
Learning from Aggregate Views

Bee-Chung Chen*, Lei Chen*, Raghu Ramakrishnan*, David R. Musicant+
* University of Wisconsin, Madison, WI, USA

+ Carleton College, Northfield, MN, USA

Abstract
In this paper, we introduce a new class of data mining

problems called learning from aggregate views. In
contrast to the traditional problem of learning from a
single table of training examples, the new goal is to learn
from multiple aggregate views of the underlying data,
without access to the un-aggregated data. We motivate
this new problem, present a general problem framework,
develop learning methods for RFA (Restriction-Free
Aggregate) views defined using COUNT, SUM, AVG and
STDEV, and offer theoretical and experimental results that
characterize the proposed methods.

1. Introduction
The standard classification problem is to learn a

predictive model, such as a decision tree, from a given
table T of training examples. In many settings, however,
we do not, or sometimes cannot, make table T available
in its entirety to the learning algorithm:
• Limitations of class-label generation: Generating a

class label for each individual training example may
not be feasible. For example, in ATOFMS mass
spectrum labeling [7], “ground-truth” labels are too
expensive to generate for individual spectra, but filters
co-located with the instrument can measure various
compounds of interest over a time window. These
measurements are aggregations of the class label for a
set of training examples.

• Communication and Storage limitations: In sensor
networks, bandwidth is limited and only aggregated
versions of the collected data can be exchanged [24].
In High Energy Physics and network log analysis, the
amount of data collected per second is very large, and
only aggregated data is stored and available for
learning, even though a predictive model at the level
of individual examples is of great potential value (e.g.,
to decide whether to store a future HEP event, or
whether to classify a network packet as an intrusion
attempt).

• Privacy preservation and information hiding: Privacy
policies limit what data can be revealed, and data
about individuals is especially sensitive. A common
approach is to release aggregated views of the data
[1]. Aggregation is also useful when two parties wish
to collaborate while minimizing the sharing of
proprietary data.

Motivated by these scenarios, we introduce the
following new class of problems, called learning from
aggregate views: Given a set C of aggregate views
defined (using SQL’s GROUP BY clause and aggregate
operations) over a table U of training examples, learn a
predictive model for the class label attribute of U, given
values for other attributes of U. Observe that we consider
learning from a given set of views, and want to build a
model for the underlying table U, which is not given.

1.1. Contributions and Future Directions
In this paper, we: (1) introduce learning from

aggregate views, (2) develop four scalable learning
methods for a special case called learning from
projections and counts, (3) introduce a sampling-based
training view transformation to extend our learning
methods to learning from RFA (Restriction-Free
Aggregate) views defined using count, sum, average and
standard deviation, and (4) study our methods
theoretically and describe a series of extensive
experiments showing that these methods of learning from
aggregated examples can usually achieve very high
accuracy for individual-level predictions.

We are not aware of any prior research considering
how to learn models from a set of views defined by SQL
group-by queries. The special case of learning from
projections (i.e., learning a model from multiple views
defined by relational projections) has been considered,
but scalable algorithms (see Section 6) are not known.

Important future directions include: (1) the design of a
set of views to publish, given a set of resource or privacy
constraints and data mining objectives, and (2) methods
for more general aggregate views such as views defined
using selections, in addition to grouping and aggregation.

1.2. Motivating Example
Suppose that a company wants to use Table 1 to

predict a new customer’s beverage preference. However,
its privacy policy disallows the use of individually-
identifiable data for marketing. It is well-known that the
combination of date-of-birth (we use age for brevity),
gender and zip can uniquely identify over 85% of US
individuals. Thus, given the privacy requirement of 2-
anonymity, Table 1 cannot be revealed [30]. So, Table 1
is “rolled up” by suppressing the least significant digit for
Zip and Age; let the result be U. Two aggregate views
(shown in Table 2) are then created using the following

SQL commands, where S1 = {Age, Gender}, S2 = {Age,
Zip}, Z1 = Z2 = Salary, and Y = Beverage:

T1 = SELECT S1, Y, COUNT(*), AVG(Z1) FROM U GROUP BY S1;
T2 = SELECT S2, Y, COUNT(*), AVG(Z2) FROM U GROUP BY S2;

The two aggregate views guarantee 2-anonymity, even
though U does not. In general, when rolling-up the data
table cannot guarantee the desired degree of privacy
preservation, or it obscures too much useful information,
we can complement it by creating multiple views such
that each contains a subset of attributes. Also, even
though Table 1 and U (the “rolled-up” table, not shown
here) are very predictive for beverage preference, each
aggregate view individually is not. The challenge we
consider is how to build a predictive model for individual
customers if we are given these two views but are not
allowed to access the original table (Table 1).

An important complementary problem is to determine
what aggregate views to publish, i.e., how to arrive at T1

and T2. This requires us to verify that publishing these two
views is consistent with our privacy policy (2-anonymity,
in this example), that together these views offer enough
information for the objectives at hand (e.g., predicting
beverage preferences, using the algorithms developed in
this paper). This is an important direction for future work.

2. Learning from Aggregate Views
Assume that all training data (conceptually) comes

from a universal table U (which is also called the original
table and contains all the information we need) with a set
A = X ∪ {Y} of attributes, where X is the set of predictor
attributes and Y is the class label. Let Dom(A) denote the
domain of attribute A. The problem of learning from
general aggregate views is defined as follows:
• Training data: The training data consists of N

training views: T1, …, TN, where Ti is defined as:
SELECT Si, fi(Zi) FROM U
WHERE Ψi GROUP BY Si HAVING Θi

where Si ⊂ A are the group-by attributes; Zi ⊂ A are
the aggregated attributes (Zi – Si ≠ ∅); Ψi and Θi are
selection conditions; fi is an aggregate function.

• Goal: The goal is to learn a classification model h(X)
such that given a new example x with schema X, h(x)
accurately outputs the class label y of x.

Intuitively, we separate U into N (possibly overlapping)
training views having schemas:

[S1, f1(Z1)], [S2, f2(Z2)], …, [SN, fN(ZN)].
Our goal is to learn a classifier that predicts Y based on X,
where each Si ⊂ X∪{Y}. The WHERE-clause in the view
definition allows us to filter out some tuples of U prior to
the aggregation, e.g., to consider only customers of a
given gender. The HAVING-clause allows us to filter out
group-level aggregated information, e.g., only allow

training views to contain those aggregated results with
large enough counts:

SELECT Age, Zip, Beverage, COUNT(*) FROM U
GROUP BY Age, Zip, Beverage HAVING COUNT(*) > 10
We require that the learner: (1) has no ability to

choose what views to have, (2) cannot access the original
table, and (3) and cannot uniquely link tuples across
views. Note that these requirements come from the
application domains, e.g., learning from privacy-
preserved data, and make the proposed problem unique.
Also, observe that views are typically not independent
given the class label (because Si may overlap with Sj), and
exploiting this can lead to better predictions.

2.1. Learning from RFA Views
In this paper, we focus on a subclass of the problem of

learning from aggregate views, in which the training
views are defined without any “restriction” specified by
the WHERE-clause or the HAVING-clause. We call this
subclass learning from RFA (Restriction-Free
Aggregate) views, where each training view Ti is of one
of the following four types of RFA views:
SELECT Si,Y FROM U (Projection View)
SELECT Si,Y,COUNT(*) FROM U GROUP BY Si,Y (Count View)
SELECT Si,AVG(Zi),Y,COUNT(*) FROM U GROUP BY Si,Y
SELECT Si,AVG(Zi),STDEV(Zi),Y,COUNT(*) FROM U GROUP BY Si,Y

where Si ⊂ X, Zi ∈ (X−Si), and (∪i Si) ∪ (∪i {Zi}) = X.
Note that since we always group by Si and Y, each view
Ti can be identified by its schema.

This problem formulation also covers views with SUM
and views with multiple AVG’s (and STDEV’s), because:
(1) SUM(Zi) can be transformed to AVG(Zi) using COUNT(*),
and (2) a view containing n AVG’s can be projected to n
single-AVG (and STDEV) views.

If all the Ti’s are projection views or count views, the
problem is called learning from projections or learning
from counts, respectively. Note that these two types of
views contain exactly the same information about U, and
the two problems are essentially the same. Count views
are losslessly compressed versions of projection views.

Table 1. Individual-level
customer data table

SSN Age Gender Salary Zip Beverage

 Table 2. Two aggregate
 views that replace Table 1

1 25 M $41K 55056 Beer
2 26 M $94K 55057 Beer Age Gender Beverage Cnt avgSal
3 25 F $56K 55056 Beer 2x F Beer 3 $79.0K
4 26 M $67K 55057 Beer 2x M Beer 3 $67.3K
5 37 M $93K 55056 Beer 2x M Wine 2 $81.0K
6 32 M $73K 55057 Beer 3x F Wine 4 $62.8K
7 39 F $80K 55056 Wine 3x M Beer 2 $83.0K
8 31 F $70K 55057 Wine 3x M Wine 2 $38.0K
9 31 F $24K 11234 Wine
10 33 F $77K 11235 Wine Age Zip Beverage Cnt avgSal
11 31 M $23K 11235 Wine 2x 1123x Beer 2 $90.5K
12 37 M $53K 11233 Wine 2x 1123x Wine 2 $81.0K
13 28 F $83K 11234 Beer 2x 5505x Beer 4 $64.5K
14 22 F $98K 11235 Beer 3x 1123x Wine 4 $44.3K
15 26 M $63K 11235 Wine 3x 5505x Beer 2 $83.0K
16 22 M $99K 11233 Wine 3x 5505x Wine 2 $75.0K

Thus, we only discuss learning from projections. In this
case, the training views have the following schemas:

[S1, Y], [S2, Y], …, [SN, Y].
The goal is to predict Y based on ∪i Si.

In this paper, we study four methods for learning from
projections (Sec 3). Two are adaptations of standard
methods (Direct Ensembles and Naïve Bayes), while the
others (OBE and SBE) are novel approaches that we
show to be (theoretically) optimal under different
assumptions. For other RFA views, our approach is to
first transform them into projection views, and then learn
a model from the transformed views (Sec 4).

2.2. Probabilistic Interpretation of RFA Views
Our methods are derived using a probabilistic

interpretation of RFA views. Let X = {X1, …, Xm}, and
p(X,Y) denote the joint probability distribution of all the
attributes; i.e., p(X,Y) = p(X1, ..., Xm, Y), where Xi (or Y) is
interpreted as the random variable representing the
outcome of the i-th (or class label) attribute. Then,
projection (and count) views can be interpreted as
estimates of marginal probabilities; i.e., Ti is an estimate
of p(Si,Y). For example, given a projection view [Age,
Gender, Beverage] with 3 rows [2x, M, Beer], a naïve way
to estimate the probability p(2x, M, Beer) is to divide the
count, 3, by the number of tuples, 16, in Table 1.
Definition 1. (Count-Estimability) The joint probability
of a set of attributes S is count-estimable with respect to
table T if p(S) can be estimated by

SELECT S, COUNT(*)/grand_total FROM T GROUP BY S

where grand_total is the total count of table T.
Usually Si∪{Y} is count-estimable only when |Si| is

small, because otherwise the size of the feature space
would typically be much larger than the size of Ti. Note
that, except for Naïve Bayes, the methods we developed
do not depend on count-estimability. We use classifiers to
estimate probabilities, rather than counts or frequencies.

Next, consider a RFA view Ti that has AVG(Zi) (and
possibly STDEV(Zi)). It provides extra information given by
Zi; i.e., we can estimate the probability density p(Si, Zi, Y)
by assuming that p(Zi | Si, Y) is a normal (or other)
distribution with mean AVG(Zi) (and standard deviation
STDEV(Zi)). By the definition of conditional probability,
we have p(Si, Zi, Y) = p(Zi | Si, Y) ⋅ p(Si,Y).

The goal of learning can thus be described in terms of
probabilities: learn a model that accurately estimates
Score(Y | X) = p(Y | X) from the p(Si, Y)’s and p(Si, Zi, Y)’s.
Definition 2. (Optimality) Let p* be the underlying true
distribution. We say that a classifier is optimal if for any
test example x, the classifier always outputs y* = argmax
y∈Dom(Y) p*(Y=y | X=x). We say that a classifier is strongly
optimal if for any test example x, it outputs the true class-
probability p*(Y=y | X=x).
(argmaxi f(i) denotes the i that maximizes f(i).)

Note that many classifiers can indeed output class-
probabilities, at least heuristically. Methods to convert
classifiers to probability estimators include [28, 34].

3. Methods for Learning from Projections
In this section, we describe four methods for learning

from projections (and counts) and offer theoretical
characterizations. We discuss their applicability to
learning from other RFA views in Section 4 and present
experimental evaluations in Section 5.

3.1. DE: Direct Ensemble
In Direct Ensemble, we first build a base classifier on

each training view Ti using existing machine learning
algorithms, e.g., decision trees. At prediction time, given
a test example, each base classifier predicts the
probability of each class label for this example. Then, the
probabilities are combined using uniform weighting to
determine the class label of the example:

ScoreDE(Y | X) = p(Y | S1)+ ⋅⋅⋅ +p(Y | SN),
where p(Y | Si) denotes the class-probability outputted by
the base classifier trained on Ti. The base classifiers
analyzed in this paper are decision trees [29], bagged [5]
decision trees, random forests [6] and Bayes Net
classifiers [8]. We use the default probability estimation
methods implemented in Weka [33] to output the class-
probabilities for each.

3.2. NB: Naïve Bayes
Naïve Bayes can be naturally applied to learning from

projections (and counts). It is based on a set of very
strong independence assumptions:

∀ Xj, Xk ∈ X, j ≠ k ⇒ (Xj ⊥ Xk | Y),

where (Xj ⊥ Xk | Y) denotes “Xj is independent of Xk given
Y”. This yields the following scoring function:

ScoreNB(Y | X) = p(Y,X) = p(Y)⋅p(X1 | Y) ⋅⋅⋅ p(Xm | Y),
where p(Xi | Y) can be easily estimated from any training
view that contains Xi and Y. Although the underlying
distribution usually violates these strong assumptions,
Naïve Bayes classifiers work surprisingly well in practice
[11, 17]. Moreover, in our setting, we have the following
nice property: a Naïve Bayes model learned from
projection (or count) views is exactly the same as that
learned from the original table.

3.3. OBE: Ordered Bayesian Ensemble
NB and DE both have potential weaknesses:

• Naïve Bayes ignores dependencies between attributes.
• Direct Ensemble may perform badly when some

training views are not predictive, because each base
classifier is given the same weight regardless of
whether or not it is trained on a predictive view.

Motivated by these concerns, we develop two new
Bayesian ensemble methods extending DE. We describe
Ordered Bayesian Ensemble (OBE) next, and Symmetric
Bayesian Ensemble (SBE) in Section 3.4. Note that OBE
relaxes the independence assumptions more than SBE,
but is asymmetric w.r.t. view ordering.

3.3.1. OBE Motivating Example. Consider the
“beverage of choice” example again. Let the training
views be: T1 of schema [Y, A, G, COUNT(*)] and T2 of
schema [Y, A, Z, COUNT(*)], where A, G, Z stand for Age,
Gender, Zip, and Y is the class label Beverage. They
provide information about p(Y, A, G) and p(Y, A, Z). Our
goal is to learn a classifier that predicts Y using A, G and
Z. From the probabilistic viewpoint, this goal is
equivalent to learning the class-probability p(Y | A, G, Z).
From the definition of conditional probability,

p(Y | A, G, Z) = p(Y, A, G, Z) / p(A, G, Z).
If we are given a test example x = [a, g, z], then p(A=a,
G=g, Z=z) is constant for all class labels. Therefore we
only need to consider p(Y, A, G, Z), where

)()|(
),(),|(),|(),(

),(
),,(),|(),(

),| (Assume),|(),,(
),,|(),,(),,,(

ApAYp
ZApZAYpGAYpGAp

AYp
ZAYpGAYpGAp

YAZGAYZpGAYp
GAYZpGAYpZGAYp

⋅
⋅

⋅⋅=

⋅⋅=

⊥⋅=
⋅=

Similarly, given a test example, p(A,G), p(A,Z) and p(A)
are also constants for all class labels. Thus, we can safely
eliminate them from the formula, and obtain

)|(
),|(),|(),,|(

AYp
ZAYpGAYpZGAYScore ⋅= .

To compute the score for a test example x = [a, g, z], two
base classifiers are sufficient: one trained on T1 that
estimates p(Y=y | A=a, G=g), and the other trained on T2
that estimates p(Y=y | A=a, Z=z) and p(Y=y | A=a). To
estimate p(Y=y | A=a), we can just use the classifier
trained on T2 and treat a as a missing value; i.e., p(Y=y |
A=a) is estimated by p(Y=y | A=a, Z=?).

Note that in the above derivation, we made an
independence assumption: (G ⊥ Z | A, Y). We made this
assumption since there is no good way to measure the
dependency between G and Z given A and Y because G
and Z are in different views. Also note that the scoring
function we derive is dependent on the order in which the
training views are considered; i.e. if we consider T2 first,
the scoring function will be

)|(
),|(),|(),,|(

AYp
GAYpZAYpZGAYScore ⋅= .

Although probabilistically the two scoring functions
are identical, operationally they are different because in
this case we use the classifier trained on T1 to estimate
p(Y | A); i.e. p(Y=y | A=a) is estimated by p(Y=y | A=a,
G=?), rather than p(Y=y | A=a, Z=?).

3.3.2. OBE Scoring Function. We now describe the
scoring mechanism for OBE in detail. Suppose that the
training views are ordered as T1, ..., TN, such that the
following “new attribute introduction” property holds:

() φ≠− −= jiji SS 1,...,1U , for i = 2, ..., N.

That means each training view introduces at least one
new attribute. We further define:

()jiji
new
i SSS 1,...,1 −=−= U and new

i
old
i SSS i −= .

In other words, Si
new

 is the set of attributes that are in Si,
but not in any of the previous training views, Sj, for j = 1,
…, i-1. Si

old is the set of attributes that are in Si, and also
in some of the previous training views.

Our goal is to learn a classifier h(X), for X = ∪i Si.
Given the OBE independence assumptions:

),|)((1,...,1 Yold
iijij

new
i SSSS −⊥ −=U , for i = 2, ..., N,

the following scoring function gives a optimal classifier.
For the proof, see Section 3.5.

∏ =
⋅=

Ni old
i

i
OBE Yp

Yp
YpYScore

,...21)|(
)|(

)|()|(
S
S

SX .

Note that each p(Y | Si), for i = 1, ..., N, is estimated by a
base classifier, e.g., a decision tree, which is trained on
view Ti and used to output the class-probabilities. Then,
p(Y | Si

old) can be estimated in two different ways:
• We can use the same classifier that predicts p(Y | Si) to

estimate p(Y | Si
old) by treating the values in Si

new = Si
– Si

old as missing values.
• We can train another classifier to predict p(Y | Si

old) on
the same view Ti based only on Si

old.
In our current implementation, we choose the first

alternative because it makes the training phase of OBE
exactly the same as that of Direct Ensemble.

3.3.3. OBE Algorithm. The two problems left are: (1)
how to choose the orderings and (2) how to handle the
case where the “new attribute introduction” property does
not hold. As noted before, different orderings of training
views may result in different OBE scoring functions. We
just choose a small random subset of possible orderings
of views. At prediction time, we compute the score for
each class label for each ordering in this subset. We then
compute the average score for each class label, and finally
output the class label with the highest average score.
Given an ordering ω of the training views, if the “new
attribute introduction” property does not hold, Scoreω(Y |
X) is computed by simply throwing away views that
violate the “new attribute introduction” property.

Note that although different orderings may result in
different scoring functions, the training process is exactly
the same as that of Direct Ensemble. The difference
between the two is in the prediction process, where OBE
uses a more sophisticated technique for computing the
final score. In fact, OBE evaluates the scoring function
multiple times, once for each ordering.

3.4. SBE: Symmetric Bayesian Ensemble
While Naïve Bayes has overly strong independence

assumptions, the ordering dependency of OBE can also
be undesirable. The Symmetric Bayesian Ensemble (SBE)
relaxes the strong Naïve Bayes independence assumptions
and does not depend on the ordering of the training
views, but its independence assumptions are stronger than
those for OBE.

Let Si
unique = Si – (∪j≠i Sj) be the set of attributes that

appear only in Si, and Si
common = Si – Si

unique be the set of
attributes that appear in Si and also in some other view(s).
Let Xcommon = (∪i=1,...,N Si

common).
Given the following SBE assumptions:

• Si
unique ≠ ∅, for i = 1, ..., N,

• (Si
unique ⊥ (X – Si) | Si

common, Y), for i = 1, ..., N,
• ∀ Xj, Xk ∈ Xcommon, j ≠ k ⇒ (Xj ⊥ Xk | Y),

the following SBE scoring function is optimal.

,
)|(

)|(
)|()()|(

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⎟

⎠
⎞⎜

⎝
⎛⋅= ∏∏ =∈

N

i common
i

i
X kSBE Yp

Yp
YXpYpYScore common

k S
S

X
X

where p(Y) and p(Xk | Y) are estimated by a Naïve Bayes
model, p(Y | Si) is estimated by a classifier trained on Ti,
and p(Y | Si

common) is also estimated by the same classifier
trained on Ti but by treating Si

unique as missing values.
Note that if a training view does not have any unique

attributes, we select several different subsets of training
views such that every view in the subset has a unique
attribute, and then build an SBE classifier for each subset.
On prediction, we combine the scores from these SBE
classifiers by uniform weighting.

3.5 Scalability
The four proposed methods are scalable, given the fact

that many scalable learning algorithms were developed in
the past few years (e.g., for decision trees, scalable
algorithms include BOAT [18], VFDT [12]) and those
scalable algorithms can be directly used to learn the base
classifiers for the ensembles (DE, OBE and SBE). We
also developed a cost-based optimization algorithm to
improve efficiency of Naïve Bayes learning on disk-
resident datasets. For lack of space, we omit the details of
the Naïve Bayes optimization and detailed discussion of
how to use existing scalable learning algorithms to learn
base classifiers.

3.6 Optimality Results
In this section, we show that each of the four methods

of learning from projections (and counts) is optimal, but
under different assumptions, shedding light on their
expected strengths and weaknesses.
Theorem 1. (Hansen, 1990 [20]) Direct Ensemble
asymptotically achieves 100% accuracy if the number of
base classifiers is infinite and each of them makes
independent mistakes.

However, in our case, although we can obtain a large
number of base classifiers by making the base classifier
trained on each view itself an ensemble of many
classifiers, these classifiers are highly correlated.
Theorem 2. If the Naïve Bayes independence
assumptions hold on the underlying true distribution, and
{Y} and {Xi, Y} are count-estimable w.r.t. the training
views, then the Naïve Bayes model is optimal.

This result comes directly from the Naïve Bayes
scoring function. Several other sufficient conditions exist
that guarantee a different version of optimality of Naïve
Bayes without requiring the Naïve Bayes independence
assumption [11]. Furthermore, experiments have shown
that Naïve Bayes is often a better classifier when the
sample size is small, but there are other cases in which
Naïve Bayes can perform badly, especially when the
dependency between predictive attributes is adequately
strong [11].
Theorem 3. If T1, T2, …, TN are ordered such that the
“new attribute introduction” property and OBE
independence assumptions hold on the underlying true
distribution, and the base classifiers used by an OBE
classifier are strongly optimal, then the OBE classifier
using this specific ordering of views is optimal.
Proof: Let p* be the true underlying distribution.

∏

∏

=

=

−=

−=

⋅

⋅
⋅⋅=

⋅⋅=

⋅⋅⋅⋅⋅=

−⊥

⋅⋅⋅⋅=

Ni old
i

old
i

ii

Ni old
i

i

old
N

new
N

oldnew

old
iijij

new
i

jNj
new
N

new

pYp
pYp

Ypp

Yp
Yp

Ypp

YpYpYpp

Y

YpYpYpYp

,...2 **

**

1
*

1
*

,...,2 *

*

1
*

1
*

*
22

*
1

*
1

*

1,...,1

1,...,1
*

12
*

1
**

)()|(
)()|(

)|()(

),(
),(

)|()(

),|(),|()|()(

),|)((Given

),|(),|(),(),(

SS
SS

SS

S
S

SS

SSSSSS

SSSS

SSSSSX

U

U

Given x, y maximizes p*(Y=y | X=x) iff y maximizes
p*(Y=y, X=x). Since p*(Si) and p*(Si

old) are constants given
x, the y that maximizes p*(Y=y | X=x) is the y that
maximizes the following formula.

∏ = =

=
⋅=

Ni old
i

i

yYp
yYp

yYp
,...2 *

*

1
*

])[|(
])[|(

])[|(
Sx
Sx

Sx ,

where x[Si] denotes the projection of x on a set Si of
attributes. Note that when the OBE classifier has accurate
probability estimates, the above formula is exactly the
OBE scoring function using the ordering of T1, T2, …,
TN. Thus, this OBE classifier is optimal. □
Theorem 4. If every training view has at least one unique
attribute, and the SBE independence assumptions hold on
the underlying distribution, and the base classifiers used
by an SBE classifier are strongly optimal, then the SBE
classifier is optimal.

The proof is similar to that of OBE, but uses the SBE
assumptions. We omit it for lack of space.

Although we showed some sufficient conditions for
the optimality of OBE and SBE, there is no easy way in

reality to tell whether the OBE or SBE assumptions hold.
Also, it is hard to guarantee the accuracy of probability
estimation. Thus, we view them as two extensions of
Direct Ensemble based on two different probabilistic
models, rather than optimal classifiers.

Finally, we summarize the four methods by reviewing
them from the following two viewpoints:
• From a probabilistic viewpoint: Except for Direct

Ensemble, the independence assumptions of the
methods can be described by different types of Bayes
Nets [15]. We do not directly apply Bayes Net learning
techniques, however, because (1) the dependency
structure would need to be learned and Bayes Net
structure learning is costly, and (2) when the training
data is relatively sparse in the feature space, Bayes Nets
usually suffer from the lack of sufficient statistics to
estimate the probabilities.

• From an ensemble viewpoint: Direct Ensemble, OBE
and SBE are all ensembles of base classifiers trained on
the views. The difference between them is in how to
combine the scores of these base classifiers. In Direct
Ensemble, the scores are combined naïvely by a direct
summation, whereas in the two Bayesian ensembles the
scores are combined based on different probabilistic
models. Although ensemble techniques have been
widely used in Machine Learning [5, 14], we are not
aware of previous ML research on learning from
multiple aggregated views.

4. Methods for RFA Views
Having developed four methods for learning from

projections and counts, we now discuss how to learn from
the other two types of RFA views. The key idea is to use
a sampling method to transform the other two types of
RFA views into projection or count views.

Suppose training view Ti is of one of these types:
SELECT Si, AVG(Zi), Y, COUNT(*) FROM U GROUP BY Si,Y;

SELECT Si, AVG(Zi), STDEV(Zi), Y, COUNT(*) FROM U GROUP BY Si,Y;

Based on our probabilistic interpretation, Ti provides
information about p(Si, Zi, Y). Note that Zi is a predictor
attribute. Thus, if we can transform Ti into:

SELECT Si
+, Y, FROM U,

where Si
+ = Si ∪{Zi}, then we reduce the problem to

learning from projections (and counts). Sampling is a
simple yet useful transformation method. Suppose Ti
contains STDEV(Zi). For each tuple t=[xi, zi

AVG, zi
STDEV, y, c] in

Ti, we sample zi
1, …, zi

c from p(Zi | Si=xi, Y=y) and
replace t by [xi, zi

1, y], …, [xi, zi
c, y], where p(Zi | Si=xi,

Y=y) has mean zi
AVG and standard deviation zi

STDEV. If we do
not have prior knowledge about p(Zi | Si=xi, Y=y), we
assume that it is a normal distribution. If c is large, we
perform low-resolution sampling to control the size

expansion by allowing only K distinct Zi-values. In this
case, the resulting view is a count view.

If Ti does not contain STDEV(Zi), we can still use the
sampling approach, but here we only know the mean of
p(Zi | Si=xi, Y=y). If we do not have prior knowledge
about p(Zi | Si=xi, Y=y), we assume that it is a spike at zAVG.
In this case, we do not even need sampling. We can just
treat Ti as:

SELECT Si, Zi, Y, COUNT(*) FROM U GROUP BY Si,Y;

Using the sampling-based transformations in this section,
learning from RFA views can be reduced to learning from
projections and counts.

5. Experimental Results
For brevity, we refer to the four methods as DE, NB,

OBE, and SBE. Because methods of learning from
projections are the core of learning from aggregate views,
we focus on evaluating them in this paper.1 We also
demonstrate the effectiveness of learning from other RFA
views using a real-world mail order dataset.

Some highlights of the results are: (1) surprisingly, we
can often use aggregate views, even RFA views, to build
models that are as accurate as those from the original
table, (2) OBE is not sensitive to its independence
assumptions (but SBE is), (3) OBE or DE with random
forests or bagged decision trees can be a good practical
choice, and (4) the sampling approach to handling RFA
views is shown to produce good predictive models with a
reasonable increase in the size of the training views.

5.1. Accuracy on UCI Datasets
We experimented with UCI datasets to (1) identify

good base classifiers, (2) demonstrate effectiveness of
learning from projections and counts, and (3) identify
when learning from projections and counts is difficult.
Seventeen UCI datasets, summarized in the left half of
Table 3, are used to evaluate accuracy. The base
classifiers used are:
• J48: Weka’s [33] C4.5 decision tree [29]

implementation.
• Bag: Bootstrap aggregating (Bag) meta learner [5]

based on 20 unpruned J48 trees (each tree is trained on
70% of data).

• RF: Random Forest [6] with 20 random trees. At each
split, log(M+1) randomly chosen attributes are
considered to find the best split, where M is the
number of attributes.

• K2: A Bayes Net classifier with Bayesian scoring
function and the K2 [8] search algorithm (each node
has at most 5 parents).

Since the above four classifiers support learning from
weighted training examples, if a training view contains

1 We only present a small selection of results; a complete
spreadsheet is available upon request.

count information, we just set the weight of each example
in the view by its count.

Since the UCI datasets are not aggregated, we used
two aggregation schemes to create N (= 2 or 4) training
views from a table with an ordered set A of attributes:
• Chained aggregation: Pick an ordering for the training

views, and ensure that a fixed fraction of the attributes
in each view overlap with the next. Specifically, given
the percentage of attribute overlap, q ∈ [0,1], the
number of group-by attributes for each view is about
nt = (1+q)⋅|A|/N; i.e., a fraction 1−q of attributes only
appear in a single training view. Each consecutive
pair of views (including the first and last) share q⋅|A|/N
common attributes. Compared to skewed aggregation,
chain-style aggregation is a “balanced” scheme.

• Skewed aggregation: Pick a subset E of emphasized
attributes to be in group-by attributes of each training
view. In addition to these E attributes, each training
view contains |A–E| /N unique attributes from A.
Ten-fold cross validation is used to evaluate the

accuracy. Methods DE, OBE, and SBE have associated
base classifiers. We combine J48, Bag, RF, and K2 with
each of them, leading to 12 different techniques (e.g.,
DE+J48), each of which was run on data created via 12

different aggregation schemes (in which q varied from 0
to 85%, and emphasized attributes were randomly
selected) for each of the 17 UCI datasets.

First, our results demonstrate that effective learning
from projections and counts is achievable. The right half
of Table 3 shows the difference (diff) between the best
accuracy on the original table (best over J48, Bag, RF,
K2) and the accuracy of a proposed aggregate learning
method as indicated by the header. These differences are
averaged over all aggregation schemes. The standard
deviation (std) of the difference is also shown in the table.
Since Bag and RF are better, we omit J48 and K2 from
the table. Surprisingly, for most datasets, the best
aggregate learning method is almost as good as the best
model learned from the original table. The datasets on
which the aggregate learning methods do not perform
well are car, tic-tac-toe and yeast. These datasets are the
ones that have very few attributes (6 to 9). That means the
number of predictor attributes in each training views is
around 3; this number is usually too small to learn a good
model.

Second, we compare the four base classifiers. Table 4
shows the accuracy difference between pairs of base
classifiers for each of DE, OBE and SBE. The differences
shown are averaged over all datasets and aggregation

Table 3. Experimental result on UCI datasets
DE OBE SBE Naïve

Bayes Bag RF Bag RF Bag RF Dataset # of
Cases

of
Features

of
Classes

% of
numerical
attributes

% of
symbolic
attributes

% of cases
in largest

class

Best
accuracy on
original data diff std diff std diff std diff std diff std diff std diff std

breast-cancer-w 699 9 2 100 0 66 97.20 0.00 1.71 0.44 0.71 0.40 0.49 -0.01 0.68 0.15 0.48 0.07 0.67 0.01 0.50
car 1728 6 4 0 100 70 94.11 8.65 2.56 18.15 7.59 17.45 7.28 10.89 8.61 4.54 3.09 12.73 8.75 7.58 7.00

credit-rating 690 15 2 40 60 56 86.22 0.00 3.80 0.37 1.17 1.63 2.58 0.00 0.63 1.72 1.97 1.69 4.82 2.10 2.49
german-credit 1000 20 2 35 65 70 75.04 0.00 3.56 1.71 1.70 1.71 1.72 2.52 0.84 3.51 2.01 2.19 0.81 3.48 1.83

kr-vs-kp 3196 36 2 0 100 52 99.44 11.65 1.91 5.91 4.11 7.28 3.31 3.53 2.60 5.27 2.30 5.03 2.69 6.03 2.04
optidigits 3823 64 10 100 0 10 97.57 4.88 1.19 2.22 0.96 0.90 0.98 1.21 0.56 0.31 0.46 5.62 2.32 3.46 1.97
pendigits 6655 16 10 100 0 11 98.86 10.52 1.25 2.22 1.22 1.11 1.26 1.18 0.73 0.52 0.84 4.56 1.95 2.14 1.18

pima-diabetes 768 8 2 100 0 65 75.68 0.42 4.78 2.51 1.95 3.77 1.80 1.28 0.84 4.39 1.57 1.53 0.79 4.10 1.61
satimage 4435 36 6 100 0 24 90.90 9.05 1.85 0.86 0.39 0.08 0.45 0.84 0.55 0.07 0.58 6.58 3.26 4.85 2.20
segment 2310 19 7 100 0 14 97.97 6.82 1.72 1.36 1.42 0.89 1.57 0.82 0.98 0.34 0.88 5.07 6.77 2.19 1.94

spambase 4601 57 2 100 0 61 95.45 5.62 1.23 1.62 0.78 0.93 0.66 0.85 0.31 0.76 0.62 2.74 1.49 1.80 0.71
splice 3190 60 3 0 100 50 95.42 0.00 1.14 1.79 1.10 6.75 3.43 1.49 0.71 1.81 0.70 2.20 0.99 3.67 1.88

tic-tac-toe 958 9 2 0 100 65 94.79 25.15 4.40 16.27 7.71 17.14 6.02 11.28 5.30 13.78 4.79 13.12 3.62 14.95 2.85
vehicle 846 18 4 100 0 26 75.16 14.10 3.47 1.78 1.22 1.07 0.91 1.16 1.31 1.18 0.74 5.69 4.41 3.66 2.76
vowel 990 10 11 100 0 9 94.58 32.27 4.95 7.65 2.90 2.93 4.67 4.21 2.63 1.55 4.52 11.89 7.48 7.30 10.48

waveform 5000 40 3 100 0 33 83.53 3.56 1.44 0.31 0.79 0.13 0.84 0.38 0.88 0.84 0.98 1.52 1.74 1.98 1.38
yeast 1484 8 10 100 0 31 61.14 3.53 3.73 7.52 6.01 9.86 5.30 4.41 2.77 9.24 3.90 5.07 2.32 10.31 5.29

Table 4. T-test result for base classifier comparison
DE OBE SBE Mean(Column - Row) K2 Bag J48 RF K2 Bag J48 RF K2 Bag J48 RF

K2 2.28± 0.25 -0.24±0.25 2.74±0.30 6.71±0.43 1.79±0.35 6.48±0.46 9.10±0.56 4.93±0.50 9.54±0.59
Bag -2.82±0.25 -3.24±0.18 -0.08±0.14 -6.71±0.43 -4.92±0.23 -0.23±0.18 -9.10±0.56 -4.17±0.26 0.45±0.21
J48 0.42±0.25 3.24±0.18 3.16±0.22 -1.79±0.35 4.92±0.23 4.69±0.27 -4.93±0.50 4.17±0.26 4.62±0.33
RF -2.74±0.30 0.08±0.14 -3.16±0.22 -6.48±0.46 0.23±0.18 -4.69±0.27 -9.54±0.59 -0.45±0.21 -4.62±0.33

 Table 5. The effect of aggregation schemes
DE OBE SBE

Bag RF Bag RF Bag RF Agg. Scheme
diff std diff std diff std diff std diff std diff std

chain 0% 3.97 5.08 3.86 4.81 2.65 2.66 2.79 3.60 3.97 5.08 3.86 4.81
chain 20% 3.45 5.05 3.14 4.77 2.11 2.46 2.10 3.66 3.45 5.05 3.14 4.77
chain 50% 2.44 3.12 2.38 3.70 1.38 1.67 1.98 3.01 2.44 3.12 2.38 3.70
chain 85% 1.41 1.64 1.27 2.19 1.04 1.12 0.78 1.51 1.41 1.64 1.27 2.19

2
view

skewed 2.73 3.89 2.76 4.55 2.01 2.70 2.47 4.23 2.73 3.89 2.76 4.55
chain 0% 7.71 8.85 7.89 8.57 5.35 7.22 5.20 5.59 7.71 8.85 7.89 8.57
chain 20% 6.88 8.69 7.17 8.21 4.89 6.90 5.04 5.28 6.88 8.69 7.17 8.21
chain 50% 4.95 7.33 5.22 7.21 3.58 6.27 3.32 4.34 4.95 7.33 5.22 7.21
chain 85% 4.29 6.92 4.30 7.19 2.38 3.90 2.73 4.19 4.29 6.92 4.30 7.19

4
view

skewed 5.37 6.66 5.74 7.12 2.68 3.69 3.20 4.30 5.37 6.66 5.74 7.12

 8-0-0 3-3-3 7-7-7

60

70

80

90

100

60 70 80 90 100
OBE+RF

D
E+

RF

60

70

80

90

100

60 70 80 90 100
OBE+RF

D
E+

RF

60

70

80

90

100

60 70 80 90 100
OBE+RF

D
E+

RF

Figure 1. Scatter charts comparing DE+RF with OBE+RF.

Each points (x, y) in a scatter chart represents the result on a
dataset, where x is the accuracy of OBE+RF and y is the

accuracy of DE+RF on that dataset.

schemes. The error ranges are the 95% confidence
intervals based on the two-sided t-test. A difference is
statistically significant if the confidence interval does not
include 0. The result shows that Bag and RF consistently
out perform K2 and J48; thus, the widely accepted
superiority of ensembles over individual tree classifiers
holds for base learners in learning from counts. We see a
similar trend as we drill down to the per-dataset, per-
aggregation-scheme level.

Finally, we show how aggregation schemes affect the
aggregate learning methods. In Table 5, "diff" is the
difference between the best accuracy on the original data
and the aggregate learning method indicated by the
header. These differences are averaged across all 17
datasets. As we would expect, larger numbers of views
result in increased information loss in the aggregation
process, which leads to lower accuracy. Similarly, if we
fix the number of views, a decrease in the overlap
between views results in increased information loss.

5.2. Accuracy on Synthetic Datasets
To understand the characteristics of the proposed

methods of learning from projections and counts, we
generated synthetic datasets. Datasets generated by Bayes
Nets of different structures were used to test the
sensitivity of these methods to the independence
assumptions. Next, since the results suggested that DE
and OBE perform comparably and are superior to SBE,
we created decision-tree-based datasets to compare DE
and OBE in depth.

5.2.1. Bayes-Net-Based Synthetic Data. To understand
how independence assumptions affect the performances
of the aggregate learning methods, Bayes-Net-based
synthetic datasets are generated as follows. For each
dataset, we first create a Bayes Net with 19 nodes.
Eighteen of them represent the predictive attributes (X1,
…, X18) and the 19th is the class label (Y). The complexity
of each network is controlled by two parameters: the
independence assumption and the maximum number of
parents for each node. “No assumption” means no
independence assumption needs to hold on the network.
“OBE (or SBE) assumption” means the generated
network guarantees the OBE (or SBE) assumptions. Note

that with the same maximum number of parents, the "no
assumption" network is the most complex one. The SBE
assumption results in the least complex network of the
three. When a particular independence assumption is held
fixed, the network grows more complex as the maximum
number of parents grows. When the maximum number of
parents is 1, the resulting network is, in fact, a Naïve
Bayes model.

After the network is created, the CPTs (conditional
probability tables) are randomly assigned. Then, 5000
examples are generated according to the network. For
each set of dataset parameters, we generate 10 datasets
based on 10 different networks with same parameters. For
each dataset, we create 3 training views T1, …, T3, where
T1 contains attributes Y, X1−X8, X13, X14, T2 contains Y,
X5−X12, X15, X16, and T3 contains Y, X1−X4, X9−X12, X17, X18.

The result is shown in Table 6. Since Bag has similar
behavior to RF, we only show the result of RF. The
difference in accuracy between DE+RF and Naïve Bayes
is shown in the first column; the difference between
DE+RF and RF learned from the original table is shown
in the second column. The comparisons of OBE+RF (and
SBE+RF) with Naïve Bayes and RF learned from the
original table are also shown.

First note that, in Table 6, SBE is highly sensitive to
its independence assumption. When the "SBE
assumptions" do not hold, SBE can perform much worse
than learning from the original data. Also note that the
second to last column shows that the performance of SBE
is very similar to that of Naïve Bayes, even when the SBE
assumptions hold. That suggests that the "SBE
independence assumptions" might be as strong as Naïve
Bayes (at least, on these datasets). On the other hand, DE
and OBE are neither sensitive to the independence
assumptions nor the complexity of the network. In fact,
the performances of these two are quite comparable (also
see Table 3), and clearly superior to SBE and NB (mainly
from Table 6).

Interestingly, in these experiments, DE+RF and
OBE+RF slightly outperform the best models learned
from the original data.

Table 6. T-test result: the accuracy of different RF-based method relative to
Naïve Bayes and to the RF learned from the original table

DE + RF OBE + RF SBE + RF Assump-
tion

Max #
parents NB Orig. RF NB Orig. RF NB Orig. RF

1 -0.64±0.14 0.60±0.17 -0.62±0.13 0.62±0.16 -0.22±0.08 1.02±0.16
2 3.09±0.50 0.60±0.31 3.00±0.53 0.50±0.32 0.08±0.26 -2.41±0.55
3 5.94±0.86 1.55±0.28 5.56±0.85 1.17±0.29 0.39±0.28 -4.00±0.81
4 9.82±0.59 2.22±0.32 8.70±0.57 1.11±0.31 0.43±0.37 -7.17±0.58

No

5 11.62±0.73 3.00±0.37 9.51±0.73 0.90±0.37 -1.03±0.36 -9.64±0.67
1 -0.61±0.14 0.66±0.14 -0.61±0.14 0.66±0.13 -0.26±0.09 1.01±0.17
2 3.46±0.58 1.27±0.39 3.50±0.55 1.31±0.36 0.44±0.25 -1.74±0.45
3 7.78±1.03 2.53±0.27 7.46±0.98 2.21±0.28 1.38±0.44 -3.87±0.64
4 10.97±0.77 3.10±0.39 10.13±0.73 2.26±0.41 1.16±0.39 -6.70±0.66

OBE

5 10.79±0.83 3.61±0.41 9.33±0.87 2.16±0.48 0.12±0.39 -7.05±0.67
1 -0.99±0.16 0.58±0.13 -0.87±0.14 0.70±0.14 -0.39±0.09 1.18±0.16
2 -0.81±0.17 0.73±0.18 -0.65±0.15 0.89±0.20 -0.06±0.11 1.48±0.24
3 -0.63±0.11 0.66±0.12 -0.74±0.12 0.55±0.13 -0.05±0.06 1.24±0.15
4 -0.76±0.12 0.82±0.14 -1.05±0.13 0.53±0.15 -0.05±0.06 1.53±0.17

SBE

5 -1.02±0.12 0.89±0.13 -1.32±0.13 0.59±0.15 -0.14±0.05 1.77±0.18

65

70

75

80

85

90

95

100

-1 0 1 2 5 10 20 30 40 50
K (# o f distinct values per grop)

Ac
cu

ra
cy

OBE+RF

DE+RF

OBE+Bag

DE+Bag

OBE+J48

DE+J48

OBE+K2

DE+K2

NB

Figure 2. Accuracy curves of the aggregate
learning methods

5.2.2. Decision-Tree-Based Synthetic Data. To study
when DE outperforms OBE or vice versa, we generate
decision-tree-based synthetic datasets as follows. For
each dataset, we randomly create a decision tree that uses
8 attributes. We then generate training examples from this
tree, and add an additional 12 attributes of random noise.
Each training example thus has 20 attributes. After
obtaining a table of 5000 training examples, we create
three aggregate views. The first view contains a random
subset of attributes, in which p1 are randomly selected
from the 8 useful attributes. The second and third views
contain p2 and p3 of these attributes, chosen by similar
means. We can thus see p1, p2 and p3 as parameters for
our synthesized dataset. By varying these parameters, we
can obtain datasets with different characteristics. For
brevity, we use “p1-p2-p3” to denote the parameter settings
for a dataset. Ten datasets are generated for each of the
following parameter settings: 8-8-8, 7-7-7, 6-6-6, 5-5-5,
4-4-4, 3-3-3, 8-0-0, 8-4-0, 6-6-0 and 8-5-2. In the interest
of space, we do not show detained results, but provide the
following summary and some examples in Figure 1.
• When the predictive power of the training views

varies greatly (e.g., 8-0-0), OBE is better than DE.
• When none of the views is highly predictive (e.g., 3-3-

3), OBE is better than DE.
• If each view is predictive (e.g., 7-7-7), DE is better.

5.3. Performance on a Real-World Dataset
We now show our results on a real-world dataset2 with

one million records. A mail order company, Deep End,
wants to build a predictive model of product profitability
(e.g., several levels from “good” to “bad”) from
information about the product and how it is presented in
catalogs. Deep End wants to out-source the data mining
project, but does not want to reveal the costs of its
products: this is considered as a business secret. Thus,
instead of the original table U, which has item
information (Cost, Category, Division), presentation details
(Year, Media, Drop, Page, PriceCut, Focus, Front, Back, Seq,
Retail, Area, Color) and the class label (Profitability), Deep

2 The dataset is real, but the problem scenario is hypothetical and the
company's name has been changed.

End gives the data mining company three views: View1
(T1), View2 (T2), Veiw3 (T3).

T1 = SELECT S1, Y, COUNT(*) FROM U GROUP BY S1;
T2 = SELECT S2,AVG(Z2),STDEV(Z2),Y,COUNT(*) FROM U GROUP BY S2,Y;
T3 = SELECT S3,AVG(Z3),STDEV(Z3),Y,COUNT(*) FROM U GROUP BY S3,Y;

where Y = Profitability, S1 = {Year, Media, Drop, Page,
PriceCut, Focus, Front, Back, Seq, Retail}, S2 = {Year, Media,
Division, PriceCut, Area, Color}, Z2 = Cost, S3 = {PriceCut,
Focus, Front, Back, Color, Area} and Z3 = Cost. Note that:
(1) the aggregation prevents exact cost information from
being revealed, and (2) the projection ensures that no
sensitive combination of attributes, e.g., Page and Cost
(because knowing the page number can significantly
increase the chance of determining the item that has a
particular cost), is released. To measure accuracy, we
randomly selected 5000 records as test examples and
aggregated 900,000 non-test records to create the three
training views. Then, the sampling method described in
Section 4 was used to transform T2 and T3 into count
views, sampling at most K distinct Zi-values per Si-group.
This process is repeated 5 times.

The average accuracies of OBE, DE and NB at
different K-values are shown in Figure 2, where K=-1
means all information about Zi is removed from the
training views, K=0 means STDEV(Zi) and COUNT(*) are
removed, and K=1 means STDEV(Zi) is removed. It can be
seen that: (1) OBE+RF and DE+RF produce the best
models; (2) the information that the aggregated attribute
Zi provides improves the quality of every method; (3)
increasing K generally improves the accuracy; and (4) the
improvement usually converges around K=20, which
means we can obtain good models without expanding the
training view too much.

Figure 3 shows the accuracy curves of OBE and DE
(the top two solid curves) together with the accuracy
curves of two base classifiers (RF and J48, since others
show the same trend) on different training views (the
lower three solid curves) at different K-values. It can be
seen that: (1) the aggregate learning methods are always
better than base classifiers trained on individual views;
and (2) OBE and DE can significantly improve the
accuracy when the accuracies of base classifiers are not
good (note the left part of each chart).

A caution should be made that we use weighted
training examples to represent the counts, but in Weka
setting the weight of an example to n is actually not
equivalent to duplicate the example to n identical copies.
The dotted curves in Figure 3 are the accuracy curves for
base classifiers (RF and J48) trained on examples that are
generated by simply duplicating training examples K
times for View 2 and View 3. We expect to see horizontal
straight lines (maybe with small random vibration) like
the dotted curves for RF. However, we are surprised that
it is not the case for J48; i.e., simply duplicating training
examples can improve the accuracy of J48 significantly

80

85

90

95

100

-1 0 1 2 5 10 20 30 40 50

OB E+RF DE+RF

60

65

70

75

80

85

90

95

-1 0 1 2 5 10 20 30 40 50

OB E+J48 DE+J48

Figure 3. Accuracy curves of bases classifiers on training views

()
A

cc
ur

ac
y

A
cc

ur
ac

y

K (# of distinct values per group) K (# of distinct values per group)

6 06 57 07 58 08 59 0V iew 1 View 2 View 3

RF J48

on this dataset. More experiments and inspection of Weka
code should be made to understand this behavior.

6. Related Work and Conclusion
Learning from projections has been studied in

computational learning theory, e.g., [21, 9], but this work
assumes that the learner can choose desired projections.
Related work in statistical disclosure control includes
studies [10, 31] on bounding cell entries of contingency
tables using marginals. The contingency table can be
thought of as the original table, and the marginals are the
projections. However, the approach is based on linear
programming, in which the number of linear constraints
can be exponentially large. Estimating joint probabilities
from marginals is a classical problem [2, 3] in Statistics.
The standard solution is iterative proportional fitting
(IPF). Although several efficiency-related improvements
[22, 32] have been proposed, the space requirement is
proportional to the product of the domain sizes. We have
tested IPF on the UCI datasets that meet IPF's space
requirement without requiring discretization, using the
chained aggregation scheme to create the training views
(car with 2 training views, tic-tac-toe and yeast with 3).
The 10-fold cross-validation accuracies are shown below:

DE OBE SBE Dataset IPF Bag RF Bag RF Bag RF
Car 87.39 81.89 89.87 78.24 77.37 77.66 87.39
Tic-tac-toe 74.22 84.45 84.87 87.06 84.04 87.06 83.73
yeast 59.23 52.89 54.51 56.40 57.81 45.96 59.09

Although the experiment is not extensive, the result
suggests that our methods are comparable to IPF in
accuracy. As to scalability, as long as the memory
requirement is met, IPF runs reasonably fast. However,
when we try to apply IPF to datasets with even modest
numbers of attributes, the program runs out of memory.

Another related field is multi-view learning [26] or co-
training [4], in which the learner is iteratively trained
using multiple projections of data. However, the
projections are assumed to contain keys so that tuples in
different projections can be linked together, and given the
class labels, the projections are assumed to be
independent. Multi-relational data mining (e.g., [13])
considers the problem of learning from multiple relations,
but explicit linking between records in different relations
is usually assumed. Work on structure uncertainty in
statistical multi-relational learning (e.g., [19]) and work
(e.g., [25]) on learning SVMs from regions of feature
space is also related.

To summarize, although learning from aggregated
information has rich connections to a wide range of work,
learning classification models from aggregated training
views defined by SQL-style GROUP BY queries has not
been studied, and we believe this is a promising research
direction with many applications.

7. References
[1] N.R. Adam and J.C. Wortmann. Security-Control Methods for
Statistical Databases: A Comparative Study, ACM Computing Surveys, 1989.
[2] W.P. Bergsma and T. Rudas. Marginal Models for Categorical Data,
Annals of Statistics, 2002.
[3] Y. Bishop. Discrete Multivariate Analysis: Theory and Practice, MIT
Press, 1977.
[4] A. Blum and T. Mitchell. Combining labeled and unlabeled data with
co-training, COLT, 1998.
[5] L. Breiman. Bagging Predictors. Machine Learning, 1996.
[6] L. Breiman. Random Forests. Machine Learning, 2001.
[7] L. Chen, Z. Huang and R. Ramakrishnan. Cost-based Labeling of
Groups of Mass Spectra. SIGMOD, 2004.
[8] G.F. Cooper, E.Herskovits. A Bayesian Method for the Induction of
Probabilistic Networks from Data, Machine Learning, 1992.
[9] Eli Dichterman. Learning with Limited Visibility. CDAM Research
Report, LSE-CDAM-98-0, 1998.
[10] A. Dobra and S.E. Fienberg. Bounds for cell entries in contingency
tables induced by fixed marginal totals with applications to disclosure
limitation. Stat. J. of the UNECE, 2001.
[11] P. Domingos and M. Pazzani. On the Optimality of the Simple
Bayesian Classifier under 0-1 Loss, Machine Learning, 1997.
[12] P. Domingos and G. Hulten. Mining Hight-Speed Data Streams.
SIGKDD, 2000.
[13] S. Dzeroski and N. Lavrac. Relational Data Mining, 2001.
[14] Y. Freund and R.E. Schapire. Experiments with a New Boosting
Algorithm. ICML, 1996.
[15] N. Friedman, D. Geiger and M. Goldszmidt. Bayesian network
classifiers, Machine Learning, 1997.
[16] N. Friedman, L. Getoor, D. Koller and A. Pfeffer. Learning
Probabilistic Relational Models, IJCAI, 1999.
[17] A. Garg and D. Roth. Understanding Probabilistic Classifiers,
EMCL 2001.
[18] J. Gehrke, V. Ganti, R. Ramakrishnan and W-Y. Loh. BOAT –
Optimistic Decision Tree Construction, SIGMOD, 1999.
[19] L. Getoor, D. Koller, B. Taskar and N. Friedman. Learning
probabilistic relational models with structure uncertainty. AAAI
Workshop on learning statistical models from relational data, 2000.
[20] L.K. Hansen and P. Salamon. Neural Network Ensembles. IEEE
Trans. on PAMI, 1990.
[21] M. Kearns. Efficient Noise-Tolerant Learning from Statistical
Queries. J. ACM, 1998.
[22] R. Jiroušek and S. Přeučil. On the Effective Implementation of the
Iterative Proportional Fitting Procedure, Computational Statistics &
Data Analysis, 1995.
[23] A.J. Knobbe, A. Siebes and B. Marseille. Involving Aggregate
Functions in Multirelational Search, PKDD, 2002.
[24] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The Design of
an Acquisitional Query Processor for Sensor Networks. SIGMOD, 2003.
[25] G.M. Fung, O.L. Mangasarian and J.W. Shavlik. Knowledge-based
Support Vector Machine Classifiers. NIPS 2002.
[26] I. Muslea, S. Minton and C.A. Knoblock. Active + Semi-supervised
Learning = Robust Multi-View Learning, ICML 2002.
[27] C. Perlich and F. Provost. Aggregation-Based Feature Invention
and Relational Concept Classes, SIGKDD 2003.
[28] F. Provost and P. Domingos. Tree Induction for Probability-based
Ranking, Machine Learning, 2003.
[29] J.R. Quinlan. C4.5: Programs for Machine Learning, Morgan
Kaufmann, 1993.
[30] P. Samarati and L. Sweeney. Generalizing Data to Provide
Anonymity when Disclosing Information, PODS, 1998.
[31] A.B. Slavkovic and S.E. Fienberg. Bounds for Cell Entries in 2-
Way Tables Given Conditional Relation Frequencies. PSD, 2004.
[32] Y.W. Teh and M. Welling. On Improving the Efficiency of the
Iterative Proportional Fitting Procedure, AIStats,2003.
[33] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools with Java Impl., Morgan Kaufmann, 2000.
[34] B. Zadrozny and C. Elkan. Obtaining Probability Estimates from
Decision Trees and Naïve Bayesian Classifiers, ICML, 2001.

