workloads and can be dependent upon
the input.

Figure 8. Physical memory usage with and without page faults from GPU.

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Ph
ys

ic
al

 m
em

or
y

us
ag

e
(i

n
G

B
)

Runtime (in sec)

GPU_PAGEFAULT NO_GPU_PAGEFAULT

(a) BPT (b) XSBench

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000

Ph
ys

ic
al

 m
em

or
y

us
ag

e
(i

n
G

B
)

Runtime (in sec)

NO_GPU_PAGEFAULT GPU_PAGEFAULT

0

2

4

6

8

10

0 100 200 300 400 500 600
Ph

ys
ic

al
 m

em
or

y
us

ag
e

(i
n

G
B

)
Runtime (in sec)

GPU_PAGEFAULT NO_GPU_PAGEFAULT

(c) CoMD (d) graph500

0

5

10

15

20

25

0 5 10 15 20 25Ph
ys

ic
al

 m
em

op
ry

 u
sa

ge
 (

in
 G

B
)

Runtime (in sec)

GPU_PAGEFAULT NO_GPU_PAGEFAULT

Figure 9 shows the runtimes normalized to the runtimes
with no page faults from the GPU. Each bar also shows a
breakdown of runtime spent on the CPU and GPU. We
observe that XSBench and BPT can incur significant
performance degradations due to page faults from the GPU.
We note that a larger fraction of the time is spent on the GPU
if page faulting is used. This is expected as GPU page faults
hinder concurrency in the GPU. Other workloads show little
or no performance impact.

In summary, we find significant scope for research into
heterogeneous software and hardware to reduce the page fault
latency and enabling more concurrency in servicing them.
These research efforts, however, should focus on enabling
new capabilities in the runtime rather than improving the
performance of legacy applications.

VI. EXTENDING TLB SHOOTDOWNS TO GPUS

We wrote a simple micro-benchmark that generates a large
number of GPU TLB shootdowns. It generates both single-
entry TLB invalidations and entire TLB flushes. Table 4 pre-
sents measurements and the breakdown of latency of a GPU
TLB shootdown. The first column depicts the average latency
of a GPU TLB shootdown. The first row shows the latency of

invalidating a single entry, and the second row shows the la-
tency of flushing the entire TLB. The average latency of a
TLB shootdown is around 4.2-4.4 microseconds. This latency
is comparable to typical times required to perform a TLB
shootdown across 4 to 8 CPU cores [25]. We note that nearly
an equal amount of time is spent in invalidating the IOMMU’s
and the GPU’s TLB entries. We also note that there is no sig-
nificant difference between the latency to invalidate a single
entry or flushing the entire TLB.

In the Linux operating system, TLB shootdowns often take
long time to complete for large systems with many nodes. This
may potentially be a scaling bottleneck in the future. For ex-
ample, future systems with multi-level memory [1] that mi-
grate pages between different levels of memory will critically
depend on TLB shootdown performance.

VII. RELATED WORK

The advent of big-data workloads, often with poor access
locality (e.g., graph processing algorithms, massive key value
stores), have recently led to a surge of research on virtual
memory for big-memory servers [3]–[8], [10], [13], [18], [19].
A number of research proposals have considered hardware
and software mechanisms to improve the effective capacity of
TLBs without additional area costs [4], [5], [8], [13], [18],
[19], [19] with speculation [3], [20], and with approaches that
better manage large pages [9], [15], [20]. In parallel, the emer-
gence of the unified address space paradigm for APUs (and
more broadly, heterogeneous systems) has prompted the first
set of studies on GPU address translation and memory man-
agement units [21], [22]. For example Pichai, Hsu, and
Bhattacharjee show that intelligent hardware page table walk-
ers are crucial to the performance of throughput-oriented ac-
celerators and are deeply tied to the operation of the wavefront
scheduler for both round-robin (the default) and advanced dy-
namic wavefront formation strategies designed to improve
cache locality and mitigate control-flow divergence overheads
[21]. Similarly, Power, Hill, and Wood show that throughput-
oriented, multithreaded page table walkers are critical for
GPU performance, especially in conjunction with intelli-
gently-designed translation caches [22]. Beyond these works
on GPUs, researchers have begun considering address trans-
lation for fixed-function and programmable accelerators [23].

Unlike past works on GPU address translation, we are the
first to characterize shared virtual memory behavior on a real

Table 4. GPU TLB shootdown analysis.

 Avg.
GPU TLB
shootdown
latency
(in nanosecs)

Breakdown of GPU TLB shootdown
latency

(in nanoseconds)

Ini-
tiali-
za-
tion

IOMMU
TLB invali-
dation

GPU
TLB in-
valida-
tion

Finaliza-
tion

Single-entry
shootdown

4234 79 1970 2021 162

All-entry
shootdown

4409 122 2052 2035 299

Figure 9. Performance overhead of GPU page faults.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

R
u

n
ti

m
e
 n

o
r
m

a
li

z
e
d

 t
o

 t
h

e

(c

p
u

+
g

p
u

)

ti
m

e
 w

it
h

 n
o

 G
P

U
 p

a
g

e
fa

u
lt

CPU time GPU time

Observations and opportunities:

1. The latency to service a page fault from the GPU can

be significantly higher than from the CPU.

2. Enhancements into system software to handle page

faults synchronously can reduce this latency.

3. Software-hardware co-design is needed service a large

number of concurrent faults from the

GPU/accelerators.

4. It is imperative to scale CPU performance and re-

sources to scale the GPU page fault servicing.

5. Future heterogeneous applications can reduce their

physical memory footprints through the use of on-de-

mand page faults from the GPU, although current ap-

plications may need to be re-written.

heterogeneous system with realistic workloads. Our work
shows the benefits, challenges, and potentially interesting re-
search avenues in this space by collecting results on the first
generations of hardware and software that actually implement
CPU-GPU shared address spaces. Our work sheds light on the
detailed interactions in the address translation microarchitec-
ture beyond the scope of prior works. As such, we believe that
our study provides a foundation for guiding the research com-
munity on some of the most-pressing problems in the shared
virtual memory paradigm.

VIII. SUMMARY: OBSERVATIONS AND OPPORTUNITIES

We summarize the lessons learned analyzing shared
virtual memory in one of the first commercially available
heterogenous processors. We discuss possible research
opportunities in the space for future-generation heterogeneous
processors.

Address translation: TLB misses in GPUs are currently
an order of magnitue slower than that in CPUs. A GPU
program’s large memory-level parallelism, along with
concurrent servicing of GPU TLB misses can potentially help
to hide this latency. Research on techniques that increases
TLB miss handling concurrency are crucial, particularly for
throughput-oriented accelerators like GPUs. We observe that
divergence in memory accesses impacts address translation
more than the rest of the memory hierarchy. Although there
has been a significant body of research in managing
divergence in the cache hierarchy, there is a dearth of work
that studies its impact on address translation. We find that
prefetching translations usually aids performance, but under
certain circumstances it can degrade performance. Research
into software-hardware co-design for application-aware
prefetechers for address transation will be useful. Finally, we
find that large pages universally help in reducing address
translation overheads. Hardware designers should build
enhanced support for large pages and programmers should
make use them. Furthermore, our preliminary experiments
with second generation APU suggests that address translation
is likely to become a bigger contributor to the performance
overhead as the rest of the memory hierarchy is improved in
future generation heterogenous processors.

Page fault: Dynamically allocating physical memory via
page faults from the GPU could potentially enable significant
memory consolidation for future applications with large
footprints. However, we observed that servicing a GPU page
fault on current systems can take an order of magnitude longer

(3-82) than that for CPU page faults. Addressing this
challenge requires changes to both the hardware and software.
Enhancements to both the system software and hardware to
service a larger number of concurrent page faults could help
mitigate the overheads in the page fault process.

TLB Shootdown: Our workloads encountered only a few
instances of TLB shootdowns. TLB shootdown latencies for
current heterogeneous systems are comparable to those in the
CPU and are hence expensive. However, because TLB
shootdowns are serialized, they could be a potential
performance bottleneck in future systems, particularly for
heterogeneous memory systems with frequent physical page
migration. This is not an intrinsic limitation of the hardware,

but architecting the OS to support concurrent shootdowns will
be required as systems scale upward.

IX. ACKNOWLEDGEMENTS

AMD, the AMD Arrow logo, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. The format
PCIe® is a registered trademark of PCI-SIG Corporation. The
format ARM® is a registered trademark of ARM Limited.
Other product names used in this publication are for identifi-
cation purposes only and may be trademarks of their respec-
tive companies. This work was supported in part by the Na-
tional Science Foundation, under grant number 1337147.

X. REFERENCES

[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler,

and T. W. Wenisch, “Unlocking bandwidth for GPUs

in CC-NUMA systems,” presented at the International

Symposium on High Performance Computer Architec-

ture (HPCA), 2015.

[2] K. Atasu, F. Doerfler, J. van Lunteren, and C. Hagleit-

ner, “Hardware-Accelerated Regular Expression

Matching with Overlap Handling on IBM PowerEN

Processor,” in 2013 IEEE 27th International Sympo-

sium on Parallel Distributed Processing (IPDPS),

2013, pp. 1254–1265.

[3] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A

Mechanism for Speculative Address Translation,” in

Proceedings of the 38th Annual International Sympo-

sium on Computer Architecture, New York, NY, USA,

2011, pp. 307–318. Available:

http://doi.acm.org/10.1145/2000064.2000101

[4] T. W. Barr, A. L. Cox, and S. Rixner, “Translation

Caching: Skip, Don’T Walk (the Page Table),” in Pro-

ceedings of the 37th Annual International Symposium

on Computer Architecture, New York, NY, USA,

2010, pp. 48–59. Available:

http://doi.acm.org/10.1145/1815961.1815970

[5] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M.

Swift, “Efficient Virtual Memory for Big Memory

Servers,” in Proceedings of the 40th Annual Interna-

tional Symposium on Computer Architecture, New

York, NY, USA, 2013, pp. 237–248. Available:

http://doi.acm.org/10.1145/2485922.2485943

[6] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne,

“Accelerating Two-dimensional Page Walks for Virtu-

alized Systems,” in Proceedings of the 13th Interna-

tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, New

York, NY, USA, 2008, pp. 26–35. Available:

http://doi.acm.org/10.1145/1346281.1346286

[7] A. Bhattacharjee, “Large-reach Memory Management

Unit Caches,” in Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchi-

tecture, New York, NY, USA, 2013, pp. 383–394.

Available:

http://doi.acm.org/10.1145/2540708.2540741

[8] A. Bhattacharjee, D. Lustig, and M. Martonosi,

“Shared Last-level TLBs for Chip Multiprocessors,” in

Proceedings of the 2011 IEEE 17th International Sym-

posium on High Performance Computer Architecture,

Washington, DC, USA, 2011, pp. 62–63. Available:

http://dl.acm.org/citation.cfm?id=2014698.2014896

[9] Y. Du, M. Zhou, B. R. Childers, D. Mosse, and R.

Melhem, “Supporting superpages in non-contiguous

physical memory,” in 2015 IEEE 21st International

Symposium on High Performance Computer Architec-

ture (HPCA), 2015, pp. 223–234.

[10] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Ef-

ficient Memory Virtualization: Reducing Dimension-

ality of Nested Page Walks,” in Proceedings of the

47th Annual IEEE/ACM International Symposium on

Microarchitecture, Washington, DC, USA, 2014, pp.

178–189. Available:

http://dx.doi.org/10.1109/MICRO.2014.37

[11] J. Goodacre, “The Evolution of the ARM Architecture

Towards Big Data and the Data-centre (Abstract

Only),” in Proceedings of the 8th Workshop on Virtu-

alization in High-Performance Cloud Computing,

New York, NY, USA, 2013, pp. 4:1–4:1. Available:

http://doi.acm.org/10.1145/2535800.2535921

[12] Intel Quick Assist Technology, “Integrated Crypto-

graphic and Compression Accelerators on Intel® Ar-

chitecture Platforms.” . Available: http://www.in-

tel.com/content/dam/www/public/us/en/documents/so-

lution-briefs/integrated-cryptographic-compression-ac-

celerators-brief.pdf

[13] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D.

Hill, K. S. McKinley, M. Nemirovsky, M. M. Swift,

and O. Ünsal, “Redundant Memory Mappings for Fast

Access to Large Memories,” in Proceedings of the

42Nd Annual International Symposium on Computer

Architecture, New York, NY, USA, 2015, pp. 66–78.

Available:

http://doi.acm.org/10.1145/2749469.2749471

[14] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim,

and P. Ranganathan, “Meet the Walkers: Accelerating

Index Traversals for In-memory Databases,” in Pro-

ceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture, New York, NY,

USA, 2013, pp. 468–479. Available:

http://doi.acm.org/10.1145/2540708.2540748

[15] M.-M. Papadopoulou, X. Tong, A. Seznec, and A.

Moshovos, “Prediction-based superpage-friendly TLB

designs,” in 2015 IEEE 21st International Symposium

on High Performance Computer Architecture (HPCA),

2015, pp. 210–222.

[16] H. K. T. Paul Stewart Crozier, “Improving perfor-

mance via mini-applications,” 2009.

[17] PCI Express, “Address Translation Services.” . Availa-

ble: http://composter.com.ua/docu-

ments/ats_r1.1_26Jan09.pdf

[18] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh,

“Increasing TLB reach by exploiting clustering in page

translations,” in 2014 IEEE 20th International Sympo-

sium on High Performance Computer Architecture

(HPCA), 2014, pp. 558–567.

[19] B. Pham, V. Vaidyanathan, A. Jaleel, and A.

Bhattacharjee, “CoLT: Coalesced Large-Reach TLBs,”

in Proceedings of the 2012 45th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, Wash-

ington, DC, USA, 2012, pp. 258–269. Available:

http://dx.doi.org/10.1109/MICRO.2012.32

[20] B. Pham, J. vesely, G. Loh, and A. Bhattacharjee,

“Large Pages and Lightweight Memory Management in

Virtualized Environments: Can You Have it Both

Ways,” presented at the IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), 2015.

[21] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural

Support for Address Translation on GPUs: Designing

Memory Management Units for CPU/GPUs with Uni-

fied Address Spaces,” in Proceedings of the 19th Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, New

York, NY, USA, 2014, pp. 743–758. Available:

http://doi.acm.org/10.1145/2541940.2541942

[22] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-

64 address translation for 100s of GPU lanes,” in 2014

IEEE 20th International Symposium on High Perfor-

mance Computer Architecture (HPCA), 2014, pp. 568–

578.

[23] Y. Sophia Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and

D. Brooks, “Towards Cache-Friendly Hardware Accel-

erators,” in HPCA Sensors and Cloud Architectures

Workshop (SCAW), 2015. Available:

http://www.eecs.harvard.edu/~shao/papers/shao2015-

scaw.pdf

[24] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel,

“CAPI: A Coherent Accelerator Processor Interface,”

IBM J. Res. Dev., vol. 59, no. 1, pp. 7:1–7:7, Jan. 2015.

[25] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A.

Ramirez, A. Mendelson, N. Navarro, A. Cristal, and O.

S. Unsal, “DiDi: Mitigating the Performance Impact of

TLB Shootdowns Using a Shared TLB Directory,” in

2011 International Conference on Parallel Architec-

tures and Compilation Techniques (PACT), 2011, pp.

340–349.

[26] “HSA Foundation.” . Available: http://www.hsafoun-

dation.com/

[27] “PCI Express.” . Available: https://en.wikipe-

dia.org/wiki/PCI_Express

.

