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Evaluation Methods

• Ideal method
– Experimental Design: Run side-by-side experiments on a small 

fraction of randomly selected traffic with new method (treatment) 
and status quo (control)

– Limitation

• Often expensive and difficult to test large number of methods

• Problem: How do we evaluate methods offline on logged 
data?
– Goal: To maximize clicks/revenue and not prediction accuracy on 

the entire system. Cost of predictive inaccuracy for different 
instances vary.

• E.g. 100% error on a low CTR article may not matter much 
because it always co-occurs with a high CTR article that is 
predicted accurately



3Deepak Agarwal & Bee-Chung Chen @ ICML’11

Usual Metrics

• Predictive accuracy

– Root Mean Squared Error (RMSE)

– Mean Absolute Error (MAE)

– Area under the Curve, ROC

• Other rank based measures based on retrieval accuracy for top-k

– Recall in test data

• What Fraction of items that user actually liked in the test data were 

among the top-k recommended by the algorithm (fraction of hits, e.g. 

Karypsis, CIKM 2001)

• One flaw in several papers

– Training and test split are not based on time.

• Information leakage

• Even in Netflix, this is the case to some extent

– Time split per user, not per event. For instance, information may leak if 

models are based on user-user similarity.
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Metrics continued..

• Recall per event based on Replay-Match method
– Fraction of clicked events where the top recommended item 

matches the clicked one.

• This is good if logged data collected from a randomized 

serving scheme, with biased data this could be a problem
– We will be inventing algorithms that provide recommendations that 

are similar to the current one

• No reward for novel recommendations
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Details on Replay-Match method (Li, Langford, et al)

• x: feature vector for a visit

• r = [r1,r2,…,rK]: reward vector for the K items in inventory

• h(x): recommendation algorithm to be evaluated

• Goal: Estimate expected reward for h(x)

• s(x): recommendation scheme that generated logged-data

• x1,..,xT: visits in the logged data

• rti: reward for visit t, where i = s(xt) 
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Replay-Match continued

• Estimator

• If  importance weights                                          
and 

– It can be shown estimator is unbiased

• E.g. if s(x) is random serving scheme, importance weights 
are uniform over the item set

• If s(x) is not random, importance weights have to be 
estimated through a model
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Back to Multi-Objective Optimization

Recommender EDITORIAL

content
•Clicks on FP links influence 

downstream supply distribution

AD SERVER

PREMIUM display

(GUARANTEED)

Spot Market (Cheaper)

Downstream    

engagement

(Time spent)
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Serving Content on Front Page: Click Shaping

• What do we want to optimize?

• Current: Maximize clicks (maximize downstream supply from FP)

• But consider the following

– Article 1: CTR=5%, utility per click = 5 

– Article 2: CTR=4.9%, utility per click=10

• By promoting 2, we lose 1 click/100 visits, gain 5 utils

• If we do this for a large number of visits --- lose some clicks but obtain 
significant gains in utility?

– E.g. lose 5% relative CTR, gain 40% in utility (revenue, engagement, etc)
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Why call it Click Shaping?
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•Supply distribution

•Changes

•BEFORE
•AFTER

•SHAPING can happen  with respect to  any downstream metrics (like engagement)
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Multi-Objective Optimization

•A1

•A2

•An

n articles K properties 

•news

•finance

•omg

•… •…

•S1

•S2

•Sm

m user segments

•…

• CTR of user segment i on article j: pij

• Time duration of i on j: dij

•known p ij
, d ij•x ij

: variables
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Multi-Objective Program 

� Scalarization 

Goal Programming 

Simplex constraints on xiJ is always applied

Constraints are linear

Every 10 mins, solve x 

Use this x as the serving scheme in the next 10 mins
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Pareto-optimal solution (more in KDD 2011)

•12



13Deepak Agarwal & Bee-Chung Chen @ ICML’11

Summary

• Modern recommendation systems on the web crucially depend on 
extracting intelligence from massive amounts of data collected on a 
routine basis

• Lots of data and processing power not enough, the number of things 
we need to learn grows with data size

• Extracting grouping structures at coarser resolutions based on 
similarity (correlations) is important

– ML has a big role to play here

• Continuous and adaptive experimentation in a judicious manner crucial 
to maximize performance

– Again, ML has a big role to play

• Multi-objective optimization is often required, the objectives are 
application dependent. 

– ML has to work in close collaboration with  engineering, product & 
business execs



Challenges
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Recall: Some examples

• Simple version
– I have an important module on my page, content inventory is 

obtained from a third party source which is further refined through 
editorial oversight. Can I algorithmically recommend content on this 
module? I want to drive up total CTR on this module

• More advanced
– I got X% lift in CTR. But I have additional information on other

downstream utilities (e.g. dwell time). Can I increase downstream 
utility without losing too many clicks?

• Highly advanced
– There are multiple modules running on my website. How do I take 

a holistic approach and perform a simultaneous optimization?
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For the simple version

• Multi-position optimization
– Explore/exploit, optimal subset selection

• Explore/Exploit strategies for large content pool and high 
dimensional problems
– Some work on hierarchical bandits but more needs to be done

• Constructing user profiles from multiple sources with less 
than full coverage
– Couple of papers at KDD 2011 

• Content understanding

• Metrics to measure user engagement (other than CTR)
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Other problems

• Whole page optimization
– Incorporating correlations

• Incentivizing User generated content

• Incorporating Social information for better recommendation

• Multi-context Learning


