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Abstract 
In this paper, we introduce a new class of data mining 

problems called learning from aggregate views. In 
contrast to the traditional problem of learning from a 
single table of training examples, the new goal is to learn 
from multiple aggregate views of the underlying data, 
without access to the un-aggregated data. We motivate 
this new problem, present a general problem framework, 
develop learning methods for RFA (Restriction-Free 
Aggregate) views defined using COUNT, SUM, AVG and 
STDEV, and offer theoretical and experimental results that 
characterize the proposed methods.  

1. Introduction 
The standard classification problem is to learn a 

predictive model, such as a decision tree, from a given 
table T of training examples. In many settings, however, 
we do not, or sometimes cannot, make table T available 
in its entirety to the learning algorithm: 
• Limitations of class-label generation: Generating a 

class label for each individual training example may 
not be feasible. For example, in ATOFMS mass 
spectrum labeling [7], “ground-truth” labels are too 
expensive to generate for individual spectra, but filters 
co-located with the instrument can measure various 
compounds of interest over a time window. These 
measurements are aggregations of the class label for a 
set of training examples.  

• Communication and Storage limitations: In sensor 
networks, bandwidth is limited and only aggregated 
versions of the collected data can be exchanged [24]. 
In High Energy Physics and network log analysis, the 
amount of data collected per second is very large, and 
only aggregated data is stored and available for 
learning, even though a predictive model at the level 
of individual examples is of great potential value (e.g., 
to decide whether to store a future HEP event, or 
whether to classify a network packet as an intrusion 
attempt). 

• Privacy preservation and information hiding: Privacy 
policies limit what data can be revealed, and data 
about individuals is especially sensitive. A common 
approach is to release aggregated views of the data 
[1]. Aggregation is also useful when two parties wish 
to collaborate while minimizing the sharing of 
proprietary data. 

Motivated by these scenarios, we introduce the 
following new class of problems, called learning from 
aggregate views: Given a set C of aggregate views 
defined (using SQL’s GROUP BY clause and aggregate 
operations) over a table U of training examples, learn a 
predictive model for the class label attribute of U, given 
values for other attributes of U. Observe that we consider 
learning from a given set of views, and want to build a 
model for the underlying table U, which is not given. 

1.1. Contributions and Future Directions 
In this paper, we:  (1) introduce learning from 

aggregate views, (2) develop four scalable learning 
methods for a special case called learning from 
projections and counts, (3) introduce a sampling-based 
training view transformation to extend our learning 
methods to learning from RFA (Restriction-Free 
Aggregate) views defined using count, sum, average and 
standard deviation, and (4) study our methods 
theoretically and describe a series of extensive 
experiments showing that these methods of learning from 
aggregated examples can usually achieve very high 
accuracy for individual-level predictions. 

We are not aware of any prior research considering 
how to learn models from a set of views defined by SQL 
group-by queries. The special case of learning from 
projections (i.e., learning a model from multiple views 
defined by relational projections) has been considered, 
but scalable algorithms (see Section 6) are not known. 

Important future directions include: (1) the design of a 
set of views to publish, given a set of resource or privacy 
constraints and data mining objectives, and (2) methods 
for more general aggregate views such as views defined 
using selections, in addition to grouping and aggregation.   

1.2. Motivating Example 
Suppose that a company wants to use Table 1 to 

predict a new customer’s beverage preference. However, 
its privacy policy disallows the use of individually-
identifiable data for marketing. It is well-known that the 
combination of date-of-birth (we use age for brevity), 
gender and zip can uniquely identify over 85% of US 
individuals. Thus, given the privacy requirement of 2-
anonymity, Table 1 cannot be revealed [30]. So, Table 1 
is “rolled up” by suppressing the least significant digit for 
Zip and Age; let the result be U. Two aggregate views 
(shown in Table 2) are then created using the following 



SQL commands, where S1 = {Age, Gender}, S2 = {Age, 
Zip}, Z1 = Z2 = Salary, and Y = Beverage: 

T1 = SELECT S1, Y, COUNT(*), AVG(Z1) FROM U GROUP BY S1; 
T2 = SELECT S2, Y, COUNT(*), AVG(Z2) FROM U GROUP BY S2; 

The two aggregate views guarantee 2-anonymity, even 
though U does not. In general, when rolling-up the data 
table cannot guarantee the desired degree of privacy 
preservation, or it obscures too much useful information, 
we can complement it by creating multiple views such 
that each contains a subset of attributes. Also, even 
though Table 1 and U (the “rolled-up” table, not shown 
here) are very predictive for beverage preference, each 
aggregate view individually is not. The challenge we 
consider is how to build a predictive model for individual 
customers if we are given these two views but are not 
allowed to access the original table (Table 1).  

An important complementary problem is to determine 
what aggregate views to publish, i.e., how to arrive at T1 

and T2. This requires us to verify that publishing these two 
views is consistent with our privacy policy (2-anonymity, 
in this example), that together these views offer enough 
information for the objectives at hand (e.g., predicting 
beverage preferences, using the algorithms developed in 
this paper). This is an important direction for future work. 

2. Learning from Aggregate Views 
Assume that all training data (conceptually) comes 

from a universal table U (which is also called the original 
table and contains all the information we need) with a set 
A = X ∪ {Y} of attributes, where X is the set of predictor 
attributes and Y is the class label. Let Dom(A) denote the 
domain of attribute A. The problem of learning from 
general aggregate views is defined as follows: 
• Training data: The training data consists of N 

training views: T1, …, TN, where Ti is defined as: 
SELECT Si, fi(Zi)  FROM U  
WHERE Ψi GROUP BY Si  HAVING Θi  

where Si ⊂ A are the group-by attributes; Zi ⊂ A are 
the aggregated attributes (Zi – Si  ≠ ∅); Ψi and Θi are 
selection conditions; fi is an aggregate function. 

• Goal: The goal is to learn a classification model h(X) 
such that given a new example x with schema X, h(x) 
accurately outputs the class label y of x. 

Intuitively, we separate U into N (possibly overlapping) 
training views having schemas: 

[S1, f1(Z1)], [S2, f2(Z2)], …, [SN, fN(ZN)]. 
Our goal is to learn a classifier that predicts Y based on X, 
where each Si ⊂ X∪{Y}. The WHERE-clause in the view 
definition allows us to filter out some tuples of U prior to 
the aggregation, e.g., to consider only customers of a 
given gender. The HAVING-clause allows us to filter out 
group-level aggregated information, e.g., only allow 

training views to contain those aggregated results with 
large enough counts: 

SELECT Age, Zip, Beverage, COUNT(*) FROM U 
GROUP BY Age, Zip, Beverage HAVING COUNT(*) > 10  
We require that the learner: (1) has no ability to 

choose what views to have, (2) cannot access the original 
table, and (3) and cannot uniquely link tuples across 
views.  Note that these requirements come from the 
application domains, e.g., learning from privacy-
preserved data, and make the proposed problem unique. 
Also, observe that views are typically not independent 
given the class label (because Si may overlap with Sj), and 
exploiting this can lead to better predictions. 

2.1. Learning from RFA Views 
In this paper, we focus on a subclass of the problem of 

learning from aggregate views, in which the training 
views are defined without any “restriction” specified by 
the WHERE-clause or the HAVING-clause. We call this 
subclass learning from RFA (Restriction-Free 
Aggregate) views, where each training view Ti is of one 
of the following four types of RFA views: 
SELECT Si,Y  FROM U                                          (Projection View) 
SELECT Si,Y,COUNT(*) FROM U GROUP BY Si,Y      (Count View) 
SELECT Si,AVG(Zi),Y,COUNT(*) FROM U GROUP BY Si,Y 
SELECT Si,AVG(Zi),STDEV(Zi),Y,COUNT(*) FROM U GROUP BY Si,Y 

where Si ⊂ X, Zi ∈ (X−Si), and (∪i Si) ∪ (∪i {Zi}) = X. 
Note that since we always group by Si and Y, each view 
Ti can be identified by its schema. 

This problem formulation also covers views with SUM 
and views with multiple AVG’s (and STDEV’s), because: 
(1) SUM(Zi) can be transformed to AVG(Zi) using COUNT(*), 
and (2) a view containing n AVG’s can be projected to n 
single-AVG (and STDEV) views. 

If all the Ti’s are projection views or count views, the 
problem is called learning from projections or learning 
from counts, respectively. Note that these two types of 
views contain exactly the same information about U, and 
the two problems are essentially the same. Count views 
are losslessly compressed versions of projection views. 

Table 1. Individual-level 
customer data table 

SSN Age Gender Salary Zip Beverage

               Table 2.  Two aggregate 
              views that replace Table 1

1 25 M $41K 55056 Beer   
2 26 M $94K 55057 Beer  Age Gender Beverage Cnt avgSal
3 25 F $56K 55056 Beer  2x F Beer 3 $79.0K
4 26 M $67K 55057 Beer  2x M Beer 3 $67.3K
5 37 M $93K 55056 Beer  2x M Wine 2 $81.0K
6 32 M $73K 55057 Beer  3x F Wine 4 $62.8K
7 39 F $80K 55056 Wine  3x M Beer 2 $83.0K
8 31 F $70K 55057 Wine  3x M Wine 2 $38.0K
9 31 F $24K 11234 Wine        
10 33 F $77K 11235 Wine  Age Zip Beverage Cnt avgSal
11 31 M $23K 11235 Wine  2x 1123x Beer 2 $90.5K
12 37 M $53K 11233 Wine  2x 1123x Wine 2 $81.0K
13 28 F $83K 11234 Beer  2x 5505x Beer 4 $64.5K
14 22 F $98K 11235 Beer  3x 1123x Wine 4 $44.3K
15 26 M $63K 11235 Wine  3x 5505x Beer 2 $83.0K
16 22 M $99K 11233 Wine  3x 5505x Wine 2 $75.0K



Thus, we only discuss learning from projections. In this 
case, the training views have the following schemas: 

[S1, Y], [S2, Y], …, [SN, Y]. 
The goal is to predict Y based on ∪i Si. 

In this paper, we study four methods for learning from 
projections (Sec 3). Two are adaptations of standard 
methods (Direct Ensembles and Naïve Bayes), while the 
others (OBE and SBE) are novel approaches that we 
show to be (theoretically) optimal under different 
assumptions. For other RFA views, our approach is to 
first transform them into projection views, and then learn 
a model from the transformed views (Sec 4). 

2.2. Probabilistic Interpretation of RFA Views 
Our methods are derived using a probabilistic 

interpretation of RFA views. Let X = {X1, …, Xm}, and 
p(X,Y) denote the joint probability distribution of all the 
attributes; i.e., p(X,Y) = p(X1, ..., Xm, Y), where Xi (or Y) is 
interpreted as the random variable representing the 
outcome of the i-th (or class label) attribute. Then, 
projection (and count) views can be interpreted as 
estimates of marginal probabilities; i.e., Ti is an estimate 
of p(Si,Y). For example, given a projection view [Age, 
Gender, Beverage] with 3 rows [2x, M, Beer], a naïve way 
to estimate the probability p(2x, M, Beer) is to divide the 
count, 3, by the number of tuples, 16, in Table 1. 
Definition 1. (Count-Estimability) The joint probability 
of a set of attributes S is count-estimable with respect to 
table T if p(S) can be estimated by 

SELECT S, COUNT(*)/grand_total FROM T  GROUP BY S 

where grand_total is the total count of table T. 
Usually Si∪{Y} is count-estimable only when |Si| is 

small, because otherwise the size of the feature space 
would typically be much larger than the size of Ti. Note 
that, except for Naïve Bayes, the methods we developed 
do not depend on count-estimability. We use classifiers to 
estimate probabilities, rather than counts or frequencies. 

Next, consider a RFA view Ti that has AVG(Zi) (and 
possibly STDEV(Zi)). It provides extra information given by 
Zi; i.e., we can estimate the probability density p(Si, Zi, Y) 
by assuming that p(Zi | Si, Y) is a normal (or other) 
distribution with mean AVG(Zi) (and standard deviation 
STDEV(Zi)). By the definition of conditional probability, 
we have p(Si, Zi, Y) = p(Zi | Si, Y) ⋅ p(Si,Y). 

The goal of learning can thus be described in terms of 
probabilities: learn a model that accurately estimates 
Score(Y | X) = p(Y | X) from the p(Si, Y)’s and p(Si, Zi, Y)’s. 
Definition 2. (Optimality) Let p* be the underlying true 
distribution. We say that a classifier is optimal if for any 
test example x, the classifier always outputs y* = argmax 
y∈Dom(Y) p*(Y=y | X=x). We say that a classifier is strongly 
optimal if for any test example x, it outputs the true class-
probability p*(Y=y | X=x).  
(argmaxi  f(i) denotes the i that maximizes f(i).) 

Note that many classifiers can indeed output class-
probabilities, at least heuristically. Methods to convert 
classifiers to probability estimators include [28, 34]. 

3. Methods for Learning from Projections 
In this section, we describe four methods for learning 

from projections (and counts) and offer theoretical 
characterizations. We discuss their applicability to 
learning from other RFA views in Section 4 and present 
experimental evaluations in Section 5. 

3.1. DE: Direct Ensemble 
In Direct Ensemble, we first build a base classifier on 

each training view Ti using existing machine learning 
algorithms, e.g., decision trees. At prediction time, given 
a test example, each base classifier predicts the 
probability of each class label for this example. Then, the 
probabilities are combined using uniform weighting to 
determine the class label of the example: 

ScoreDE(Y | X) = p(Y | S1)+ ⋅⋅⋅ +p(Y | SN), 
where p(Y | Si) denotes the class-probability outputted by 
the base classifier trained on Ti. The base classifiers 
analyzed in this paper are decision trees [29], bagged [5] 
decision trees, random forests [6] and Bayes Net 
classifiers [8]. We use the default probability estimation 
methods implemented in Weka [33] to output the class-
probabilities for each. 

3.2. NB: Naïve Bayes 
Naïve Bayes can be naturally applied to learning from 

projections (and counts). It is based on a set of very 
strong independence assumptions: 

∀ Xj, Xk ∈ X, j ≠ k ⇒ (Xj ⊥ Xk | Y), 

where (Xj ⊥ Xk | Y) denotes “Xj is independent of Xk given 
Y”. This yields the following scoring function: 

ScoreNB(Y | X) = p(Y,X) = p(Y)⋅p(X1 | Y) ⋅⋅⋅ p(Xm | Y), 
where p(Xi | Y) can be easily estimated from any training 
view that contains Xi and Y. Although the underlying 
distribution usually violates these strong assumptions, 
Naïve Bayes classifiers work surprisingly well in practice 
[11, 17]. Moreover, in our setting, we have the following 
nice property: a Naïve Bayes model learned from 
projection (or count) views is exactly the same as that 
learned from the original table. 

3.3. OBE: Ordered Bayesian Ensemble 
NB and DE both have potential weaknesses: 

• Naïve Bayes ignores dependencies between attributes. 
• Direct Ensemble may perform badly when some 

training views are not predictive, because each base 
classifier is given the same weight regardless of 
whether or not it is trained on a predictive view. 



Motivated by these concerns, we develop two new 
Bayesian ensemble methods extending DE. We describe 
Ordered Bayesian Ensemble (OBE) next, and Symmetric 
Bayesian Ensemble (SBE) in Section 3.4. Note that OBE 
relaxes the independence assumptions more than SBE, 
but is asymmetric w.r.t. view ordering. 

3.3.1. OBE Motivating Example. Consider the 
“beverage of choice” example again. Let the training 
views be: T1 of schema [Y, A, G, COUNT(*)] and T2 of 
schema [Y, A, Z, COUNT(*)], where A, G, Z stand for Age, 
Gender, Zip, and Y is the class label Beverage. They 
provide information about p(Y, A, G) and p(Y, A, Z). Our 
goal is to learn a classifier that predicts Y using A, G and 
Z. From the probabilistic viewpoint, this goal is 
equivalent to learning the class-probability p(Y | A, G, Z). 
From the definition of conditional probability,  

p(Y | A, G, Z) = p(Y, A, G, Z) / p(A, G, Z). 
If we are given a test example x = [a, g, z], then p(A=a, 
G=g, Z=z) is constant for all class labels. Therefore we 
only need to consider p(Y, A, G, Z), where 
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Similarly, given a test example, p(A,G), p(A,Z) and p(A) 
are also constants for all class labels. Thus, we can safely 
eliminate them from the formula, and obtain 

)|(
),|(),|( ),,|(

AYp
ZAYpGAYpZGAYScore ⋅= . 

To compute the score for a test example x = [a, g, z], two 
base classifiers are sufficient: one trained on T1 that 
estimates p(Y=y | A=a, G=g), and the other trained on T2 
that estimates p(Y=y | A=a, Z=z) and p(Y=y | A=a). To 
estimate p(Y=y | A=a), we can just use the classifier 
trained on T2 and treat a as a missing value; i.e., p(Y=y | 
A=a) is estimated by p(Y=y | A=a, Z=?). 

Note that in the above derivation, we made an 
independence assumption: (G ⊥ Z | A, Y). We made this 
assumption since there is no good way to measure the 
dependency between G and Z given A and Y because G 
and Z are in different views. Also note that the scoring 
function we derive is dependent on the order in which the 
training views are considered; i.e. if we consider T2 first, 
the scoring function will be 
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Although probabilistically the two scoring functions 
are identical, operationally they are different because in 
this case we use the classifier trained on T1 to estimate 
p(Y | A); i.e. p(Y=y | A=a) is estimated by p(Y=y | A=a, 
G=?), rather than p(Y=y | A=a, Z=?). 

3.3.2. OBE Scoring Function. We now describe the 
scoring mechanism for OBE in detail. Suppose that the 
training views are ordered as T1, ..., TN, such that the 
following “new attribute introduction” property holds: 

( ) φ≠− −= jiji SS 1,...,1U , for i = 2, ..., N. 

That means each training view introduces at least one 
new attribute. We further define: 

( )jiji
new
i SSS 1,...,1 −=−= U  and new

i
old
i SSS i −= . 

In other words, Si
new

 is the set of attributes that are in Si, 
but not in any of the previous training views, Sj, for j = 1, 
…, i-1. Si

old is the set of attributes that are in Si, and also 
in some of the previous training views. 

Our goal is to learn a classifier h(X), for X = ∪i Si. 
Given the OBE independence assumptions: 

),|)(  ( 1,...,1 Yold
iijij

new
i SSSS −⊥ −=U , for i = 2, ..., N, 

the following scoring function gives a optimal classifier. 
For the proof, see Section 3.5. 
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Note that each p(Y | Si), for i = 1, ..., N, is estimated by a 
base classifier, e.g., a decision tree, which is trained on 
view Ti and used to output the class-probabilities. Then, 
p(Y | Si

old) can be estimated in two different ways: 
• We can use the same classifier that predicts p(Y | Si) to 

estimate p(Y | Si
old) by treating the values in Si

new = Si 
– Si

old as missing values. 
• We can train another classifier to predict p(Y | Si

old) on 
the same view Ti based only on Si

old. 
In our current implementation, we choose the first 

alternative because it makes the training phase of OBE 
exactly the same as that of Direct Ensemble. 

3.3.3. OBE Algorithm. The two problems left are: (1) 
how to choose the orderings and (2) how to handle the 
case where the “new attribute introduction” property does 
not hold. As noted before, different orderings of training 
views may result in different OBE scoring functions. We 
just choose a small random subset of possible orderings 
of views. At prediction time, we compute the score for 
each class label for each ordering in this subset. We then 
compute the average score for each class label, and finally 
output the class label with the highest average score. 
Given an ordering ω of the training views, if the “new 
attribute introduction” property does not hold, Scoreω(Y | 
X) is computed by simply throwing away views that 
violate the “new attribute introduction” property. 

Note that although different orderings may result in 
different scoring functions, the training process is exactly 
the same as that of Direct Ensemble. The difference 
between the two is in the prediction process, where OBE 
uses a more sophisticated technique for computing the 
final score. In fact, OBE evaluates the scoring function 
multiple times, once for each ordering. 



3.4. SBE: Symmetric Bayesian Ensemble 
While Naïve Bayes has overly strong independence 

assumptions, the ordering dependency of OBE can also 
be undesirable. The Symmetric Bayesian Ensemble (SBE) 
relaxes the strong Naïve Bayes independence assumptions 
and does not depend on the ordering of the training 
views, but its independence assumptions are stronger than 
those for OBE. 

Let Si
unique = Si – (∪j≠i Sj) be the set of attributes that 

appear only in Si, and Si
common = Si – Si

unique be the set of 
attributes that appear in Si and also in some other view(s). 
Let Xcommon = (∪i=1,...,N Si

common). 
Given the following SBE assumptions: 

• Si
unique ≠ ∅, for i = 1, ..., N, 

• (Si
unique ⊥ (X – Si) | Si

common, Y), for i = 1, ..., N, 
• ∀ Xj, Xk ∈ Xcommon, j ≠ k ⇒ (Xj ⊥ Xk | Y), 

the following SBE scoring function is optimal. 
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where p(Y) and p(Xk | Y) are estimated by a Naïve Bayes 
model, p(Y | Si) is estimated by a classifier trained on Ti, 
and p(Y | Si

common) is also estimated by the same classifier 
trained on Ti but by treating Si

unique as missing values. 
Note that if a training view does not have any unique 

attributes, we select several different subsets of training 
views such that every view in the subset has a unique 
attribute, and then build an SBE classifier for each subset. 
On prediction, we combine the scores from these SBE 
classifiers by uniform weighting. 

3.5 Scalability 
The four proposed methods are scalable, given the fact 

that many scalable learning algorithms were developed in 
the past few years (e.g., for decision trees, scalable 
algorithms include BOAT [18], VFDT [12]) and those 
scalable algorithms can be directly used to learn the base 
classifiers for the ensembles (DE, OBE and SBE). We 
also developed a cost-based optimization algorithm to 
improve efficiency of Naïve Bayes learning on disk-
resident datasets. For lack of space, we omit the details of 
the Naïve Bayes optimization and detailed discussion of 
how to use existing scalable learning algorithms to learn 
base classifiers. 

3.6 Optimality Results 
In this section, we show that each of the four methods 

of learning from projections (and counts) is optimal, but 
under different assumptions, shedding light on their 
expected strengths and weaknesses. 
Theorem 1. (Hansen, 1990  [20]) Direct Ensemble 
asymptotically achieves 100% accuracy if the number of 
base classifiers is infinite and each of them makes 
independent mistakes. 

However, in our case, although we can obtain a large 
number of base classifiers by making the base classifier 
trained on each view itself an ensemble of many 
classifiers, these classifiers are highly correlated. 
Theorem 2. If the Naïve Bayes independence 
assumptions hold on the underlying true distribution, and 
{Y} and {Xi, Y} are count-estimable w.r.t. the training 
views, then the Naïve Bayes model is optimal. 

This result comes directly from the Naïve Bayes 
scoring function. Several other sufficient conditions exist 
that guarantee a different version of optimality of Naïve 
Bayes without requiring the Naïve Bayes independence 
assumption [11]. Furthermore, experiments have shown 
that Naïve Bayes is often a better classifier when the 
sample size is small, but there are other cases in which 
Naïve Bayes can perform badly, especially when the 
dependency between predictive attributes is adequately 
strong [11]. 
Theorem 3. If T1, T2, …, TN are ordered such that the 
“new attribute introduction” property and OBE 
independence assumptions hold on the underlying true 
distribution, and the base classifiers used by an OBE 
classifier are strongly optimal, then the OBE classifier 
using this specific ordering of views is optimal. 
Proof: Let p* be the true underlying distribution. 
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Given x, y maximizes p*(Y=y | X=x) iff y maximizes 
p*(Y=y, X=x). Since p*(Si) and p*(Si

old) are constants given 
x, the y that maximizes p*(Y=y | X=x) is the y that 
maximizes the following formula. 
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where x[Si] denotes the projection of x on a set Si of 
attributes. Note that when the OBE classifier has accurate 
probability estimates, the above formula is exactly the 
OBE scoring function using the ordering of T1, T2, …, 
TN. Thus, this OBE classifier is optimal.                         □ 
Theorem 4. If every training view has at least one unique 
attribute, and the SBE independence assumptions hold on 
the underlying distribution, and the base classifiers used 
by an SBE classifier are strongly optimal, then the SBE 
classifier is optimal.  

The proof is similar to that of OBE, but uses the SBE 
assumptions. We omit it for lack of space. 

Although we showed some sufficient conditions for 
the optimality of OBE and SBE, there is no easy way in 



reality to tell whether the OBE or SBE assumptions hold. 
Also, it is hard to guarantee the accuracy of probability 
estimation. Thus, we view them as two extensions of 
Direct Ensemble based on two different probabilistic 
models, rather than optimal classifiers. 

Finally, we summarize the four methods by reviewing 
them from the following two viewpoints: 
• From a probabilistic viewpoint: Except for Direct 

Ensemble, the independence assumptions of the 
methods can be described by different types of Bayes 
Nets [15]. We do not directly apply Bayes Net learning 
techniques, however, because (1) the dependency 
structure would need to be learned and Bayes Net 
structure learning is costly, and (2) when the training 
data is relatively sparse in the feature space, Bayes Nets 
usually suffer from the lack of sufficient statistics to 
estimate the probabilities. 

• From an ensemble viewpoint: Direct Ensemble, OBE 
and SBE are all ensembles of base classifiers trained on 
the views. The difference between them is in how to 
combine the scores of these base classifiers. In Direct 
Ensemble, the scores are combined naïvely by a direct 
summation, whereas in the two Bayesian ensembles the 
scores are combined based on different probabilistic 
models. Although ensemble techniques have been 
widely used in Machine Learning [5, 14], we are not 
aware of previous ML research on learning from 
multiple aggregated views. 

4. Methods for RFA Views 
Having developed four methods for learning from 

projections and counts, we now discuss how to learn from 
the other two types of RFA views. The key idea is to use 
a sampling method to transform the other two types of 
RFA views into projection or count views. 

Suppose training view Ti is of one of these types: 
SELECT Si, AVG(Zi), Y, COUNT(*) FROM U GROUP BY Si,Y; 

SELECT Si, AVG(Zi), STDEV(Zi), Y, COUNT(*) FROM U GROUP BY Si,Y; 

Based on our probabilistic interpretation, Ti provides 
information about p(Si, Zi, Y). Note that Zi is a predictor 
attribute. Thus, if we can transform Ti into: 

SELECT Si
+, Y, FROM U, 

where Si
+ = Si ∪{Zi}, then we reduce the problem to 

learning from projections (and counts). Sampling is a 
simple yet useful transformation method. Suppose Ti 
contains STDEV(Zi). For each tuple t=[xi, zi

AVG, zi
STDEV, y, c] in 

Ti, we sample zi
1, …, zi

c from p(Zi | Si=xi, Y=y) and 
replace t by [xi, zi

1, y], …, [xi, zi
c, y], where p(Zi | Si=xi, 

Y=y) has mean zi
AVG and standard deviation zi

STDEV. If we do 
not have prior knowledge about p(Zi | Si=xi, Y=y), we 
assume that it is a normal distribution. If c is large, we 
perform low-resolution sampling to control the size 

expansion by allowing only K distinct Zi-values. In this 
case, the resulting view is a count view. 

If Ti does not contain STDEV(Zi), we can still use the 
sampling approach, but here we only know the mean of 
p(Zi | Si=xi, Y=y). If we do not have prior knowledge 
about p(Zi | Si=xi, Y=y), we assume that it is a spike at zAVG. 
In this case, we do not even need sampling. We can just 
treat Ti as: 

SELECT Si, Zi, Y, COUNT(*) FROM U GROUP BY Si,Y; 

Using the sampling-based transformations in this section, 
learning from RFA views can be reduced to learning from 
projections and counts. 

5. Experimental Results 
For brevity, we refer to the four methods as DE, NB, 

OBE, and SBE. Because methods of learning from 
projections are the core of learning from aggregate views, 
we focus on evaluating them in this paper.1 We also 
demonstrate the effectiveness of learning from other RFA 
views using a real-world mail order dataset. 

Some highlights of the results are: (1) surprisingly, we 
can often use aggregate views, even RFA views, to build 
models that are as accurate as those from the original 
table, (2) OBE is not sensitive to its independence 
assumptions (but SBE is), (3) OBE or DE with random 
forests or bagged decision trees can be a good practical 
choice, and (4) the sampling approach to handling RFA 
views is shown to produce good predictive models with a 
reasonable increase in the size of the training views. 

5.1. Accuracy on UCI Datasets 
We experimented with UCI datasets to (1) identify 

good base classifiers, (2) demonstrate effectiveness of 
learning from projections and counts, and (3) identify 
when learning from projections and counts is difficult. 
Seventeen UCI datasets, summarized in the left half of 
Table 3, are used to evaluate accuracy. The base 
classifiers used are: 
• J48: Weka’s [33] C4.5 decision tree [29] 

implementation. 
• Bag: Bootstrap aggregating (Bag) meta learner [5] 

based on 20 unpruned J48 trees (each tree is trained on 
70% of data). 

• RF: Random Forest [6] with 20 random trees. At each 
split, log(M+1) randomly chosen attributes are 
considered to find the best split, where M is the 
number of attributes. 

• K2: A Bayes Net classifier with Bayesian scoring 
function and the K2 [8] search algorithm (each node 
has at most 5 parents). 

Since the above four classifiers support learning from 
weighted training examples, if a training view contains 

                                                 
1 We only present a small selection of results; a complete 
spreadsheet is available upon request. 



count information, we just set the weight of each example 
in the view by its count.  

Since the UCI datasets are not aggregated, we used 
two aggregation schemes to create N (= 2 or 4) training 
views from a table with an ordered set A of attributes:  
• Chained aggregation: Pick an ordering for the training 

views, and ensure that a fixed fraction of the attributes 
in each view overlap with the next. Specifically, given 
the percentage of attribute overlap, q ∈ [0,1], the 
number of group-by attributes for each view is about 
nt = (1+q)⋅|A|/N; i.e., a fraction 1−q of attributes only 
appear in a single training view.  Each consecutive 
pair of views (including the first and last) share q⋅|A|/N 
common attributes. Compared to skewed aggregation, 
chain-style aggregation is a “balanced” scheme. 

• Skewed aggregation: Pick a subset E of emphasized 
attributes to be in group-by attributes of each training 
view. In addition to these E attributes, each training 
view contains |A–E| /N unique attributes from A. 
Ten-fold cross validation is used to evaluate the 

accuracy. Methods DE, OBE, and SBE have associated 
base classifiers. We combine J48, Bag, RF, and K2 with 
each of them, leading to 12 different techniques (e.g., 
DE+J48), each of which was run on data created via 12 

different aggregation schemes (in which q varied from 0 
to 85%, and emphasized attributes were randomly 
selected) for each of the 17 UCI datasets. 

First, our results demonstrate that effective learning 
from projections and counts is achievable. The right half 
of Table 3 shows the difference (diff) between the best 
accuracy on the original table (best over J48, Bag, RF, 
K2) and the accuracy of a proposed aggregate learning 
method as indicated by the header. These differences are 
averaged over all aggregation schemes. The standard 
deviation (std) of the difference is also shown in the table. 
Since Bag and RF are better, we omit J48 and K2 from 
the table. Surprisingly, for most datasets, the best 
aggregate learning method is almost as good as the best 
model learned from the original table. The datasets on 
which the aggregate learning methods do not perform 
well are car, tic-tac-toe and yeast. These datasets are the 
ones that have very few attributes (6 to 9). That means the 
number of predictor attributes in each training views is 
around 3; this number is usually too small to learn a good 
model. 

Second, we compare the four base classifiers. Table 4 
shows the accuracy difference between pairs of base 
classifiers for each of DE, OBE and SBE. The differences 
shown are averaged over all datasets and aggregation 

Table 3. Experimental result on UCI datasets
DE OBE SBE Naïve 

Bayes Bag RF Bag RF Bag RF Dataset # of 
Cases 

# of 
Features 

# of 
Classes 

% of 
numerical 
attributes 

% of 
symbolic 
attributes 

% of cases 
in largest 

class 

Best 
accuracy on 
original data diff std diff std diff std diff std diff std diff std diff std 

breast-cancer-w 699 9 2 100 0 66 97.20 0.00 1.71 0.44 0.71 0.40 0.49 -0.01 0.68 0.15 0.48 0.07 0.67 0.01 0.50
car 1728 6 4 0 100 70 94.11 8.65 2.56 18.15 7.59 17.45 7.28 10.89 8.61 4.54 3.09 12.73 8.75 7.58 7.00

credit-rating 690 15 2 40 60 56 86.22 0.00 3.80 0.37 1.17 1.63 2.58 0.00 0.63 1.72 1.97 1.69 4.82 2.10 2.49
german-credit 1000 20 2 35 65 70 75.04 0.00 3.56 1.71 1.70 1.71 1.72 2.52 0.84 3.51 2.01 2.19 0.81 3.48 1.83

kr-vs-kp 3196 36 2 0 100 52 99.44 11.65 1.91 5.91 4.11 7.28 3.31 3.53 2.60 5.27 2.30 5.03 2.69 6.03 2.04
optidigits  3823 64 10 100 0 10 97.57 4.88 1.19 2.22 0.96 0.90 0.98 1.21 0.56 0.31 0.46 5.62 2.32 3.46 1.97
pendigits 6655 16 10 100 0 11 98.86 10.52 1.25 2.22 1.22 1.11 1.26 1.18 0.73 0.52 0.84 4.56 1.95 2.14 1.18

pima-diabetes 768 8 2 100 0 65 75.68 0.42 4.78 2.51 1.95 3.77 1.80 1.28 0.84 4.39 1.57 1.53 0.79 4.10 1.61
satimage 4435 36 6 100 0 24 90.90 9.05 1.85 0.86 0.39 0.08 0.45 0.84 0.55 0.07 0.58 6.58 3.26 4.85 2.20
segment 2310 19 7 100 0 14 97.97 6.82 1.72 1.36 1.42 0.89 1.57 0.82 0.98 0.34 0.88 5.07 6.77 2.19 1.94

spambase 4601 57 2 100 0 61 95.45 5.62 1.23 1.62 0.78 0.93 0.66 0.85 0.31 0.76 0.62 2.74 1.49 1.80 0.71
splice 3190 60 3 0 100 50 95.42 0.00 1.14 1.79 1.10 6.75 3.43 1.49 0.71 1.81 0.70 2.20 0.99 3.67 1.88

tic-tac-toe 958 9 2 0 100 65 94.79 25.15 4.40 16.27 7.71 17.14 6.02 11.28 5.30 13.78 4.79 13.12 3.62 14.95 2.85
vehicle 846 18 4 100 0 26 75.16 14.10 3.47 1.78 1.22 1.07 0.91 1.16 1.31 1.18 0.74 5.69 4.41 3.66 2.76
vowel 990 10 11 100 0 9 94.58 32.27 4.95 7.65 2.90 2.93 4.67 4.21 2.63 1.55 4.52 11.89 7.48 7.30 10.48

waveform 5000 40 3 100 0 33 83.53 3.56 1.44 0.31 0.79 0.13 0.84 0.38 0.88 0.84 0.98 1.52 1.74 1.98 1.38
yeast 1484 8 10 100 0 31 61.14 3.53 3.73 7.52 6.01 9.86 5.30 4.41 2.77 9.24 3.90 5.07 2.32 10.31 5.29

Table 4. T-test result for base classifier comparison 
DE OBE SBE Mean(Column - Row) K2 Bag J48 RF K2 Bag J48 RF K2 Bag J48 RF 

K2  2.28± 0.25 -0.24±0.25 2.74±0.30  6.71±0.43 1.79±0.35 6.48±0.46  9.10±0.56 4.93±0.50 9.54±0.59
Bag -2.82±0.25  -3.24±0.18 -0.08±0.14 -6.71±0.43  -4.92±0.23 -0.23±0.18 -9.10±0.56  -4.17±0.26 0.45±0.21
J48 0.42±0.25 3.24±0.18  3.16±0.22 -1.79±0.35 4.92±0.23  4.69±0.27 -4.93±0.50 4.17±0.26  4.62±0.33
RF -2.74±0.30 0.08±0.14 -3.16±0.22  -6.48±0.46 0.23±0.18 -4.69±0.27  -9.54±0.59 -0.45±0.21 -4.62±0.33  

                       Table 5. The effect of aggregation schemes 
DE OBE SBE 

Bag RF Bag RF Bag RF Agg. Scheme 
diff std diff std diff std diff std diff std diff std 

chain 0% 3.97  5.08  3.86  4.81 2.65  2.66 2.79  3.60 3.97 5.08 3.86 4.81 
chain 20% 3.45  5.05  3.14  4.77 2.11  2.46 2.10  3.66 3.45 5.05 3.14 4.77 
chain 50% 2.44  3.12  2.38  3.70 1.38  1.67 1.98  3.01 2.44 3.12 2.38 3.70 
chain 85% 1.41  1.64  1.27  2.19 1.04  1.12 0.78  1.51 1.41 1.64 1.27 2.19 

2 
view 

skewed 2.73  3.89  2.76  4.55 2.01  2.70 2.47  4.23 2.73 3.89 2.76 4.55 
chain 0% 7.71  8.85  7.89  8.57 5.35  7.22 5.20  5.59 7.71 8.85 7.89 8.57 
chain 20% 6.88  8.69  7.17  8.21 4.89  6.90 5.04  5.28 6.88 8.69 7.17 8.21 
chain 50% 4.95  7.33  5.22  7.21 3.58  6.27 3.32  4.34 4.95 7.33 5.22 7.21 
chain 85% 4.29  6.92  4.30  7.19 2.38  3.90 2.73  4.19 4.29 6.92 4.30 7.19 

4  
view 

skewed 5.37  6.66  5.74  7.12 2.68  3.69 3.20  4.30 5.37 6.66 5.74 7.12 

                  8-0-0                                 3-3-3                                 7-7-7 
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Figure 1. Scatter charts comparing DE+RF with OBE+RF. 

Each points (x, y) in a scatter chart represents the result on a 
dataset, where x is the accuracy of OBE+RF and y is the 

accuracy of DE+RF on that dataset. 



schemes. The error ranges are the 95% confidence 
intervals based on the two-sided t-test. A difference is 
statistically significant if the confidence interval does not 
include 0. The result shows that Bag and RF consistently 
out perform K2 and J48; thus, the widely accepted 
superiority of ensembles over individual tree classifiers 
holds for base learners in learning from counts. We see a 
similar trend as we drill down to the per-dataset, per-
aggregation-scheme level. 

Finally, we show how aggregation schemes affect the 
aggregate learning methods. In Table 5, "diff" is the 
difference between the best accuracy on the original data 
and the aggregate learning method indicated by the 
header. These differences are averaged across all 17 
datasets. As we would expect, larger numbers of views 
result in increased information loss in the aggregation 
process, which leads to lower accuracy. Similarly, if we 
fix the number of views, a decrease in the overlap 
between views results in increased information loss.  

5.2. Accuracy on Synthetic Datasets 
To understand the characteristics of the proposed 

methods of learning from projections and counts, we 
generated synthetic datasets. Datasets generated by Bayes 
Nets of different structures were used to test the 
sensitivity of these methods to the independence 
assumptions. Next, since the results suggested that DE 
and OBE perform comparably and are superior to SBE, 
we created decision-tree-based datasets to compare DE 
and OBE in depth. 

5.2.1. Bayes-Net-Based Synthetic Data. To understand 
how independence assumptions affect the performances 
of the aggregate learning methods, Bayes-Net-based 
synthetic datasets are generated as follows. For each 
dataset, we first create a Bayes Net with 19 nodes. 
Eighteen of them represent the predictive attributes (X1, 
…, X18) and the 19th is the class label (Y). The complexity 
of each network is controlled by two parameters: the 
independence assumption and the maximum number of 
parents for each node. “No assumption” means no 
independence assumption needs to hold on the network. 
“OBE (or SBE) assumption” means the generated 
network guarantees the OBE (or SBE) assumptions. Note 

that with the same maximum number of parents, the "no 
assumption" network is the most complex one. The SBE 
assumption results in the least complex network of the 
three. When a particular independence assumption is held 
fixed, the network grows more complex as the maximum 
number of parents grows. When the maximum number of 
parents is 1, the resulting network is, in fact, a Naïve 
Bayes model. 

After the network is created, the CPTs (conditional 
probability tables) are randomly assigned. Then, 5000 
examples are generated according to the network. For 
each set of dataset parameters, we generate 10 datasets 
based on 10 different networks with same parameters. For 
each dataset, we create 3 training views T1, …, T3, where 
T1 contains attributes Y, X1−X8, X13, X14, T2 contains Y, 
X5−X12, X15, X16, and T3 contains Y, X1−X4, X9−X12, X17, X18. 

The result is shown in Table 6. Since Bag has similar 
behavior to RF, we only show the result of RF. The 
difference in accuracy between DE+RF and Naïve Bayes 
is shown in the first column; the difference between 
DE+RF and RF learned from the original table is shown 
in the second column. The comparisons of OBE+RF (and 
SBE+RF) with Naïve Bayes and RF learned from the 
original table are also shown. 

First note that, in Table 6, SBE is highly sensitive to 
its independence assumption. When the "SBE 
assumptions" do not hold, SBE can perform much worse 
than learning from the original data. Also note that the 
second to last column shows that the performance of SBE 
is very similar to that of Naïve Bayes, even when the SBE 
assumptions hold. That suggests that the "SBE 
independence assumptions" might be as strong as Naïve 
Bayes (at least, on these datasets). On the other hand, DE 
and OBE are neither sensitive to the independence 
assumptions nor the complexity of the network. In fact, 
the performances of these two are quite comparable (also 
see Table 3), and clearly superior to SBE and NB (mainly 
from Table 6). 

Interestingly, in these experiments, DE+RF and 
OBE+RF slightly outperform the best models learned 
from the original data. 

 

Table 6. T-test result: the accuracy of different RF-based method relative to 
Naïve Bayes and to the RF learned from the original table 

DE + RF OBE + RF SBE + RF Assump-
tion 

Max # 
parents NB Orig. RF NB Orig. RF NB Orig. RF 

1  -0.64±0.14  0.60±0.17  -0.62±0.13  0.62±0.16  -0.22±0.08  1.02±0.16
2  3.09±0.50  0.60±0.31  3.00±0.53  0.50±0.32  0.08±0.26  -2.41±0.55
3  5.94±0.86  1.55±0.28  5.56±0.85  1.17±0.29  0.39±0.28  -4.00±0.81
4  9.82±0.59  2.22±0.32  8.70±0.57  1.11±0.31  0.43±0.37  -7.17±0.58

No 

5  11.62±0.73  3.00±0.37  9.51±0.73  0.90±0.37  -1.03±0.36  -9.64±0.67
1  -0.61±0.14  0.66±0.14  -0.61±0.14  0.66±0.13  -0.26±0.09  1.01±0.17
2  3.46±0.58  1.27±0.39  3.50±0.55  1.31±0.36  0.44±0.25  -1.74±0.45
3  7.78±1.03  2.53±0.27  7.46±0.98  2.21±0.28  1.38±0.44  -3.87±0.64
4  10.97±0.77  3.10±0.39  10.13±0.73  2.26±0.41  1.16±0.39  -6.70±0.66

OBE 

5  10.79±0.83  3.61±0.41  9.33±0.87  2.16±0.48  0.12±0.39  -7.05±0.67
1  -0.99±0.16  0.58±0.13  -0.87±0.14  0.70±0.14  -0.39±0.09  1.18±0.16
2  -0.81±0.17  0.73±0.18  -0.65±0.15  0.89±0.20  -0.06±0.11  1.48±0.24
3  -0.63±0.11  0.66±0.12  -0.74±0.12  0.55±0.13  -0.05±0.06  1.24±0.15
4  -0.76±0.12  0.82±0.14  -1.05±0.13  0.53±0.15  -0.05±0.06  1.53±0.17

SBE 

5  -1.02±0.12  0.89±0.13  -1.32±0.13  0.59±0.15  -0.14±0.05  1.77±0.18
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5.2.2. Decision-Tree-Based Synthetic Data. To study 
when DE outperforms OBE or vice versa, we generate 
decision-tree-based synthetic datasets as follows. For 
each dataset, we randomly create a decision tree that uses 
8 attributes. We then generate training examples from this 
tree, and add an additional 12 attributes of random noise. 
Each training example thus has 20 attributes. After 
obtaining a table of 5000 training examples, we create 
three aggregate views. The first view contains a random 
subset of attributes, in which p1 are randomly selected 
from the 8 useful attributes. The second and third views 
contain p2 and p3 of these attributes, chosen by similar 
means. We can thus see p1, p2 and p3 as parameters for 
our synthesized dataset. By varying these parameters, we 
can obtain datasets with different characteristics. For 
brevity, we use “p1-p2-p3” to denote the parameter settings 
for a dataset. Ten datasets are generated for each of the 
following parameter settings: 8-8-8, 7-7-7, 6-6-6, 5-5-5, 
4-4-4, 3-3-3, 8-0-0, 8-4-0, 6-6-0 and 8-5-2. In the interest 
of space, we do not show detained results, but provide the 
following summary and some examples in Figure 1. 
• When the predictive power of the training views 

varies greatly (e.g., 8-0-0), OBE is better than DE. 
• When none of the views is highly predictive (e.g., 3-3-

3), OBE is better than DE. 
• If each view is predictive (e.g., 7-7-7), DE is better. 

5.3. Performance on a Real-World Dataset 
We now show our results on a real-world dataset2 with 

one million records. A mail order company, Deep End, 
wants to build a predictive model of product profitability 
(e.g., several levels from “good” to “bad”) from 
information about the product and how it is presented in 
catalogs. Deep End wants to out-source the data mining 
project, but does not want to reveal the costs of its 
products: this is considered as a business secret. Thus, 
instead of the original table U, which has item 
information (Cost, Category, Division), presentation details 
(Year, Media, Drop, Page, PriceCut, Focus, Front, Back, Seq, 
Retail, Area, Color) and the class label (Profitability), Deep 

                                                 
2 The dataset is real, but the problem scenario is hypothetical and the 
company's name has been changed. 

End gives the data mining company three views: View1 
(T1), View2 (T2), Veiw3 (T3). 

T1 = SELECT S1, Y, COUNT(*) FROM U GROUP BY S1; 
T2 = SELECT S2,AVG(Z2),STDEV(Z2),Y,COUNT(*) FROM U GROUP BY S2,Y; 
T3 = SELECT S3,AVG(Z3),STDEV(Z3),Y,COUNT(*) FROM U GROUP BY S3,Y; 

where Y = Profitability, S1 = {Year, Media, Drop, Page, 
PriceCut, Focus, Front, Back, Seq, Retail}, S2 = {Year, Media, 
Division, PriceCut, Area, Color}, Z2 = Cost,  S3 = {PriceCut, 
Focus, Front, Back, Color, Area} and Z3 = Cost. Note that: 
(1) the aggregation prevents exact cost information from 
being revealed, and (2) the projection ensures that no 
sensitive combination of attributes, e.g., Page and Cost 
(because knowing the page number can significantly 
increase the chance of determining the item that has a 
particular cost), is released. To measure accuracy, we 
randomly selected 5000 records as test examples and 
aggregated 900,000 non-test records to create the three 
training views. Then, the sampling method described in 
Section 4 was used to transform T2 and T3 into count 
views, sampling at most K distinct Zi-values per Si-group. 
This process is repeated 5 times. 

The average accuracies of OBE, DE and NB at 
different K-values are shown in Figure 2, where K=-1 
means all information about Zi is removed from the 
training views, K=0 means STDEV(Zi) and COUNT(*) are 
removed, and K=1 means STDEV(Zi) is removed. It can be 
seen that: (1) OBE+RF and DE+RF produce the best 
models; (2) the information that the aggregated attribute 
Zi provides improves the quality of every method; (3) 
increasing K generally improves the accuracy; and (4) the 
improvement usually converges around K=20, which 
means we can obtain good models without expanding the 
training view too much. 

Figure 3 shows the accuracy curves of OBE and DE 
(the top two solid curves) together with the accuracy 
curves of two base classifiers (RF and J48, since others 
show the same trend) on different training views (the 
lower three solid curves) at different K-values. It can be 
seen that: (1) the aggregate learning methods are always 
better than base classifiers trained on individual views; 
and (2) OBE and DE can significantly improve the 
accuracy when the accuracies of base classifiers are not 
good (note the left part of each chart).  

A caution should be made that we use weighted 
training examples to represent the counts, but in Weka 
setting the weight of an example to n is actually not 
equivalent to duplicate the example to n identical copies. 
The dotted curves in Figure 3 are the accuracy curves for 
base classifiers (RF and J48) trained on examples that are 
generated by simply duplicating training examples K 
times for View 2 and View 3. We expect to see horizontal 
straight lines (maybe with small random vibration) like 
the dotted curves for RF. However, we are surprised that 
it is not the case for J48; i.e., simply duplicating training 
examples can improve the accuracy of J48 significantly 
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Figure 3. Accuracy curves of bases classifiers on training views 
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on this dataset. More experiments and inspection of Weka 
code should be made to understand this behavior. 

6. Related Work and Conclusion 
Learning from projections has been studied in 

computational learning theory, e.g., [21, 9], but this work 
assumes that the learner can choose desired projections. 
Related work in statistical disclosure control includes 
studies [10, 31] on bounding cell entries of contingency 
tables using marginals. The contingency table can be 
thought of as the original table, and the marginals are the 
projections. However, the approach is based on linear 
programming, in which the number of linear constraints 
can be exponentially large. Estimating joint probabilities 
from marginals is a classical problem [2, 3] in Statistics. 
The standard solution is iterative proportional fitting 
(IPF). Although several efficiency-related improvements 
[22, 32] have been proposed, the space requirement is 
proportional to the product of the domain sizes. We have 
tested IPF on the UCI datasets that meet IPF's space 
requirement without requiring discretization, using the 
chained aggregation scheme to create the training views 
(car with 2 training views, tic-tac-toe and yeast with 3). 
The 10-fold cross-validation accuracies are shown below:  

DE OBE SBE Dataset IPF Bag RF Bag RF Bag RF 
Car 87.39 81.89 89.87 78.24 77.37 77.66 87.39
Tic-tac-toe 74.22 84.45 84.87 87.06 84.04 87.06 83.73
yeast 59.23 52.89 54.51 56.40 57.81 45.96 59.09

Although the experiment is not extensive, the result 
suggests that our methods are comparable to IPF in 
accuracy. As to scalability, as long as the memory 
requirement is met, IPF runs reasonably fast. However, 
when we try to apply IPF to datasets with even modest 
numbers of attributes, the program runs out of memory. 

Another related field is multi-view learning [26] or co-
training [4], in which the learner is iteratively trained 
using multiple projections of data. However, the 
projections are assumed to contain keys so that tuples in 
different projections can be linked together, and given the 
class labels, the projections are assumed to be 
independent. Multi-relational data mining (e.g., [13]) 
considers the problem of learning from multiple relations, 
but explicit linking between records in different relations 
is usually assumed. Work on structure uncertainty in 
statistical multi-relational learning (e.g., [19]) and work 
(e.g., [25]) on learning SVMs from regions of feature 
space is also related. 

To summarize, although learning from aggregated 
information has rich connections to a wide range of work, 
learning classification models from aggregated training 
views defined by SQL-style GROUP BY queries has not 
been studied, and we believe this is a promising research 
direction with many applications. 
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