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Abstract

Linear mixed-effects models are an important class of statistical models that are not
only used directly in many fields of applications but also used as iterative steps in
fitting other types of mixed-effects models, such as generalized linear mixed models.
The parameters in these models are typically estimated by maximum likelihood
(ML) or restricted maximum likelihood (REML). In general there is no closed form
solution for these estimates and they must be determined by iterative algorithms
such as EM iterations or general nonlinear optimization. Many of the intermediate
calculations for such iterations have been expressed as generalized least squares
problems. We show that an alternative representation as a penalized least squares
problem has many advantageous computational properties including the ability to
evaluate explicitly a profiled log-likelihood or log-restricted likelihood, the gradient
and Hessian of this profiled objective, and an ECME update to refine this objective.

Key words: REML, gradient, Hessian, EM algorithm, ECME algorithm,
maximum likelihood, profile likelihood, multilevel models

1 Introduction

We will establish some results for the penalized least squares representation
of a general form of a linear mixed-effects model, then show how these results
specialize for particular models. The general form we consider is

y = Xβ + Zb + ε ε ∼ N (0, σ2I), b ∼ N (0, σ2Ω−1), ε ⊥ b (1)

where y is the n-dimensional response vector, X is an n × p model matrix
for the p-dimensional fixed-effects vector β, Z is the n × q model matrix for
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the q-dimensional random-effects vector b that has a Gaussian distribution
with mean 0 and relative precision matrix Ω (i.e., Ω is the precision of b
relative to the precision of ε), and ε is the random noise assumed to have
a spherical Gaussian distribution. The symbol ⊥ indicates independence of
random variables. We assume that X has full column rank and that Ω is
positive definite. (If X is rank deficient or if Ω is singular then the model can
be transformed to an alternative model that fulfills the desired conditions.)

A relative precision factor, ∆, is any q × q matrix that satisfies Ω = ∆T∆.
One possible ∆ is the Cholesky factor of Ω but others can be used. Because
Ω is positive definite, any ∆ will be non-singular. In general ∆ (and hence
Ω) depend on a k-dimensional parameter vector θ. Typically Z, Ω, and ∆
are very large and sparse (mostly zeros) while k, the dimension of θ, is small.

The likelihood for the parameters β, θ, and σ2, given y, in model (1) is

L
(
β, θ, σ2|y

)
=
∫ √

|Ω|
(2πσ2)(n+q)/2

exp

(
‖y −Xβ −Zb‖2 + bTΩb

−2σ2

)
db. (2)

The restricted (or residual) maximum likelihood (REML) estimates of θ and
σ2 optimize a related criterion that can be written

LR(θ, σ2) =
∫

L(β, θ, σ2) dβ. (3)

This integral is not the typical way to derive or to justify REML estimates
but, as we shall see, it provides a convenient form in which to evaluate LR.

In the next section we show that the integrals in (2) and (3) can be ex-
pressed succinctly using the solution to a penalized least squares problem.
In particular, we derive a profiled log-likelihood and a profiled log-restricted
likelihood that depend on θ only. Maximizing the profiled log-likelihood (or
profiled log-restricted-likelihood) is generally a much smaller and more stable
optimization problem than attempting to optimize the log-likelihood for the
full parameter vector. In section 3 we derive new expressions for the gradient
and the Hessian of these profiled log-likelihoods. Using these derivatives, the
profiled log-likelihood can be rapidly optimized, say by Newton steps, once
the neighbourhood of θ̂ has been determined.

Some heuristics provide reasonable starting estimates for θ but these may
not be sufficiently close to θ̂ to ensure stable Newton steps. The expectation-
maximization (EM) algorithm is a robust algorithm that approaches the neigh-
bourhood of θ̂ quickly but tends to converge slowly once it is in the neighbour-
hood. In section 4 we show how the penalized least squares results provide the
update for a related algorithm called “expectation-conditional maximization-
either” (ECME). This allows the starting estimates to be updated by a mod-
erate number of ECME iterations before starting the Newton steps.
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These results are derived for the general model (1). In sections 5 and 6 we
consider several common special cases. Our implementation of some of these
methods is discussed in section 7.

2 A Penalized Least-Squares Problem

For a fixed value of θ we consider the penalized least squares problem defined
by the augmented model matrix Φ(θ) and the augmented response vector ỹ;

min
b,β

∥∥∥∥∥∥∥ỹ −Φ(θ)

b

β


∥∥∥∥∥∥∥
2

where Φ(θ) =

 Z X

∆(θ) 0

 and ỹ =

y
0

 . (4)

One way to solve problem (4) is to form Φe = [Φ, ỹ] and let Re be the
Cholesky decomposition of ΦT

e Φe

ΦT
e Φe =


ZTZ + Ω ZTX ZTy

XTZ XTX XTy

yTZ yTX yTy

 = RT
e Re where Re =


RZZ RZX rZy

0 RXX rXy

0 0 ryy

 .

(5)
The matrices RZZ and RXX are upper triangular of dimension q× q and p×p
respectively. The corresponding vectors, rZy and rXy , are of dimension q and
p, and ryy is a scalar. The conditions that Ω be positive definite and X have
full column rank ensure that Φ has full column rank, and hence that RZZ and
RXX are nonsingular.

Representation (5) is a particular form of the mixed model equations described
in Henderson (1984) [1]. We write the blocks in the opposite order from which
they are typically written because of computational advantages associated
with this order.

Using a =
[
−bT,−βT, 1

]T
we can write the numerator of the exponent in the

integral in (2) as

‖y −Xβ −Zb‖2 + bTΩb = aTΦT
e Φea = aTRT

e Rea = ‖Rea‖2

= ‖rZy −RZXβ −RZZb‖2 + ‖rXy −RXXβ‖2 + r2
yy

(6)
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and a simple change of variable allows us to evaluate

∫ 1

(2πσ2)q/2
exp

(
‖rZy −RZXβ −RZZb‖2

−2σ2

)
db =

1

abs |RZZ |
=

1√
|ZTZ + Ω|

(7)

Combining (2), (6), and (7) and taking the logarithm produces the log-likelihood
`(β, θ, σ2) = log L(β, θ, σ2), which, for convenience, we write in the form of a
deviance

−2`(β, θ, σ2) = log


∣∣∣ZTZ + Ω

∣∣∣
|Ω|

+n log(2πσ2)+
r2
yy + ‖rXy −RXXβ‖2

σ2
(8)

leading to the following results for the maximum likelihood estimates (mle’s):

(1) The conditional mle of the fixed-effects, β̂(θ), satisfies

RXX β̂(θ) = rXy (9)

(2) The conditional mle of the variance, σ̂2(θ), is r2
yy/n.

(3) The profiled log-likelihood, ˜̀(θ), a function of θ only, is given by

−2˜̀(θ) = −2`
(
β̂(θ), θ, σ̂2(θ)

)
= log


∣∣∣ZTZ + Ω

∣∣∣
|Ω|

+ n

[
1 + log

(
2πr2

yy

n

)]
(10)

(4) The conditional expected value of b, which we write as b̂(β, θ), satisfies

RZZ b̂(y, β, θ) = rZy −RZXβ (11)

Typically we evaluate b̂(β̂(θ), θ), which we write as b̂(θ).
(5) The conditional distribution of b is

b|y, β, θ, σ2 ∼ N
(
b̂(β, θ), σ2

(
ZTZ + Ω

)−1
)

(12)

2.1 REML results

As in (7), we can use a simple change of variable to obtain

∫ 1

(2πσ2)p/2
exp

(
‖rXy −RXXβ‖2

−2σ2

)
dβ =

1

abs |RXX |
(13)
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providing the log-restricted-likelihood, `R(θ, σ2) = log LR(θ, σ2), as

−2`R(θ, σ2) = log


∣∣∣ZTZ + Ω

∣∣∣ |RXX |2

|Ω|

+ (n− p) log(2πσ2) +
r2
yy

σ2
. (14)

Noting that
∣∣∣ZTZ + Ω

∣∣∣ |RXX |2 =
∣∣∣ΦTΦ

∣∣∣ we have the following results:

(1) The conditional REML estimate of the variance, σ̂2
R(θ), is r2

yy/(n− p).
(2) The profiled log-restricted-likelihood is given by

−2˜̀
R(θ) = log


∣∣∣ΦTΦ

∣∣∣
|Ω|

+ (n− p)

[
1 + log

(
2πr2

yy

n− p

)]
. (15)

(3) The conditional distribution of b is

b|y, θ, σ2 ∼ N
(
b̂(θ), σ2Vb

)
(16)

where Vb is the upper-left q × q submatrix of
(
ΦTΦ

)−1
,

Vb = R−1
ZZ

(
I + RZXR−1

XXR−T
XXRT

ZX

)
R−T

ZZ (17)

2.2 A preliminary decomposition

Because we wish to evaluate the log-likelihood or log-restricted-likelihood for
many different values of θ, we form a preliminary decomposition of the cross-
products of the model matrices and the response,

ZTZ ZTX ZTy

XTZ XTX XTy

yTZ yTX yTy

 = T TT where T =


TZZ TZX tZy

0 TXX tXy

0 0 tyy

 (18)

so that the evaluation of (5) is equivalent to forming the orthogonal-triangular
decomposition 

∆ 0 0

TZZ TZX tZy

0 TXX tXy

0 0 tyy


= Q



RZZ RZX rZy

0 RXX rXy

0 0 ryy

0 0 0


. (19)

To ensure well-defined estimates for the parameters we should have n ≥ q + p
which means that (18) produces a reduction, sometimes a substantial reduc-
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tion, in the amount of data that must be stored and manipulated for each
evaluation of the log-likelihood.

Furthermore, the matrices ZTZ and TZZ are sparse and we store and manip-
ulate these matrices taking the sparsity into account (see §5 and §6 for specific
examples). We will assume that ZTX, TZX , XTX, and TXX are dense and
are stored accordingly.

Equation (19) shows that t2yy is a lower bound for r2
yy . Similarly, the residual

sum of squares from regressing y on X is an upper bound on r2
yy . Thus the

terms in (10 and 15) involving r2
yy are bounded.

The ratio |ZTZ + Ω|/|Ω| is bounded below by unity (and approaches this
bound as Ω−1 → 0) so the profiled deviance (10) is bounded below by

n
[
1 + log

(
2πt2yy/n

)]
and the profiled restricted deviance (15) is bounded be-

low by (n− p)
[
1 + log

(
2πt2yy/(n− p)

)]
.

As Ω approaches singularity (say the minimum eigenvalue of Ω approaches
zero while the other eigenvalues are bounded above) |ZTZ + Ω|/|Ω| → ∞.
Thus we know that the ML or REML estimates will not occur on the boundary
of the set of positive definite Ω.

It is possible that finite ML or REML estimates of Ω will not exist. The min-
imum profiled deviance may correspond to an infinite precision (unbounded
Ω), which is to say that the ML or REML estimates of σ2Ω−1, the variance-
covariance of b, are singular.

3 Derivatives of the profiled log-likelihood

Expressions (10) and (15) provide extremely efficient ways to determine ML
or REML estimates for a linear mixed-effects model because we can optimize
these expressions as a function of θ only, instead of as a function of the com-

plete parameter vector
(
θT, βT, σ2

)T
. The reduction in the dimension of the

parameter over which we are optimizing helps to improve the performance and
reliability of numerical optimization routines. Another way in which we can
improve performance and reliability in numerical optimization is by providing
analytic derivatives of the objective, which we do using results from Golub
and Pereyra [2].

As in [2] we will use the operator D to indicate the Frechet derivative of an
array or a scalar. For example, DΦ(θ) is an array of dimension n× (q+p)×k,
which we treat as k matrices of size n × (q + p) when writing expressions
involving matrices and arrays. When we need to indicate partial derivatives
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with respect to particular parameters we will use the notation DiΦ(θ) for the
n× (q + p) matrix ∂Φ/∂θi.

Golub and Pereyra [2] provide derivatives of the projection orthogonal to the
column space of Φ, which, because ΦTΦ is nonsingular, we can write P⊥ =

I − Φ
(
ΦTΦ

)−1
ΦT; the pseudo-inverse of Φ, which is Φ+ =

(
ΦTΦ

)−1
ΦT;

and the residual sum of squares, r2
yy(θ) =

∥∥∥P⊥ỹ
∥∥∥2

. These derivatives are

D P⊥ = −P⊥ DΦΦ+ −
(
P⊥ DΦΦ+

)T
, (20)

1
2
∇r2

yy(θ) = −ỹTP⊥ DΦΦ+ỹ, (21)

DΦ+ = −Φ+ DΦΦ+ + Φ+
(
Φ+

)T
DΦTP⊥. (22)

(Equation (22) is derived from equation (4.12) in [2], which has another term.
However, that term is identically zero when Φ has full column rank.)

For A a square, nonsingular matrix we have

∇(log |A(θ)|) = tr
[
D(A)A−1

]
(23)

D
(
A−1

)
= −A−1 D(A)A−1 (24)

where tr denotes the trace of a matrix. Notice that (24) is a special case of
(22).

In Appendix A we show that the gradient and Hessian terms for the penalized
residual sum-of-squares, r2

yy(θ), are

∇r2
yy(θ) = b̂T DΩb̂ = tr

(
DΩb̂b̂T

)
(25)

DjDir
2
yy(θ) = b̂T [Dj(DiΩ)− 2DjΩVbDiΩ] b̂ (26)

providing the gradients

∇(−2˜̀) = tr

DΩ

(ZTZ + Ω)−1 −Ω−1 +
b̂

σ̂

b̂

σ̂

T
 (27)

∇(−2˜̀
R) = tr

DΩ

Vb −Ω−1 +
b̂

σ̂R

b̂

σ̂R

T
 (28)
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and Hessian terms of the form

DjDi(−2˜̀) = tr

Dj(DiΩ)

(ZTZ + Ω)−1 −Ω−1 +
b̂

σ̂

b̂

σ̂

T
 (29)

− tr
[
DjΩ(ZTZ + Ω)−1DiΩ(ZTZ + Ω)−1

]
+ tr

(
DjΩΩ−1DiΩΩ−1

)
− 2

b̂

σ̂

T

DjΩVbDiΩ
b̂

σ̂

− 1

n

 b̂

σ̂

T

DjΩ
b̂

σ̂

 b̂

σ̂

T

DiΩ
b̂

σ̂


DjDi(−2 ˜̀

R) = tr

Dj(DiΩ)

Vb −Ω−1 +
b̂

σ̂R

b̂

σ̂R

T
 (30)

− tr [DjΩVbDiΩVb]

+ tr
(
DjΩΩ−1DiΩΩ−1

)
− 2

b̂

σ̂R

T

DjΩVbDiΩ
b̂

σ̂R

− 1

n− p

 b̂

σ̂R

T

DjΩ
b̂

σ̂R

 b̂

σ̂R

T

DiΩ
b̂

σ̂R



4 An ECME algorithm

The EM algorithm [3] is a general iterative algorithm for computing maximum
likelihood estimates in the presence of missing data. For linear mixed-effects
models we formulate an EM algorithm by considering the random effects b
to be unobserved data. In the terminology of the EM algorithm, we call the
observed data, y, the incomplete data, and y augmented by b, the complete
data.

The EM algorithm has two steps: in the E step we compute Q, the expected
log-likelihood (or deviance) for the complete data, and, in the M step, we
maximize the expected log-likelihood (or minimize the expected deviance)
with respect to the parameters in the model.

Liu and Rubin [4] derived the EM algorithm for linear mixed-effects models
using b as the missing data. In same paper they introduced expectation condi-
tional maximization either (ECME) algorithms, which are an extension of the
EM algorithm. In ECME algorithms the M step is broken down into a num-
ber of conditional maximization steps and in each conditional maximization
step either the original log-likelihood, `, or its conditional expectation, Q, is
maximized. The maximization in each step is done by placing constraints on
the parameters in such a way that the collection of all the maximization steps
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is with respect to the full parameter space.

In describing an EM algorithm we must distinguish between current values of
parameters and updated values. We denote the current values of the parame-
ters by β0, σ2

0 and θ0. These are either starting values or values obtained from
the last E and M steps. The parameter estimates to be obtained after an E
and an M step are β1, σ2

1 and θ1. The log-likelihood for the complete data is

−2`(β, σ2, θ|y, b) = (n + q) log(2πσ2)− log |Ω|+ ‖y −Xβ −Zb‖2 + bTΩb

σ2

(31)

Because we can easily calculate σ̂2(θ) and β̂(θ) we define an update step in
an ECME algorithm to be:

(1) Given θ0, set β1 = β̂(θ0) and σ2
1 = σ̂2(θ0). Then the conditional distri-

bution of b is N
(
b̂(θ), σ2

1

(
ZTZ + Ω

)−1
)
.

(2) Choose θ1 to minimize the conditional expectation of −2`

Q(θ|y, σ2
1, β1, θ0) = Eb|θ0 [−2`(β1, σ

2
1, θ|y, b)]

= Eb|θ0

[
c− log |Ω|+ bTΩb/σ2

1

]
= c− log |Ω|+ b̂TΩb̂

σ2
1

+ tr
[
Ω
(
ZTZ + Ω(θ0)

)−1
]
(32)

Thus θ1 satisfies

∇θQ = tr

[
DΩ

(
b̂(θ0)

σ1

b̂(θ0)
T

σ1

+
(
ZTZ + Ω(θ0)

)−1
−Ω(θ1)

−1

)]
= 0

(33)

A similar derivation shows that, for the REML criterion, θ1 satisfies

∇θQR = tr

[
DΩ

(
b̂(θ0)

σR

b̂(θ0)
T

σR

+ Vb(θ0)−Ω(θ1)
−1

)]
= 0 (34)

From the similarity of (33) to (27) (and of (34) to (28)) we can see that a
stationary point of this ECME algorithm will be a critical value of the profiled
log-likelihood.

5 Computational methods for a single grouping factor

The results in the previous sections provide concise expressions for the pro-
filed log-likelihood (10), the profiled log-restricted-likelihood (15); the ECME
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increments (33 or 34); and the gradient (27 or 28) and Hessian (29 or 30) of
the profiled objective functions. All these expressions depend on being able to
evaluate the initial decomposition (18) and, for several different θ, the decom-
position (19), which can be a formidable computational problem because the
matrices Z and Ω can be very large. However, these matrices generally are
sparse and, by exploiting the sparsity, we can provide computationally feasible
methods for all these results.

The sparsity in Z and Ω occurs when the random effects vector b is divided
into small components associated with one or more factors that group the
observations. In the simplest situation there is one grouping factor, or one set
of experimental units, and the model can be written

yi = Xiβ + Zibi + εi, bi ∼ N (0, σ2Ω−1
1 ), εi ∼ N (0, σ2I), i = 1, . . . ,m,

εi ⊥ εj, bi ⊥ bj, i 6= j; εi ⊥ bj, all i, j
(35)

where yi is the vector of length ni of responses for unit i; Xi is the ni × p
fixed-effects model matrix for unit i; and Zi is the ni × q1 model matrix for
unit i and the random effects bi corresponding to that unit.

Because we only have one grouping factor in this model we say that we have
one “level” of random effects. However, this terminology is not universal. In
particular, this model is called the “two-level” model in the multilevel model-
ing literature (e.g. [5]) because it has two levels of random variation.

To convert model (35) to the form (1) we would set

b =



b1

b2

...

bm1


, y =



y1

y2

...

ym1


, X =



X1

X2

...

Xm1


, Z =



Z1 0 . . . 0

0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zm1


, (36)

and

Ω =



Ω1 0 . . . 0

0 Ω1 . . . 0
...

...
. . .

...

0 0 . . . Ω1


= Im1 ⊗Ω1 (37)

where Im1 is the m1×m1 identity matrix and⊗ is the Kronecker product. That
is, Ω is a block-diagonal matrix whose diagonal is m1 copies of Ω1. Similarly,
a relative precision factor is ∆ = Im1 ⊗∆1 where ∆1 is any q1 × q1 matrix
satisfying ∆T

1 ∆1 = Ω1.
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The calculation of RXX ,

RZZ =



RZZ (1) 0 . . . 0

0 RZZ (2) . . . 0
...

...
. . .

...

0 0 . . . RZZ (m1)


, RZX =



RZX (1)

RZX (2)

...

RZX (m1)


(38)

and rZy =
[
rZy(1), rZy(2), . . . , rZy(m1)

]T
can be performed in blocks, using a

series of QR decompositions based on the corresponding blocks in T

 ∆1

TZZ (i)

 = Qi

RZZ (i)

0

 followed by QT
i

 0 0

TZX (i) tZy(i)

 =

RZX (i) rZy(i)

RXX (i) rXy(i)

 ,

(39)
and 

RXX (1) rXy(1)

...
...

RXX (m1) rXy(m1)

TXX tXy

0 tyy


= Q0


RXX rXy

0 ryy

0 0

 . (40)

Noting that |Ω| = |Ω1|m1 = |∆1|2m1 and that |ZTZ + Ω| =
∏m1

i=1 |RZZ (i)|2,
we can evaluate the profiled log-likelihood (10) or the profiled log-restricted-
likelihood (15).

To evaluate the ECME increments we note that

tr
[
Di(Ω)Ω−1

]
= m1 tr

[
Di(Ω1)Ω

−1
1

]
= m1 tr

[
∆−T

1 Di(Ω1)∆
−1
1

]
tr

[
Di(Ω)

(
b̂(θ0)

σ1

b̂(θ0)
T

σ1

+ (ZTZ + Ω(θ0))
−1

)]
= tr

[
AT

1 Di(Ω)A1

]
tr

[
Di(Ω)

(
b̂(θ0)

σR

b̂(θ0)
T

σR

+ Vb

)]
= tr

[
AT

R1Di(Ω)AR1

]
(41)
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where the matrices A1 and AR1 are obtained from the QR decompositions

U1A1 =



b̂T
1 /σ1

R−T
ZZ (1)

...

b̂T
m1

/σ1

R−T
ZZ (m1)


and UR1AR1 =



b̂T
1 /σR

R−T
ZZ (1)

−R−T
XXRT

ZX (1)R
−T
ZZ (1)

...

b̂T
m1

/σR

R−T
ZZ (m1)

−R−T
XXRT

ZX (m1)R
−T
ZZ (m1)



(42)

The matrix Ω1 must be positive definite and symmetric. If no further structure
is imposed on it then k = q1(q1 + 1)/2 and a suitable value of ∆1(θ1) can
be calculated as ∆1 =

√
m1A

−T
1 for ML estimation and ∆R1 =

√
m1A

−T
R1 for

REML. If further structure is imposed on Ω1(θ), so that k < q1(q1+1)/2, then
the gradient equations, (33) or (34), must be solved for the ECME update.

Evaluation of the gradients (27 or 28) of the profiled objective functions can
be simplified in the same way as the ECME increment is, as can the first term
in the Hessian (29 or 30).

The other terms in the Hessian can be simplified in various ways. Because
DiΩ = Im1 ⊗ DiΩ1 and Ω−1 = Im1 ⊗Ω−1

1

tr
(
DjΩΩ−1DiΩΩ−1

)
= m1 tr

(
DjΩ1Ω

−1
1 DiΩ1Ω

−1
1

)
= m1 tr

(
∆−T

1 DjΩ1∆
−1
1 ∆−T

1 DiΩ1∆
−1
1

) (43)

From the vectors c`i, d`i, and g`i, ` = 1, . . . ,m1; i = 1, . . . , k defined as

c`i = DiΩ1b̂`

d`i = R−T
ZZ (`)c`i

g`i = −R−T
XXRT

ZX (`)d`i

(44)

we can evaluate

(
b̂TDjΩb̂

) (
b̂TDiΩb̂

)
=

(
m1∑
`=1

bT
` c`j

)(
m1∑
`=1

bT
` c`i

)

b̂TDjΩVbDiΩb̂ =
m1∑
`=1

dT
`jd`i +

(
m1∑
`=1

g`j

)T (m1∑
`=1

g`i

) (45)
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The remaining terms in the Hessian expressions are evaluated as

tr
[
DjΩ(ZTZ + Ω)−1DiΩ(ZTZ + Ω)−1

]
=

m1∑
`=1

tr
[
R−T

ZZ (`)DjΩ1R
−1
ZZ (`)R

−T
ZZ (`)DiΩ1R

−1
ZZ (`)

]
(46)

or

tr [DjΩVbDiΩVb] =
m1∑
`=1

tr
[
R−T

ZZ (`)DjΩ1R
−1
ZZ (`)R

−T
ZZ (`)DiΩ1R

−1
ZZ (`)

]
+ 2

m1∑
`=1

tr
[
R−T

ZZ (`)DjΩ1R
−1
ZZ (`)RZX (`)R

−1
XXR−T

XXRT
ZX (`)R

−T
ZZ (`)DiΩ1RZZ (`)

]
+ tr

[(
m1∑
`=1

R−T
XXRT

ZX (`)R
−T
ZZ (`)DjΩ1R

−1
ZZ (`)RZX (`)R

−1
XX

)
(

m1∑
`=1

R−T
XXRT

ZX (`)R
−T
ZZ (`)DiΩ1R

−1
ZZ (`)RZX (`)R

−1
XX

)]
(47)

By working with the components of Ω instead of the whole matrix we save a
considerable amount of storage and computation because q1 is typically very
small (values of one or two are common) while m1 can be very large. We have
worked with cases where m1 is in the millions. In most cases p ≥ q1 but it is
unusual for p to exceed, say, one hundred.

After the pre-decomposition the storage required is approximately m1q1(q1+p)
locations and the number of floating point operations (FLOPs) per iteration
for the function evaluation is on the order of m1q

3
1 for the decompositions and

m1pq
2
1 for the multiplications in (39), followed by m1q1p

2 for (40). Evaluation
of the determinants of RZZ (i), i = 1, . . . ,m1 and RXX is trivial because these
matrices are triangular. The dominant term in the FLOP count is m1q1(q1 +
p)2.

This is also the order of the computation for the ECME update, the gradient
calculation and the Hessian calculation.

We can simplify some of the expressions for the Hessian by noting that, for
arbitrary q1 × q1 matrices U and V ,

tr [DiΩ1UDjΩ1V ] =
∑
k1

∑
k2

∑
k3

∑
k4

d
(i)
k1k2

d
(j)
k3k4

tr
[
ek1e

T
k2

Uek3e
T
k4

V
]

=
∑
k1

∑
k2

∑
k3

∑
k4

d
(i)
k1k2

d
(j)
k3k4

(
eT

k2
Uek3e

T
k4

V ek1

)
=
∑
k1

∑
k2

∑
k3

∑
k4

d
(i)
k1k2

d
(j)
k3k4

uk2k3vk4k1
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where d
(i)
jk is the (j, k)th element of DiΩ1, ek is the k-th column of the identity

matrix of size q1 × q1, and uij and vij are the (i, j)th elements of U and V ,
respectively.

For the one-level model, all the terms involved in the Hessian can be rewritten
using this principle and so the full Hessian can be written as∑

k1k2k3kk

d
(i)
k1k2

d
(j)
k3k4

Hk1k2k3k4

where H is an array of size q1 × q1 × q1 × q1.

6 Models with multiple grouping factors

We will consider models with multiple grouping factors where the random
effects associated with each grouping factor are independent between groups
and are i.i.d within groups. That is, the matrix Ω consists of s blocks of the
form Imj

⊗Ωj, j = 1, . . . , s. We will give details for s = 2, in which case

Ω =

Im1 ⊗Ω1 0

0 Im2 ⊗Ω2

 . (48)

Extensions to more than two grouping factors follow naturally.

The block-diagonal structure in (48) will also be present in the factor, ∆, and
in all the derivatives with respect to components of θ. That is, ∆ consists of s
blocks of the form Imj

⊗∆j, j = 1, . . . , s where ∆j is of size qj×qj. We assume
that each component of θ determines only one block in Ω and we designate the
block associated with component j as b(j) where 1 ≤ b(j) ≤ s, j = 1, . . . , k.
Then DjΩ is zero except for the b(j)th diagonal block which is of the form
Imb(j)

⊗ DjΩb(j). Notice that the second derivative, DjDiΩ, will be zero if
b(i) 6= b(j).

We divide the random effects vector b into s = 2 blocks and subdivide the
jth block into mj components of length qj denoted by bji, j = 1, . . . , s; i =
1, . . . ,mj.

If ZTZ is split into blocks corresponding to the blocks in Ω then the diagonal
blocks in ZTZ are themselves block diagonal but, unlike the situation with a
single grouping factor, ZTZ and TZZ will have non-zero off-diagonal blocks.
These off-diagonal blocks can be sparse or dense according to whether the
grouping factors are nested or crossed. We distinguish three cases: completely
crossed, partially crossed, and strictly nested.
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Completely crossed grouping factors usually occur in designed experiments.
For example, biological assays are often conducted by measuring the optical
density of liquid samples in wells arranged in a grid on a plate. A common
arrangement is 96 wells in a grid of 8 rows by 12 columns. If we assigned one
set of random effects to the rows and another set of random effects to the
columns then each row would occur with each column, resulting in completely
crossed random effects.

An example of nested grouping factors would be a longitudinal study, say
records of annual achievement test scores, of students in several schools. For
the student factor to be strictly nested within the school factor we require
that each student attend only one school during the period of the study. In
most large studies this will not be the case. We expect some students will
attend more than one school but we do not expect every student to attend
every school. In such a case the grouping factors are neither strictly nested nor
completely crossed. We describe this situation as partially crossed grouping
factors.

If we divide Z =
[
Z1 Z2

]
according to the two levels of random effects and

correspondingly divide

TZZ =

TZZ11 TZZ12

0 TZZ22

 and RZZ =

RZZ11 RZZ12

0 RZZ22

 (49)

then the block diagonal structure of ZT
1 Z1 is also present in TZZ11 and we

can store and manipulate it accordingly. Even though ZT
2 Z2 is block diagonal

there can be non-zero off-diagonals induced in TZZ22 from TZZ12 when taking
the Cholesky decomposition. This is called “fill-in” [6].

If we consider the matrix TZZ12 to consist of m1 ×m2 blocks of size q1 × q2

then the (i,j)th such block will necessarily be zero if the ith level of the first
grouping factor does not occur in combination with the jth level of the second
grouping factor.

For strictly nested grouping factors there will be only one non-zero block in
each of the m1 sets of q1 adjacent rows. Furthermore, this pattern guarantees
that there will be no fill-in of TZZ22 and that it can be stored as a block-
diagonal matrix consisting of m2 blocks of size q2 × q2. The matrix RZZ has
the same pattern of sparsity so TZZ and RZZ only require storage of size
(m1q1 +m2q2)(q1 + q2 + p) and computing RZZ is of order (m1q1 +m2q2)(q1 +
q2 + p)2 FLOPs. The same sparsity pattern will be present in R−1

ZZ , which
we can calculate explicitly, allowing for the evaluation of all the formulas for
the ECME update, the gradient, and the Hessian. These results generalize
to an arbitrary number of strictly nested levels of grouping factors (and are
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incorporated this way in our software).

For fully crossed grouping factors TZZ12 and TZZ22 are both dense and would
need to be stored and manipulated as such. Because we can condense the
calculation for the first group of random effects only, we choose the order of the
grouping factors so that m1q1 ≥ m2q2. Once the order of the grouping factors
is established then the calculations involving TZZ12 and TZZ22 are essentially
the same as those involving TZX and TXX except that producing RZZ22 from
TZZ22 also involves ∆2.

The amount of storage required for fully crossed grouping factors is on the
order of (m1q1 + m2q2)(q1 + m2q2 + p) locations and producing RZZ requires
on the order of (m1q1 + m2q2)(q1 + m2q2 + p)2 FLOPs, which, obviously, can
be considerably more than (m1q1 +m2q2)(q1 + q2 + p)2. However, fully crossed
grouping factors result in n ≥ m1m2 and usually come from designed experi-
ments so we do not expect m2q2 to be extremely large.

The most interesting case is partially crossed grouping factors where TZZ12 is
sparse but does not obey that pattern that there is only one non-zero q1 × q2

block in each of the m1 sets of q1 adjacent rows. Having more than one non-
zero block in such a set of rows (say because a student attended more than
one school during the course of the study) does not generate fill-in in TZZ12

but does generate fill-in in TZZ22 and in RZZ22.

If the extent of the crossing is moderate (i.e. an individual student may attend
more than one school during the study but no student attends a large propor-
tion of all the schools in the study, so that most of the q1 × q2 blocks in any
one of the m1 sets of q1 adjacent rows are zero), then it will be advantageous
to use sparse matrix representations of TZZ12 (and RZZ12) and to generate
RZZ22 using methods for the Cholesky decomposition of sparse semi-definite
matrices. This particular calculation has been extensively studied because it
is important in the implementation of interior-point methods in mathematical
programming (Wright (1997, pp. 253–254) [6]).

A critical part of algorithms for the Cholesky decomposition of sparse semi-
definite matrices is choosing an ordering of the columns of Z2 so as to minimize
fill-in in RZZ22. This only needs to be done once and can be based on the
pattern of crossing of the grouping factors.

The amount of storage and computation required to generate RZZ for partially
crossed grouping factors will fall between that for strictly nested grouping
factors and that for fully crossed grouping factors. It is unlikely that RZZ can
be inverted in place when the grouping factors are partially crossed. We expect
that it will be feasible to evaluate the objective function, the ECME update,
and the gradient but that it may not be feasible to evaluate the Hessian.
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7 Implementation

We have implemented the computational methods for evaluating the pro-
filed objective function (either log-likelihood or log-restricted-likelihood), the
ECME increment and the gradient in the lme4 package for R [7] (www.r-
project.org). Some comparisons of the speed and stability of this implementa-
tion versus our previous implementation in the nlme package for R are available
in Debroy (2003) [8].

Future versions of this software will allow for crossed random effects and will
provide the Hessian, at least for the completely crossed and strictly nested
cases.
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A Differentiating the penalized RSS

Using (21) and the relationships

DΦ =

0
I

D∆
[
I 0

]
, Φ+ỹ =

 b̂

β̂

 , and P⊥ỹ =

y −Xβ̂ −Zb̂

−∆b̂


(A.1)

we obtain

∇r2
yy(θ) = 2b̂T∆T D∆b̂ = b̂T DΩb̂ (A.2)
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The (j, i)th element of the Hessian ∇2r2
yy(θ) = DjDir

2
yy is

1
2
DjDir

2
yy = −Dj

(
ỹTP⊥DiΦΦ+ỹ

)
= −ỹT

(
DjP

⊥DiΦΦ+ + P⊥DjDiΦΦ+ + P⊥DiΦDjΦ
+
)
ỹ

= ỹT
[
P⊥DjΦΦ+ +

(
Φ+

)T
DjΦ

TP⊥
]
DiΦΦ+ỹ + b̂T∆TDjDi∆b̂

+ ỹTP⊥DiΦ
[
Φ+DjΦΦ+ −

(
ΦTΦ

)−1
DjΦ

TP⊥
]
ỹ

= ỹT
(
Φ+

)T
DjΦ

TDiΦΦ+ỹ + b̂T∆TDjDi∆b̂

− ỹT
(
Φ+

)T
DjΦ

TΦ
(
ΦTΦ

)−1
ΦTDiΦΦ+ỹ

+ ỹP⊥DjΦ
(
ΦTΦ

)−1
ΦTDiΦΦ+ỹ

+ ỹP⊥DiΦ
(
ΦTΦ

)−1
ΦTDjΦΦ+ỹ

− ỹP⊥DiΦ
(
ΦTΦ

)−1
DjΦ

TP⊥ỹ

(A.3)

Writing

wi = DiΦΦ+ỹ =

 0

Di∆b̂

 , (A.4)

ui =
(
R−1

)T
ΦTDiΦΦ+ỹ =

(
R−1

)T

∆TDi∆b̂

0

 , (A.5)

and

vi = −
(
R−1

)T
DiΦ

TP⊥ỹ =
(
R−1

)T

Di∆
T∆b̂

0

 , (A.6)

where R is the Cholesky decomposition of ΦTΦ = RTR, expression (A.3)
becomes

1
2
DjDir

2
yy(θ) = b̂T∆TDjDi∆b̂ + wT

j wi − (uj + vj)
T (uj + vj) (A.7)

Noting that ui + vi = (R−1)
T

DiΩb̂

0

, we have

DjDir
2
yy(θ) = b̂T [DjDiΩ− DjΩVbDiΩ− DiΩVbDjΩ] b̂. (A.8)
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