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Abstract – Computing is becoming increasingly heterogeneous 

with accelerators like GPUs being tightly integrated with CPUs 

on the same die. Extending the CPU’s virtual addressing mech-

anism to these accelerators is a key step in making accelerators 

easily programmable. In this work, we analyze, using real-sys-

tem measurements, shared virtual memory across the CPU and 

an integrated GPU. We make several key observations and high-

light consequent research opportunities: (1) servicing a TLB 

miss from the GPU can be an order of magnitude slower than 

that from the CPU and consequently it is imperative to enable 

many concurrent TLB misses to hide this larger latency; (2) di-

vergence in memory accesses impacts the GPU’s address trans-

lation more than the rest of the memory hierarchy, and research 

in designing address translation mechanisms tolerant to this ef-

fect is imperative; and (3) page faults from the GPU are consid-

erably slower than that from the CPU and software-hardware 

co-design is essential for efficient implementation of page faults 

from throughput-oriented accelerators like GPUs. We present a 

detailed measurement study of a commercially available inte-

grated APU that illustrates these effects and motivates future 

research opportunities. 

I. INTRODUCTION  

Computing has witnessed a proliferation of accelerators 
serving a diverse set of needs like cryptography, graphics, da-
tabases, regular expressions [2], [12], [14]. Accelerators often 
enable significantly superior performance and power effi-
ciency for specific tasks, compared to general-purpose CPUs. 
Consequently, accelerators are increasingly being integrated 
with the CPU on the same die. Such tight integration allows 
efficient offloading of computation to accelerators. Commer-
cial manufacturers like AMD, Apple, Intel, and Qualcomm, 
today ship millions of processors with CPUs and GPUs tightly 
coupled together on a single die. IBM’s CAPI [24] and 
ARM®’s ACP [11] extend this concept to a plethora of third-
party accelerators. 

A key challenge in harnessing the full potential of acceler-
ators in these heterogeneous processors is to make them easily 
programmable. A crucial first step in addressing this challenge 
is to enable shared (unified) coherent virtual memory across 
CPUs and accelerators. Indeed, industry-promoted models 
such as the Heterogeneous System Architecture (HSA) [26] 
mandate shared virtual memory in an effort to make accelera-
tors a first-class computing element. This allows a pointer on 
the CPU to be equally valid on an accelerator; thus avoiding 
manual data copies. Importantly, it helps provide a program-
ming environment familiar to common programmers. 

In this work, we present a detailed characterization and 
analysis of a shared virtual memory system across the CPU 
and the integrated GPU in a commercially available heteroge-
neous processor. To the best of our knowledge, this is the first 
such study on a commercial platform. We study how the 
CPU’s virtual memory is extended to the integrated-GPU in 
three key aspects: (1) virtual-to-physical address translation; 
(2) creation of new virtual-to-physical address mappings 
through page faults; and (3) invalidation of stale address map-
pings through TLB (Translation Lookaside Buffer) 
shootdowns. We use six applications that use the integrated-
GPU to perform computation. Although we focus on the GPU, 
our key results are applicable to other throughput-orientated 
accelerators. 

Our measurements highlight several new research 
opportunities in this space. (1) A TLB miss on the GPU can 

be 25 slower than that on the CPU. Research into enabling 
greater concurrency in servicing TLB misses from 
throughput-oriented accelerators is critical to hide this latency; 
(2) Poor locality in memory accesses, particularly from 
divergent accesses within the same wavefront or warp, 
impacts the GPU’s address translation hardware more than the 
rest of the memory hierarchy. Research into divergence-
tolerant address translation mechanisms is important; (3) The 
prefetching of address translations built into the industry 
standard PCIe® specification may hurt performance under cer-
tain circumstances. More research into effective translation 
prefetching for accelerators is necessary; (4) Servicing GPU 
page faults can be significantly slower than that for CPU page 
faults. Most of this added time is spent in the operating system 
(OS) kernel, and likely can be designed out; (5) The latency 
of a TLB shootdown on the GPU is comparable to that in the 
CPU. Research into reducing TLB shootdown latency in het-
erogeneous systems needs to optimize both the CPU and GPU 
shootdown. Several other such observations and research 
opportunities are detailed throughout this work. 

Section II provides background on how integrated-GPUs 
perform basic virtual-memory operations. Section III de-
scribes our methodology and applications used. Section IV de-
scribes our analysis of address translation while Section V and 
Section VI explore page fault and shootdown costs. 

II. BACKGROUND: SHARED VIRTUAL MEMORY 

Figure 1 depicts the system that we analyze in this work. 
A hardware block called the IO Memory Management Unit 
(IOMMU) services the address translation requests of the 
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GPU and other accelerators. The IOMMU resides in the pro-
cessor’s northbridge complex. The IOMMU can access the 
same x86-64 page table structures used by processes running 
on the CPU. This enables the accelerator to share the same set 
of page tables (and thus the same virtual address space) as the 
processes running on the CPU via the IOMMU. A software 
driver in the OS executing on the CPU manages the IOMMU. 
The runtime software, in coordination with the OS driver, sets 
up the IOMMU to enable accelerators access to the same vir-
tual address spaces of the CPU. In the following subsections 
we describe how basic virtual-memory operations are per-
formed by the integrated-GPU in this environment. Although 
the following operations are explained for the GPU, similar 
mechanisms are applicable to other accelerators and IO de-
vices. 

A. GPU address translation 

The GPU has its own TLB hierarchy that caches recently 
used address translations. On a GPU TLB miss, a translation 
request is sent as an ATS (Address Translation Service [17]) 
request packet over the PCIe®-based [27] internal interconnect 
to the IOMMU. This interconnect carries PCIe® packets but 
latency and bandwidth are not necessarily constrained by 
PCIe®’s electrical specifications. The IOMMU has its own 
TLB hierarchy which is checked first; on a miss there, a 
hardware page table walker in the IOMMU checks the page 
table. ATS requests are tagged with a process address space 
identifier (PASID) and the IOMMU maintains a table that 
matches PASIDs to page table base physical addresses. Once 
the address is successfully translated, the IOMMU sends an 
ATS response to the GPU. The protocol and packet formats 
for ATS requests and responses are part of the PCIe® standard 
specification and are the same across all accelerators. 

The PCIe®’s ATS protocol enables devices (and accelera-
tors) to prefetch translation requests for up to eight contiguous 
virtual address pages in a single ATS response from the 
IOMMU. By default, the GPU in our system allows the 
prefetch value to the maximum setting of eight. 

Comparison with CPUs: In the CPU, per-core Memory man-
agement Units (MMUs) are responsible for address 
translations. In contrast, the IOMMU services requests from 
all accelerators. Unlike the CPU’s MMU, the IOMMU is not 
tightly integrated with CPU’s data cache hierarchy. The data 
caches may contain the most up-to-date translations but the 
cached copies cannot be directly accessed by accelerators. 

B. GPU page faults 

If the IOMMU’s page table walker fails to find the desired 
translation in the page table, it sends an ATS response to the 
GPU notifying it of this failure. This in turn corresponds to a 
page fault. In response, the GPU sends another request to the 
IOMMU called a Peripheral Page Request (PPR). The 
IOMMU places this request in a memory-mapped queue and 
raises an interrupt on the CPU. Multiple PPR requests can be 
queued before the CPU is interrupted. The OS must have a 
suitable IOMMU driver to process this interrupt and the 
queued PPR requests. In Linux, while in an interrupt context, 
the driver pulls PPR requests from the queue and places them 
in a work-queue for later processing. Presumably this design 
decision was made to minimize the time spent executing in an 
interrupt context, where lower priority interrupts would be dis-
abled. At a later time, an OS worker-thread calls back into the 
driver to process page fault requests in the work-queue. Once 
the requests are serviced, the driver notifies the IOMMU. In 
turn, the IOMMU notifies the GPU. The GPU then sends an-
other ATS request to retry the translation for the original fault-
ing address. 

Comparison with CPU: On the CPU, a hardware excep-
tion is raised on a page fault, which immediately switches to 
the OS. In most cases in Linux, this routine services the page 
fault directly, instead of queuing it for later processing. Con-
trast this with a page fault from an accelerator, where the 
IOMMU has to interrupt the CPU to request service on its be-
half, and also note the several back-and-forth messages be-
tween the accelerator, the IOMMU, and the CPU. Further-
more, page faults on the CPU are generally handled one at a 
time on the CPU, while for the GPU they are batched by the 
IOMMU and OS work-queue mechanism. 

C. GPU TLB shootdowns 

The IOMMU plays a pivotal role in extending the TLB 
shootdown process to GPUs. An OS driver monitors any 
changes to virtual address mappings for address spaces shared 
with the GPU and triggers a TLB shootdown when necessary. 
The driver first sends a command to the IOMMU via a 
memory-resident command queue to invalidate the stale map-
ping in the IOMMU’s TLB hierarchy. The driver then waits 
for the IOMMU to confirm successful invalidation from the 
IOMMU. Next, the driver commands the GPU (via the 
IOMMU) to invalidate the stale mapping from its TLB. The 
IOMMU hardware collects the completion notification of the 
invalidation in the GPU’s TLB and forwards this information 
to the OS. Note there can be two types of invalidation requests: 
(1) requests to invalidate a given address mapping in the 
TLBs, and (2) requests to flush all entries for a given address 
space.

 

Figure 1. Heterogeneous system enabling shared virtual 
memory across the CPU and the integrated-GPU. 
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Comparison with CPU: Historically, CPUs have used a va-
riety of mechanisms to perform remote TLB shootdowns. For 
example, x86 processors use inter-processor interrupts (IPIs) 
to keep per-core TLBs coherent. CPUs initiating TLB 
shootdowns send IPIs to other CPUs in the system that may 
have a stale entry. The IPI invokes the operating system on 
those CPUs, which executes a handler to invalidate the local 
per-CPU TLB. Just as the operating system can choose not to 
send IPIs to processors that provably cannot have a stale map-
ping (e.g., they never executed the process), an efficiently con-
structed driver will selectively send shootdowns to the 
IOMMU and the accelerators only if the address space was 
shared. 

In contrast, processors like ARM® and PowerPC® have 
also employed dedicated TLB shootdown instructions in their 
ISAs. In these cases, software on the shootdown initiator core 
executes a TLB invalidation instruction, which is then broad-
cast to the other cores. Although the OS is typically not in-
voked in this approach, the downside is that broadcast signals 
are often conservatively relayed to all system cores, constrain-
ing the scalability of this approach. 

III. METHODOLOGY AND WORKLOADS 

We run our experiments on a system with an AMD A10-
7850K APU (previously code-named “Kaveri”) as described 
in Table 1. AMD A10-7850K APU is one of the first hetero-
geneous processor to support shared virtual memory across 
the CPU and GPU. We measured TLB events and page table 
walks using hardware performance counters. We designed a 
software profiler to access these counters. We also instru-
mented the Linux IOMMU driver to measure the latency for 
software events like page faults and TLB shootdowns. 

Table 1. Description of experimental system. 

CPU AMD A10-7850K APU, maximum core fre-
quency 3.7GHz. 

GPU 8 compute units (CUs), maximum core fre-
quency 720 MHz 

Memory DDR-3, 32GB (4×8GB), 1600 MHz 

Soft-
ware 

Linux 4.0 with Kernel Fusion Driver (KFD). 
Heterogeneous System Architecture (HSA) 
runtime, C++AMP compiler and OpenCL 
stack on HSA. 

We use six applications (described in Table 2) and two tar-
geted micro-benchmarks for this study. All the applications 
and micro-benchmarks use the on-die integrated-GPU to per-
form their primary compute. All the data for the applications 
reside in the system memory (DRAM) and uses shared virtual 
addressing between the CPU and the GPU. 

IV. ADDRESS TRANSLATION IN SHARED VIRTUAL MEMORY 

We first analyze intricacies of the GPU address translation 
under a controlled execution environment with custom micro-
benchmarks and then present performance measurements of 
the applications. 

A. Analyzing GPU’s address translation using micro-

benchmarks 

We sought to answer two questions in the analysis using a 
carefully designed micro-benchmark: (1) what is a typical 
GPU TLB miss latency, and (2) how much concurrency is 
supported by the hardware in servicing GPU TLB misses? An-
swers to these questions reveal potential performance bottle-
necks, particularly as shared virtual memory is scaled in future 
heterogeneous systems. 

Table 2. Description of applications used. 

Applica-
tion 

Description 

B+ Tree 
search 
(BPT) 

Searches 15M keys in a B+tree concurrently 
on the GPU. The B+tree is pre-generated. 

CoMD Molecular dynamics simulation that 
evaluates the force acting on an atom due to 
other atoms in the system. Force potential 
computation is evaluated on the GPU. 

miniAMR Applies a stencil calculation on the GPU to 
a dense 3D array. 

miniFE Assembles and solves a sparse linear-system 
from the steady-state conduction equation 
[16]. 

Graph500 BFS traversal on a Kronecker generated 
graph. Bottom-up traversal uses the GPU. 

XSBench Monte Carlo neutron transport across 
macroscopic neutron cross sections. 

Our micro-benchmark runs a kernel (GPU program) on the 
integrated-GPU with a varying number of workitems. Each 
workitem accesses 10,000 different memory locations in a 
loop and performs a simple computation (XOR) on the data. 
A stride (parameter) determines the distance (in bytes) be-
tween memory locations accessed by two consecutive ac-
cesses in each workitem. We execute the micro-benchmark 
with one workitem with a stride of 64 bytes (cache line size) 
and again with a stride of 4KB (page size). We use the hard-
ware performance counters to count the number of TLB and 
cache misses. Table 3 lists the measurements. When executed 
with a stride of 64 bytes (second row) each memory access 
incurs a cache miss while every 64th access (4096/64) incurs 
a TLB miss. With a stride of 4KB, every access incurs a cache 
miss and a TLB miss (third row). Thus the difference between 
these two executions is the number of TLB misses. Therefore, 
we attribute the difference in the runtime between the two runs 
to the additional TLB misses. We calculate that the latency of 
servicing a GPU TLB miss that incurs a page walk by the 
IOMMU to be 582 nanoseconds (last row). We further ran the 
same micro-benchmark on the CPU with a single thread for 
comparative analysis. Measurement on the CPU is presented 
in the last column and we similarly calculate that latency of 
the CPU’s TLB miss to be 23 nanoseconds. Thus, a TLB miss 

from the GPU is about 25 slower than on a CPU. Several 
reasons contribute to the longer latency of GPU TLB misses: 
(1) TLB miss request and responses travel as PCIe® packets to 

https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
https://github.com/HSAFoundation/HSA-Runtime-AMD
https://github.com/HSAFoundation/HSA-Runtime-AMD
http://www.mayankdaga.com/wp-content/uploads/2012/11/paper.pdf
http://www.mayankdaga.com/wp-content/uploads/2012/11/paper.pdf
http://www.mayankdaga.com/wp-content/uploads/2012/11/paper.pdf
http://www.exmatex.org/comd.html
https://github.com/arm-hpc/miniAMR
http://portal.nersc.gov/project/CAL/designforward.htm#MiniFE
http://www.graph500.org/
https://asc.llnl.gov/CORAL-benchmarks/Summaries/XS_Benchmark_Summary_v1.1.pdf


 

the IOMMU; (2) more levels (up to four here) of TLBs to 
check; (3) the IOMMU’s page table walker does not have fast 
access to CPU caches that might have the latest page table en-
tries; and (4) the resulting wavefront must be rescheduled for 
execution on the GPU. 

We then executed the micro-benchmark on the GPU with 
an increasing number of workitems from 1 to 64 to estimate 
the concurrency available in servicing TLB misses. Each 
workitem accesses a distinct set of memory locations and thus 
offers no opportunity to coalesce the accesses. The maximum 
number of outstanding TLB misses (and the corresponding 
page walk requests) at any given time is thus bounded by the 
number of workitems. Figure 2 shows how the latency expe-
rienced by a wavefront on a GPU TLB miss scales with an 
increasing number of workitems. Note that there is a signifi-
cant jump in the page walk latency beyond 16 workitems (and 
thus, 16 outstanding page table walks). This suggests that in 
our test hardware, the IOMMU allows up to 16 concurrent 
page table walks, beyond which the latency of page walks in-
creases sharply due to queuing. 

B. Measuring GPU’s address translation overhead 

Next, we run six applications (Table 2) to measure and 
analyze the overheads of the GPU’s address translation on real 
workloads. We run each application with increasing memory 
footprints to understand the scalability of the GPU’s address 
translation overheads. We use hardware performance counters 
to measure the number of GPU TLB misses and the number 
of accesses to the page table by the IOMMU. We perform the 
measurements of each application using 4KB (default) and 
2MB pages. Larger pages reduce the number of TLB misses 
and enable us to better understand the performance benefits of 
reducing TLB misses. 

Figure 3 depicts a summary of our measurements for each 
application. The x-axis is the approximate memory footprint. 
The plot’s right y-axis represents the GPU runtime, and the 
left y-axis is the number of GPU TLB misses and the number 
of accesses to the page table by the IOMMU per kilo 
wavefront instructions (PKWI) executed on the GPU. A 
wavefront instruction is a single-instruction-multiple-data 
(SIMD) instruction executed by workitems (a.k.a GPU 
threads) in a given wavefront (warp) in a lock-step fashion. In 
one set of runs, the applications make use of 4KB pages (4k), 
and in another set of runs the applications make use of larger 
2MB pages (2m). 

For example, we scale the memory footprint of the 
workload BPT using different input sets, from 2 to 21 GB. 
Observe that with 4KB pages, the GPU TLB miss rate goes up 
from 0.5 to 4.4 misses per KWI [gTLB_MPKWI (4k)]. The 
number of accesses to the page table goes up from 0.4 to 2 
accesses per KWI [PTa_PKWI(4k)]. The GPU TLB misses 
and the number of accesses to the IOMMU becomes 
negligible if larger 2MB pages are used. Correspondingly, 
there is up to an 11% reduction in execution time. We note 
that PTa_PKWI counts the number of accesses to the in-
memory page table and not the number of page table walks. In 
x86-64, a page table walk can incur upto four accesses to the 
page table. 

On the opposite end of the spectrum is graph500 (Figure 
3(e)). There are at most 2.5 GPU TLB misses per KWI. A 
larger page size (2MB) eliminates almost all TLB misses for 
graph500, but there is no observable change in execution time. 
This suggests that the GPU’s address translation overhead is 
not a factor in graph500’s performance. We find that graph500 
loads data from the memory to the GPU’s scratchpad or local 
data store (LDS) in contiguous chunks, and thus amortizes 
TLB misses well. Similar behavior is observed for miniFE 
which also makes use of LDS. In contrast, BPT accesses data 
more randomly and has less opportunity to amortize this cost. 
Other applications (Figure 3(b)–(e)) show varying degrees of 
sensitivity to the GPU’s address translation overheads. 

In summary, BPT, CoMD, and miniAMR are sensisitive 
to TLB miss rates. BPT, CoMD, and miniAMR, respectively, 
achieve up to 11.9%, 9.7% to 4.6% improvement in runtimes 
when TLB misses are significantly reduced. On the other 
hand, graph500, miniFE, and XSBench are insensitive to 
translation overheads. 

Furthermore, preliminary experiments with a recently 
released second generation APU suggests that while the 
overall runtimes of applications have significantly improved, 
the contribution of overheads due to address translation have 
doubled. This suggests that with future improvement in the 
rest of the coherent memory hierarchy the address translation 
is likely to become the bottleneck, unless paid attention to. 

 

Figure 2. Scaling of GPU TLB miss latency. 
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Table 3. Measurements of TLB miss latency. 

Stride  
(in bytes) 

GPU CPU 

Number 
of TLB 
misses 

Running 
time  

(in sec) 

Number 
of TLB 
misses 

Running 
time  

(in sec) 

64 
(cache line 
size) 

166 12,707 1,412 134 

4096 
(page size) 

10,010 18,444 15,938 477 

TLB miss la-
tency  
(calculated) 

(18,444-12,707)/ 
(10,010 -166) =  

0.58 s 

(477-134)/ 
(15,938 -1412) = 

0.023 s 

 



 

C. Effect of locality on GPU’s address translation 

 The effect of memory-access locality on shared-memory 
heterogeneous applications is subtle. With sufficient applica-
tion concurrency and locality, a small number of TLB misses 
do not affect performance. On a TLB miss, the GPU can 

switch to another wavefront (warp) to hide the latency of the 
resulting page walk. On the other hand, if every wavefront in-
curs a TLB miss (poor locality), or worse, if many workitems 
(GPU thread) within a wavefront incur a TLB miss (called 
“data divergence” in GPU terminology), then programs can be 
highly sensitive to address-translation overhead. 

 

Figure 4. GPU TLB miss rates and running time of unsorted versions of XSBench and BPT. 
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Figure 3. GPU TLB miss rates and impact of larger page size. 
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To analyze how poor locality in memory accesses may 
affect the GPU’s address translation, we used alternative 
versions of XSBench and BPT. Both XSBench and BPT 
perform concurrent searches on the GPU over a large data 
structure (e.g., nuclear energy grid and B+ tree, respectively). 
In the original versions, the search keys are sorted (on the 
CPU) before performing the searches on the GPU. This 
significantly increases the locality in the resulting execution 
because adjacent workitems (GPU threads) in the same 
wavefront, and wavefronts scheduled nearby in time access 
the same memory pages. The alternative versions used in this 
experiment (called XSBench-unsorted and BPT-unsorted) 
perform the same work but without the pre-sorting step. Thus, 
XSBench-unsorted and BPT-unsorted demonstrate 
considerably less locality in their memory accesses. 

Figure 4 shows the runtime and the TLB miss rates of 
XSBench-unsorted and BPT-unsorted normalized to their cor-
responding original (sorted) versions. In Figure 4(a), the right 
cluster of bars (using the right y-axis) shows the GPU running 
time of XSBench-unsorted using different page sizes (4KB, 
2MB, 1GB) normalized to the runtime of the original 
XSBench (sorted) version using only 4KB pages. The left 
cluster of bars (using the left y-axis) shows the corresponding 
number for the GPU TLB misses per KWI. Figure 4(b) shows 
the same data for BPT. Both workloads use the largest dataset 
for this experiment. 

We observe that there is a significant slowdown (6-25) 
due to poor locality. This slowdown is due to poor locality in 
address translation, caching, and DRAM.  To isolate the im-
pact on the address translation we use large and huge pages to 
alleviate TLB misses. For example, observe that with 1GB 
pages, TLB misses are nearly non-existent (invisible in the 
graphs) even for the unsorted versions, and correspondingly 

the slowdown reduces from 6 to 1.5, and from 26 to 7 
for XSBench-unsorted and BPT-unsorted, respectively. This 

suggests the residual slowdowns (1.5 and 7) are due to the 
effect of poor locality in the rest of the memory hierarchy (e.g., 
caches, memory bandwidth). This strongly indicates that poor 
locality affects the GPU’s address translation far more than 
the rest of the memory hierarchy. Research into divergence-
tolerant address translation mechanisms for throughput-ori-
ented accelerators is important.  

D. Effect of address translation prefetching 

As described in Section II.A, the GPU by default 
prefetches translations for up to eight contiguous (4KB) pages 
in each ATS request sent to the IOMMU. Figure 4 depicts the 
runtime and the number of GPU TLB misses per KWI with 
and without translation prefetching for two of the workloads: 
XSBench-unsorted and miniAMR. In Figure 5(a), we find that 
XSBench-unsorted incurs up to 24% more GPU TLB misses, 

and consequently, nearly 3 performance degradation due to 
translation prefetching. The contiguous prefetches are useless 
for XSBench-unsorted’s nearly random accesses to large 
amounts of data. Furthermore, the useless prefetches evict 

useful translations from the GPU TLB and ultimately hurt per-
formance by increasing the number of page table walks. Con-
versely, we find that translation prefetching reduces the num-
ber of TLB misses for the majority of workloads studied. For 
example, Figure 5(b), presents measurements for miniAMR. 
We observe that prefetching translations aids miniAMR by re-
ducing the number of TLB misses by half. These measure-
ments suggest that the effectiveness of translation prefetching 
is highly application-dependent and providing application-
aware or programmable prefetching would be prudent. 

Observations and opportunities: 

1. Latency of servicing a TLB miss is significantly 

higher on a GPU than on a CPU (~25). 

2. Increasing the number of concurrent page table walks 

supported by the hardware is key to supporting diverse 

heterogeneous applications. 

3. Half of the programs we studied suffer performance 

degradation from GPU address translation overheads. 

4. Larger pages are effective in reducing TLB misses. 

Heterogeneous software and hardware should en-

hance support for larger page sizes. 

5. Divergence in memory accesses impacts address 

translation overhead more than cache and DRAM la-

tency. Research into divergence-tolerant address 

translation mechanisms for throughput-oriented ac-

celerators is important. 

6. Prefetching address translations can degrade perfor-

mance for programs with poor locality. Application-

dependent translation prefetching is desirable. 

 

Figure 5. Effect of translation prefetching on GPU's address translation mechanism. 
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V. EXTENDING PAGE FAULTS TO GPUS  

A key feature of virtual memory is the ability to establish 
mappings between virtual and physical addresses on demand. 
This defers committing physical memory until (and if) 
needed. Page faults allow the operating system to consolidate 
physical memory across multiple concurrently running 
processes and enable memory over-commitment. This is 
particularly useful, for example, when an application maps a 
large input dataset to memory, but only ends up using a small 
portion of it. Further, page faulting is key in enforcing page 
permission changes and many advanced memory 
management techniques like garbage collection and page 
frame reclamation. 

While the ability to perform page faults has been an inte-
gral part of a CPU’s virtual memory for decades, accelerators 
like GPUs traditionally lacked such capability. AMD’s A10 
APUs released in 2014 is one of the first commercial hetero-
geneous processors to support page faulting on the shared 
memory from accelerators. However, today’s heterogeneous 
applications are not written to utilize this new capability and 
instead follow an OpenCL-like programming model. In time 
this will change, but for now, we modified applications to uti-
lize this functionality to study its impact. We focus on soft-
page faults, which do not incur accesses to secondary storage. 

A. Analyzing GPU page fault latency and throughput 

We analyze the latency and throughput of GPU page faults 
using a micro-benchmark. We instrumented the IOMMU 
driver to perform the measurements. The micro-benchmark 
generates a constant number (512,000) of soft-page faults 
from the GPU. The soft page faults do not access the storage 
and are generated by the first access to a page in memory. The 
micro-benchmark is designed to generate faults in controlled 
bursts by varying the number of workitems.  When the micro-
benchmark is executed with ‘n’ workitems, it generates ‘n’ 
concurrent page fault requests from the GPU. Thus increasing 
the value of ‘n’ generates larger bursts of concurrent page 
faults. Figure 6 shows the measured latency and throughput of 
servicing these GPU page faults. The total height of each bar 
represents the average latency to service a page fault. The left 

y-axis represents the page fault latency in microseconds. The 
right y-axis represents throughput of servicing GPU page 
faults. For example, with 64 workitems, the average latency to 
service a page fault is around 100 microseconds and 260 page 
faults are serviced per millisecond (throughput). 

We make two key observations: (1) the average latency to 
service a page fault increases from 5 microseconds to 140 mi-
croseconds with increasing number of concurrent page faults 
from the GPU; and (2) the throughput of servicing GPU page 
faults does not scale beyond 32 concurrent page faults. To put 
these numbers in perspective, we executed the experiment on 
the CPU (single-threaded) and found the typical page fault la-
tency on the CPU is around 1.7 microseconds. GPU page-

faults are 3-80 slower. Larger concurrency in servicing page 
faults from the GPU can help amortize this high latency. 

We breakdown the (software) latency to service a GPU 
page fault in Figure 6. We divide the time to handle a GPU 
page fault into three major parts: (1) “initialization”, the la-
tency for the OS driver to read the fault requests from the PPR 
queue and pre-process it; (2) “processing”, the latency to find 
a physical page and update the page table; (3) “schedule”, the 
time between initialization and processing of a page fault re-
quest. We observe that only a small fraction of the time is 
spent in actually processing the work to service a page fault. 
The OS’s scheduling delay introduced by the asynchronous 
handling of GPU page faults is the primary contributor to the 
latency. This suggests that page faults from the GPU can be 
handled more efficiently by modifying the OS driver to handle 
the faults synchronously whenever possible. 

Figure 7 shows the relationship between the CPU’s core 
frequency and the latency to service a GPU page fault. The 
height of each bar in the clusters represents average GPU-page 
fault latency with the CPU running at the given frequency. We 
observe that the latency to service a GPU page fault nearly 
doubles when the CPU core frequency is reduced from 
3.7GHz to 1.7GHz. In general, the graph shows that the GPU 
page fault latency inversely scales linearly with the CPU’s 
core frequency. This suggests that the CPU’s core frequency 

 

Figure 6. Scaling of GPU page faults. 
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Figure 7. Scaling of GPU page fault with CPU frequency. 
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needs to scale up for faster servicing of GPU page faults and 
the CPU power setting may affect GPU page fault behavior. 

B. Physical memory consolidation through GPU page fault 

We measured the reduction in the physical memory foot-
print through the use of on-demand page faults from the GPU 
and measure its performance overhead. 

We modified four applications (BPT, XSBench, CoMD 
and Graph500) to utilize demand faulting of memory from the 
GPU. These modifications include using memory-mapped 
files, changes to the data structures, and memory allocation. 
We did not modify miniFE and miniAMR as it was not prac-
tical to dynamically fault in data from the GPU to achieve 
memory consolidation without major alterations to their code 
bases. 

Figure 8 depicts the reduction in physical memory 
footprint through the use of page faults from the GPU. The 
x-axis of each graph represents a given workload’s running 
time on the GPU while the y-axis represents the physical 
memory allocated to the workload at a given time. Each graph 
has two lines representing two versions of each workload. 
“GPU_PAGEFAULT”, is the modified version of a workload 
that dynamically faults memory from the GPU.  
“NO_GPU_PAGEFAULT”, represents the original version. 
The difference between these two lines signifies opportunity 
to save physical memory. In Figure 8(a), we observe that the 
physical memory footprint of BPT reduces significantly with 
GPU page faults. BPT performs concurrent searches on the 
GPU over a pre-generated B+tree (size ~20GB). It is not 

necessary to access the entire tree for finding the keys. Thus 
the use of page faults from the GPU avoids unnecessarily 
allocating physical memory for the entire tree. In Figure 8(b), 
we observe that XSBench allows savings in physical memory 
footprint during initialization, but memory footprint grows 
quickly as the entire allocated memory is gradually accessed 
over time. Deeper inspection into XSBench reveals that the 
biggest contributor to its memory footprint is the data structure 
for the nuclear energy grid. This energy grid is accessed to 
perform concurrent cross-sectional lookups on the GPU. We 
find that if a large number of lookups are performed (a 
parameter, default 15M) at random cross-sections, then 
eventually the entire energy grid is accessed. Thus the 
physical memory usage with and without GPU page faults 
converges. However, XSBench’s physical memory footprint 
reduces substantially when a smaller number of lookups (e.g., 
500K) are performed. We find that there is very little scope 
for consolidating physical memory for workloads like 
graph500 and CoMD. In graph500, the entire graph data 
structure is traversed and thus all of allocated memory is 
accessed. Similarly, for CoMD the entire allocated memory is 
needed by the GPU. Hence, the potential for reducing memory 
footprint varies across workloads and can be dependent upon 
the input. 

 

Figure 8. Physical memory usage with and without page faults from GPU. 
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Figure 9 shows the runtimes normalized to the runtimes 
with no page faults from the GPU. Each bar also shows a 
breakdown of runtime spent on the CPU and GPU. We 
observe that XSBench and BPT can incur significant 
performance degradations due to page faults from the GPU. 
We note that a larger fraction of the time is spent on the GPU 
if page faulting is used. This is expected as GPU page faults 
hinder concurrency in the GPU. Other workloads show little 
or no performance impact. 

In summary, we find significant scope for research into 
heterogeneous software and hardware to reduce the page fault 
latency and enabling more concurrency in servicing them. 
These research efforts, however, should focus on enabling 
new capabilities in the runtime rather than improving the 
performance of legacy applications. 

VI. EXTENDING TLB SHOOTDOWNS TO GPUS 

We wrote a simple micro-benchmark that generates a large 
number of GPU TLB shootdowns. It generates both single-
entry TLB invalidations and entire TLB flushes. Table 4 pre-
sents measurements and the breakdown of latency of a GPU 
TLB shootdown. The first column depicts the average latency 
of a GPU TLB shootdown. The first row shows the latency of 

invalidating a single entry, and the second row shows the la-
tency of flushing the entire TLB. The average latency of a 
TLB shootdown is around 4.2-4.4 microseconds. This latency 
is comparable to typical times required to perform a TLB 
shootdown across 4 to 8 CPU cores [25]. We note that nearly 
an equal amount of time is spent in invalidating the IOMMU’s 
and the GPU’s TLB entries. We also note that there is no sig-
nificant difference between the latency to invalidate a single 
entry or flushing the entire TLB. 

In the Linux operating system, TLB shootdowns often take 
long time to complete for large systems with many nodes. This 
may potentially be a scaling bottleneck in the future. For ex-
ample, future systems with multi-level memory [1] that mi-
grate pages between different levels of memory will critically 
depend on TLB shootdown performance. 

VII. RELATED WORK 

The advent of big-data workloads, often with poor access 
locality (e.g., graph processing algorithms, massive key value 
stores), have recently led to a surge of research on virtual 
memory for big-memory servers [3]–[8], [10], [13], [18], [19]. 
A number of research proposals have considered hardware 
and software mechanisms to improve the effective capacity of 
TLBs without additional area costs [4], [5], [8], [13], [18], 
[19], [19] with speculation [3], [20], and with approaches that 
better manage large pages [9], [15], [20]. In parallel, the emer-
gence of the unified address space paradigm for APUs (and 
more broadly, heterogeneous systems) has prompted the first 
set of studies on GPU address translation and memory man-
agement units [21], [22]. For example Pichai, Hsu, and 
Bhattacharjee show that intelligent hardware page table walk-
ers are crucial to the performance of throughput-oriented ac-
celerators and are deeply tied to the operation of the wavefront 
scheduler for both round-robin (the default) and advanced dy-
namic wavefront formation strategies designed to improve 
cache locality and mitigate control-flow divergence overheads 
[21]. Similarly, Power, Hill, and Wood show that throughput-
oriented, multithreaded page table walkers are critical for 
GPU performance, especially in conjunction with intelli-
gently-designed translation caches [22]. Beyond these works 
on GPUs, researchers have begun considering address trans-
lation for fixed-function and programmable accelerators [23]. 

Unlike past works on GPU address translation, we are the 
first to characterize shared virtual memory behavior on a real 

Table 4. GPU TLB shootdown analysis. 

 Avg.  
GPU TLB 
shootdown 
latency  
(in nanosecs) 

Breakdown of GPU TLB shootdown 
latency 

(in nanoseconds) 

Ini-
tiali-
za-
tion 

IOMMU 
TLB invali-
dation 

GPU 
TLB in-
valida-
tion 

Finaliza-
tion 

Single-entry 
shootdown 

4234 79 1970 2021 162 

All-entry 
shootdown 

4409 122 2052 2035 299 

 

 

Figure 9. Performance overhead of GPU page faults. 
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Observations and opportunities: 

1. The latency to service a page fault from the GPU can 

be significantly higher than from the CPU. 

2. Enhancements into system software to handle page 

faults synchronously can reduce this latency.  

3. Software-hardware co-design is needed service a large 

number of concurrent faults from the 

GPU/accelerators. 

4. It is imperative to scale CPU performance and re-

sources to scale the GPU page fault servicing.  

5. Future heterogeneous applications can reduce their 

physical memory footprints through the use of on-de-

mand page faults from the GPU, although current ap-

plications may need to be re-written.  
 



 

heterogeneous system with realistic workloads. Our work 
shows the benefits, challenges, and potentially interesting re-
search avenues in this space by collecting results on the first 
generations of hardware and software that actually implement 
CPU-GPU shared address spaces. Our work sheds light on the 
detailed interactions in the address translation microarchitec-
ture beyond the scope of prior works. As such, we believe that 
our study provides a foundation for guiding the research com-
munity on some of the most-pressing problems in the shared 
virtual memory paradigm. 

VIII. SUMMARY: OBSERVATIONS AND OPPORTUNITIES 

We summarize the lessons learned analyzing shared 
virtual memory in one of the first commercially available 
heterogenous processors. We discuss possible research 
opportunities in the space for future-generation heterogeneous 
processors. 

Address translation: TLB misses in GPUs are currently 
an order of magnitue slower than that in CPUs. A GPU 
program’s large memory-level parallelism, along with 
concurrent servicing of GPU TLB misses can potentially help 
to hide this latency. Research on techniques that increases 
TLB miss handling concurrency are crucial, particularly for 
throughput-oriented accelerators like GPUs. We observe that 
divergence in memory accesses impacts address translation 
more than the rest of the memory hierarchy. Although there 
has been a significant body of research in managing 
divergence in the cache hierarchy, there is a dearth of work 
that studies its impact on address translation. We find that 
prefetching translations usually aids performance, but under 
certain circumstances it can degrade performance. Research 
into software-hardware co-design for application-aware 
prefetechers for address transation will be useful. Finally, we 
find that large pages universally help in reducing address 
translation overheads. Hardware designers should build 
enhanced support for large pages and programmers should 
make use them. Furthermore, our preliminary experiments 
with second generation APU suggests that address translation 
is likely to become a bigger contributor to the performance 
overhead as the rest of the memory hierarchy is improved in 
future generation heterogenous processors.  

Page fault: Dynamically allocating physical memory via 
page faults from the GPU could potentially enable significant 
memory consolidation for future applications with large 
footprints. However, we observed that servicing a GPU page 
fault on current systems can take an order of magnitude longer 

(3-82) than that for CPU page faults. Addressing this 
challenge requires changes to both the hardware and software. 
Enhancements to both the system software and hardware to 
service a larger number of concurrent page faults could help 
mitigate the overheads in the page fault process. 

TLB Shootdown: Our workloads encountered only a few 
instances of TLB shootdowns. TLB shootdown latencies for 
current heterogeneous systems are comparable to those in the 
CPU and are hence expensive. However, because TLB 
shootdowns are serialized, they could be a potential 
performance bottleneck in future systems, particularly for 
heterogeneous memory systems with frequent physical page 
migration. This is not an intrinsic limitation of the hardware, 

but architecting the OS to support concurrent shootdowns will 
be required as systems scale upward.  
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