Prediction Cubes

Bee-Chung Chen, Lei Chen, Yi Lin and Raghu Ramakrishnan University of Wisconsin - Madison

Big Picture

- We are **not** trying to build a **single** accuracy "model"
- We want to find **interesting subsets** of the dataset
 - Interestingness: Defined by the "model" built on a subset
 - Cube space: A combination of dimension attribute values defines a candidate subset (just like regular OLAP)
- We are **not** using regular **aggregate functions** as the measures to summarize subsets
- We want the measures to represent decision/prediction behavior
 - Summarize a subset using the "model" built on it
 - Big difference from regular OLAP!!

One Sentence Summary

- Take OLAP data cubes, and keep everything the same **except** that we change the meaning of the cell values to represent the **decision/prediction behavior**
 - The idea is simple, but it leads to interesting and promising data mining tools

Example (1/5): Regular OLAP

Goal: Look for patterns of unusually high numbers of applications

Coarser regions

	04	03	•••
CA	100	90	•••
USA	80	90	
•••			

Roll up

	2004			2003			•
	Jan D		Dec	Jan	•••	Dec	•••
CA	30	20	50	25	30		
USA	70	2	8	10			
•••				•••			

Drill Drill down

Z: Dimensions Y: Measure

Location	Time	# of App.
	•••	
AL, USA	Dec, 04	2
WY, <mark>USA</mark>	Dec, 04	3

			2004		• • •
		Jan	• • •	Dec	• • •
CA	AB	20	15	15	
	•••	5	2	20	
	YT	5	3	15	
	AL	55			
USA		5			
	WY	10		•••	•••
•••		•••	•••	•••	•••

Cell value: Number of loan applications

Finer regions

Example (2/5): Decision Analysis

Goal: Analyze a bank's loan decision process

w.r.t. two dimensions: *Location* and *Time*

Fact table **D**

Z: Dimensions **X**: Predictors **Y**: Class

Location	Time	Race	Sex	•••	Approval
AL, USA	Dec, 04	White	М		Yes
•••					
WY, USA	Dec, 04	Black	F		No

Model $h(X, \sigma_{\mathbf{Z}}(\mathbf{D}))$ E.g., decision tree

cube subset

Time

Example (3/5): Questions of Interest

- Goal: Analyze a bank's loan decision process with respect to two dimensions: *Location* and *Time*
- Target: Find discriminatory loan decision
- Questions:
 - Are there locations and times when the decision making was **similar** to a set of discriminatory decision **examples** (or similar to a given discriminatory decision **model**)?
 - Are there locations and times during which *Race* or *Sex* is an **important factor** of the decision process?

Example (4/5): Prediction Cube

Data $\sigma_{[USA, Dec 04]}(\mathbf{D})$

Location	ation Time		Sex	•••	Approval
AL , USA	Dec, 04	White	M		Y
WY, USA	Dec, 04	Black	F		N

- 1. Build a model using data from USA in Dec., 1985
- 2. Evaluate that model Measure in a cell:
 - **Accuracy** of the model
 - **Predictiveness** of *Race* measured based on that model
 - Similarity between that model and a given model

Model $h(X, \sigma_{[USA, Dec 04]}(\mathbf{D}))$ E.g., decision tree

Example (5/5): Prediction Cube

	2004				•••		
	Jan	•••	Dec	Jan	•••	Dec	•••
CA	0.4	0.1	0.3	0.6	0.8	•••	
USA	0.7	0.4	0.3	0.3	•••	•••	
•••	•••		•••	•••	•••		

2004

	04	03	•••
CA	0.3	0.2	
USA	0.2	0.3	
			•••

2003

Cell value: Predictiveness of *Race*

			Jan	•••	Dec	Jan	•••	Dec	•••
_		AB	0.4	0.2	0.1	0.1	0.2	•••	
	CA	•••	0.1	0.1	0.3	0.3	•••	•••	
		YT	0.3	0.2	0.1	0.2	•••	•••	•••
		AL	0.2	0.1	0.2	•••	•••	•••	
	USA	•••	0.3	0.1	0.1	•••	•••	•••	
		WY	0.9	0.7	0.8	•••	•••	•••	•••
	•••	•••	•••	•••	•••	•••	•••	•••	•••

Outline

- Motivating example
- Definition of prediction cubes
- Efficient prediction cube materialization
- Experimental results
- Conclusion

Prediction Cubes

- User interface: OLAP data cubes
 - Dimensions, hierarchies, roll up and drill down
- Values in the cells:
 - Accuracy→ Test-set accuracy cube
 - − Similarity→ Model-similarity cube
 - Predictiveness → Predictiveness cube

Test-Set Accuracy Cube

Given:

- Data table **D**

- Test set Δ

	2004				ر		
	Jan	•••	Dec	Jan	•••	Dec	\ :
CA	0.4	0.2	0.3	0.6	0.5		
USA	0.2	0.3	0.9			•••	
•••	•••			/:			

Level: [Country, Month]

The decision model of **USA during Dec 04** had high accuracy when applied to Δ

Data table **D**

Location	Time	Race	Sex	•••	Approval
AL, <mark>USA</mark>	Dec, 04	White	М		Yes
•••					
WY, <mark>USA</mark>	Dec, 04	Black	ĺ-	1	No

Build a model

Accuracy

RaceSex...ApprovalWhiteF...Yes.........BlackM...No

Yes ... Yes

Prediction

Test set Δ

11

Model-Similarity Cube

Given:

- Data table **D**
- Target model $h_0(X)$
- Test set Δ w/o labels

	2004				:			
	Jan		Dec	Jan	•••	Dec	\:	
CA	0.4	0.2	0.3	0.6	0.5			•
USA	0.2	0.3	0.9			•••		
		•••		\				

Level: [Country, Month]

Data table **D**

	Location	Time	Race	Sex	•••	Approval
1	AL, USA	Dec, 04	White	М		Yes
	•••					
	WY, <mark>USA</mark>	Dec, 04	Black	1		No
1						

milarity _____

 $h_0(X)$

Similarity

Race	Sex	•••		
White	F		Yes	Yes
Black	М		No	Yes

Build a model

Test set Δ

The loan decision process in **USA during Dec 04** was **similar to** a discriminatory decision **model**

12

Predictiveness Cube

Given:

- Data table **D**
- Attributes V
- Test set Δ w/o labels

		2004		2003			
	Jan		Dec	Jan	•••	Dec	
CA	0.4	0.2	0.3	0.6	0.5		
USA	0.2	0.3	0.9				
• • •						•••	

Level: [Country, Month]

Data table **D**

Location	Time	Race	e Sex		ice Sex		Approval
AL, USA	Dec, 04	White	М		Yes		
		[/			
WY, USA	Dec, 04	Black	F		No		

h(X-V)h(X)

Predictiveness of *V*

Race	Sex	•••
White	F	
Black	М	

Build models

Test set Δ

Race was an **important factor** of loan approval decision in **USA during Dec 04**

Outline

- Motivating example
- Definition of prediction cubes
- Efficient prediction cube materialization
- Experimental results
- Conclusion

One Sentence Summary

- Reduce prediction cube computation to data cube computation
 - Somehow represent a data-mining model as a distributive or algebraic (bottom-up computable) aggregate function, so that data-cube techniques can be directly applied

Full Materialization

[All, Year] 1985 1986

2004 All

		1985	1986	•••	2004
	CA				
	•••				
	USA				

[Country, Year]

[All, All]

AllAll

	All
CA	
•••	
USA	

[Country, All]

Full Materialization Table

Level	Location	Time	Cell Value
[All,All]	ALL	ALL	0.7
[Country,All]	CA	ALL	0.4
	• • •	ALL	•••
	USA	ALL	0.9
	ALL	1985	0.8
[All,Year]	ALL	•••	•••
	ALL	2004	0.3
	CA	1985	0.9
[Country Vocal	CA	1986	0.2
[Country,Year]	•••	•••	•••
	USA	2004	0.8

16

Bottom-Up Data Cube Computation

	1985	1986	1987	1988
All	47	107	76	67

	1985	1986	1987	1988
Norway	10	30	20	24
•••	23	45	14	32
USA	14	32	42	11

	All
Norway	84
•••	114
USA	99

Cell Values: Numbers of loan applications

Functions on Sets

- Bottom-up computable functions: Functions that can be computed using only summary information
- **Distributive** function: $\alpha(X) = F(\{\alpha(X_1), ..., \alpha(X_n)\})$
 - $-X = X_1 \cup \ldots \cup X_n$ and $X_i \cap X_j = \emptyset$
 - $\text{ E.g., } Count(X) = Sum(\{Count(X_1), ..., Count(X_n)\})$
- Algebraic function: $\alpha(X) = F(\{G(X_1), ..., G(X_n)\})$
 - $-G(X_i)$ returns a length-fixed vector of values
 - E.g., $Avg(X) = F(\{G(X_1), ..., G(X_n)\})$
 - $G(X_i) = [Sum(X_i), Count(X_i)]$
 - $F(\{[s_1, c_1], ..., [s_n, c_n]\}) = Sum(\{s_i\}) / Sum(\{c_i\})$

Scoring Function

- Represent a model as a function of sets.
- Conceptually, a machine-learning model $h(X; \sigma_Z(\mathbf{D}))$ is a scoring function $Score(y, x; \sigma_Z(\mathbf{D}))$ that gives each class y a score on test example x
 - $-h(x; \sigma_{\mathbf{Z}}(\mathbf{D})) = \operatorname{argmax}_{y} Score(y, x; \sigma_{\mathbf{Z}}(\mathbf{D}))$
 - $Score(y, x; \sigma_{\mathbf{Z}}(\mathbf{D})) \approx p(y \mid x, \sigma_{\mathbf{Z}}(\mathbf{D}))$
 - $-\sigma_{\mathbf{Z}}(\mathbf{D})$: The set of training examples (a cube subset of \mathbf{D})

Bottom-up Score Computation

- Key observations:
 - Observation 1: $Score(y, x; \sigma_Z(\mathbf{D}))$ is a function of cube subset $\sigma_Z(\mathbf{D})$; if it is **distributive** or **algebraic**, the data cube bottom-up technique can be directly applied
 - Observation 2: Having the scores for all the test examples and all the cells is sufficient to compute a prediction cube
 - Scores \Rightarrow predictions \Rightarrow cell values
 - Details depend on what each cell means (i.e., type of prediction cubes); but straightforward

	1985	1986	1987	1988		All
All	value	value	value	value	All	value
	Û	1	Û	Û		Û
	1985	1986	1987	1988		All
Norway	value	value	value	value	Norway	value
•••	value	value	value	value	•••	value
USA	value	value	value	vajue	USA	value

- Build a model for each lowest-level cell
- Compute the scores using data cube bottom-up technique
 - Ob. 1: Distributive scoring function \Rightarrow bottom up
- 3. Use the scores to compute the cell values
 - Ob. 2: Having scores \Rightarrow having cell values

Machine-Learning Models

- Naïve Bayes:
 - Scoring function: algebraic
- Kernel-density-based classifier:
 - Scoring function: distributive
- Decision tree, random forest:
 - Neither distributive, nor algebraic
- PBE: Probability-based ensemble (new)
 - To make any machine-learning model distributive
 - Approximation

Probability-Based Ensemble

Decision tree on [WA, 85]

PBE version of decision tree on [WA, 85]

Decision trees built on the lowest-level cells

Probability-Based Ensemble

• Scoring function:

$$h_{PBE}(\boldsymbol{x}; \boldsymbol{\sigma}_{S}(\mathbf{D})) = \operatorname{arg\,max}_{y} Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{\sigma}_{S}(\mathbf{D}))$$

$$Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; b_{i}(\mathbf{D})) = h(\boldsymbol{y} \mid \boldsymbol{x}; b_{i}(\mathbf{D})) \cdot g(b_{i} \mid \boldsymbol{x})$$

$$Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{\sigma}_{S}(\mathbf{D})) = \sum_{i \in S} \left(Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; b_{i}(\mathbf{D}))\right)$$

- $-h(y \mid x; b_i(\mathbf{D}))$: Model h's estimation of $p(y \mid x, b_i(\mathbf{D}))$
- $g(b_i | x)$: A model that predicts the probability that x belongs to base subset $b_i(\mathbf{D})$

Outline

- Motivating example
- Definition of prediction cubes
- Efficient prediction cube materialization
- Experimental results
- Conclusion

Experiments

- Quality of PBE on 8 UCI datasets
 - The quality of the PBE version of a model is slightly worse (0 ~ 6%) than the quality of the model trained directly on the whole training data.

- Efficiency of the bottom-up score computation technique
- Case study on demographic data

Efficiency of the Bottom-up Score Computation

• Machine-learning models:

J48: J48 decision tree

RF: Random forest

NB: Naïve Bayes

- **KDC**: Kernel-density-based classifier

• Bottom-up method vs. Exhaustive method

- PBE-J48

- J48ex

- PBE-RF

- RFex

-NB

- NBex

- KDC

- KDCex

Synthetic Dataset

• Dimensions: Z_1 , Z_2 and Z_3 .

• Decision rule:

Condition	Rule
When $Z_I > 1$	$Y = I(4X_1 + 3X_2 + 2X_3 + X_4 + 0.4X_6 > 7)$
else when $Z_3 \mod 2 = 0$	$Y = I(2X_1 + 2X_2 + 3X_3 + 3X_4 + 0.4X_6 > 7)$
else	$Y = I(0.1X_5 + X_1 > 1)$

Efficiency Comparison

Take-Home Messages

- Promising exploratory data analysis paradigm:
 - Use models to identify interesting subsets
 - Concentrate only on subsets in the cube space
 - Those are meaningful subsets
 - Precompute the results
 - Provide the users with an interactive tool
- A simple way to plug "something" into cube-style analysis:
 - Try to describe/approximate "something" by a distributive or algebraic function

Related Work: Building models in OLAP

- Multi-dimensional regression [Chen, VLDB 02]
 - Goal: Detect changes of trends
 - Build linear regression models for cube cells
- Step-by-step regression in stream cube [Liu, PAKDD 03]
- Loglinear-based quasi cubes [Barbara, J. IIS 01]
 - Use loglinear model to approximately compress dense regions of a data cube
- NetCube [Margaritis, VLDB 01]
 - Build Bayes Net on the entire dataset of approximately answer count queries

Related Work: Advanced Cube-Style Analysis

- Cubegrades [Imielinski, J. DMKD 02]
 - Extend data cubes using ideas from association rules
 - How the measure changes when we rollup or drill down
- Constrained gradients in data cube [Dong, VLDB 01]
 - Find pairs of similar cell characteristics associated with big changes in measure
- User-cognizant multidimensional analysis [Sarawagi, VLDBJ 01]
 - Help users to explore the most informative unvisited regions in a data cube using max entropy principle

Questions

What are Our Assumptions?

- Machine-learning models are good approximation of the true decision/prediction model
 - Evaluate accuracy
- The size of each base subset is large enough to build a good model
 - Future work: Find the proper levels of subsets to start from
- Model properties are evaluated by test sets
 - We did not consider looking at the models themselves

Why Test Set?

- To obtain quantitative model properties, we need test set
- Questions: Why to let users to provide test sets?
- Flexibility vs. ease of use
 - Flexibility: The user can specify p(X) that he/she is interested in (e.g., focus on rich people)
 - E.g., compare $p_1(Y | X, \sigma(\mathbf{D}))$ with $p_2(Y | X, \sigma(\mathbf{D}))$
 - Simple fix:
 - Sample test set from the dataset.
 - Cross-validation cube

Why PBE is not that good?

- If the probability estimation of the base models is correct, then PBE is optimal
- Why it is not optimal in reality?
 - The probability estimation method is not good
 - The training datasets for base models are too small

• Fix:

- Work on the probability estimation method
- Build models for some non-base-level cells

Feature Selection vs. Prediction Cubes

- Feature selection:
 - Goal: Find the best k predictive attributes
 - Search space: 2^n (n: number of attributes)
- Prediction cubes:
 - Goal: Find interesting cube cells
 - Search space: 2^d (d: number of dimension attributes)
 - You may use accuracy cube to find predictive dimension attributes, but not is not our goal
 - For the predictiveness cube, the attributes whose predictiveness is of interest is given

Why We Need Efficient Precomputation?

- Several hours vs. several days vs. several months
- For upper level cells, if the machine learning algorithm is not scalable and we do not have a bottom-up method, we may never get the result

Backup Slides

Theoretical Comparison

- Training complexity:
 - Exhaustive: $\sum_{[l_1,...,l_d] \in Levels} \left(|Z_1^{(l_1)}| \times ... \times |Z_d^{(l_d)}| \times f_{train}(n_{[l_1,...,l_d]}) \right)$
 - Bottom-up: $|Z_1^{(1)}| \times ... \times |Z_d^{(1)}| \times f_{train}(n_{[1,...,1]})$

Theoretical Comparison

- Testing complexity:
 - Exhaustive: $\sum_{[l_1,...,l_d] \in Levels} \left(|Z_1^{(l_1)}| \times ... \times |Z_d^{(l_d)}| \times f_{test} \left(n_{[l_1,...,l_d]} \right) \right)$
 - Bottom-up: $|Z_1^{(1)}| \times ... \times |Z_d^{(1)}| \times f_{train}(n_{[1,...,1]}) +$

$$\sum_{[l_1,...,l_d] \in (Levels-\{[1,...,1]\})} \left(|Z_1^{(l_1)}| \times ... \times |Z_d^{(l_d)}| \times c \right)$$

Test-Set-Based Model Evaluation

- Given a set-aside test set Δ of schema [X, Y]:
 - Accuracy of h(X):
 - The percentage of Δ that are correctly classified
 - Similarity between $h_1(X)$ and $h_2(X)$:
 - The percentage of Δ that are given the same class labels by $h_1(X)$ and $h_2(X)$
 - Predictiveness of $V \subseteq X$: (based on h(X))
 - The difference between h(X) and h(X-V) measured by Δ ; i.e., the percentage of Δ that are predicted differently by h(X) and h(X-V)

Model Accuracy

- Test-set accuracy (TS-accuracy):
 - Given a set-aside test set Δ with schema [X, Y],

$$accuracy(h(X; \mathbf{D}) \mid \Delta) = \frac{1}{|\Delta|} \sum_{(\mathbf{x}, y) \in \Delta} I(h(\mathbf{x}; \mathbf{D}) = y)$$

- $|\Delta|$: The number of examples in Δ
- $I(\Psi) = 1$ if Ψ is true; otherwise, $I(\Psi) = 0$
- Alternative: Cross-validation accuracy
 - This will not be discussed further!!

Model Similarity

- Prediction similarity (or distance):
 - Given a set-aside test set Δ with schema X:

$$similarity(h_1(X), h_2(X)) = \frac{1}{|\Delta|} \sum_{\mathbf{x} \in \Delta} I(h_1(\mathbf{x}) = h_2(\mathbf{x}))$$
$$distance(h_1(X), h_2(X)) = 1 - similarity(h_1(X), h_2(X))$$

• Similarity between $p_{h_1}(Y \mid X)$ and $p_{h_2}(Y \mid X)$:

$$KL\text{-}distance = \frac{1}{|\Delta|} \sum_{\mathbf{x} \in \Delta} \sum_{y} p_{h_1}(y \mid x) \log \frac{p_{h_1}(y \mid x)}{p_{h_2}(y \mid x)}$$

 $-p_{h_i}(Y \mid X)$: Class-probability estimated by $h_i(X)$

Attribute Predictiveness

- Predictiveness of $V \subseteq X$: (based on h(X))
 - PD-predictiveness: distance(h(X), h(X - V))
 - *KL-predictiveness*:

$$KL$$
-distance $(h(X), h(X - V))$

• Alternative:

$$accuracy(h(X)) - accuracy(h(X - V))$$

- This will not be discussed further!!

Target Patterns

- Find subset $\sigma(\mathbf{D})$ such that $h(X; \sigma(\mathbf{D}))$ has high prediction accuracy on a test set Δ
 - E.g., The loan decision process in 2003's WI is similar to a set Δ of discriminatory decision examples
- Find subset $\sigma(\mathbf{D})$ such that $h(X; \sigma(\mathbf{D}))$ is similar to a given model $h_0(X)$
 - E.g., The loan decision process in 2003's WI is similar to a discriminatory decision model $h_0(X)$
- Find subset $\sigma(\mathbf{D})$ such that V is predictive on $\sigma(\mathbf{D})$
 - E.g., Race is an important factor of loan approval decision in 2003's WI

Test-Set Accuracy

- We would like to discover:
 - The loan decision process in 2003's WI is similar to a set of problematic decision examples
- Given:
 - Data table **D**: The loan decision dataset
 - Test set Δ : The set of problematic decision examples
- Goal:
 - Find subset $\sigma_{Loc,Time}(\mathbf{D})$ such that $h(X; \sigma_{Loc,Time}(\mathbf{D}))$ has high prediction accuracy on Δ

Model Similarity

- We would like to discover:
 - The loan decision process in 2003's WI is similar to a problematic decision model
- Given:
 - Data table **D**: The loan decision dataset
 - Model $h_0(X)$: The problematic decision model
- Goal:
 - Find subset $\sigma_{Loc,Time}(\mathbf{D})$ such that $h(X; \sigma_{Loc,Time}(\mathbf{D}))$ is similar to $h_0(X)$

Attribute Predictiveness

- We would like to discover:
 - Race is an important factor of loan approval decision in 2003's WI
- Given:
 - Data table **D**: The loan decision dataset
 - Attribute V of interest: Race
- Goal:
 - Find subset $\sigma_{Loc,Time}(\mathbf{D})$ such that $h(X; \sigma_{Loc,Time}(\mathbf{D}))$ is very different to $h(X V; \sigma_{Loc,Time}(\mathbf{D}))$

Model-Based Subset Analysis

- Given: A data table **D** with schema [Z, X, Y]
 - **Z**: Dimension attributes, e.g., {*Location*, *Time*}
 - X: Predictor attributes, e.g., {Race, Sex, ...}
 - Y: Class-label attribute, e.g., Approval

Data table **D**

Location	Time	Race	Sex	•••	Approval
AL, USA	Dec, 04	White	М		Yes
•••					•••
WY, USA	Dec, 04	Black	F		No

Model-Based Subset Analysis

	Z : Dimension		X: Predictor			Y: Class	
	Location	Time	Race	Sex	•••	Approval	
	AL, USA	Dec, 04	White	М		Yes	
$\sigma_{[USA, Dec 04]}(\mathbf{D}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$							
	WY, <mark>USA</mark>	Dec, 04	Black	F		No	
		1					

- - Goal: To understand the relationship between *X* and *Y* on different subsets $\sigma_{\mathbf{z}}(\mathbf{D})$ of data \mathbf{D}
 - Relationship: $p(Y | X, \sigma_z(\mathbf{D}))$
 - Approach:
 - Build model $h(X; \sigma_{\mathbf{Z}}(\mathbf{D})) \approx p(Y | X, \sigma_{\mathbf{Z}}(\mathbf{D}))$
 - Evaluate $h(X; \sigma_{\mathbf{Z}}(\mathbf{D}))$
 - Accuracy, model similarity, predictiveness

Dimension and Level

Example: Full Materialization

Scoring Function

- Conceptually, a machine-learning model h(X; S) is a scoring function Score(y, x; S) that gives each class y a score on test example x
 - $-h(x; S) = \operatorname{argmax}_{y} Score(y, x; S)$
 - $Score(y, x; S) \approx p(y \mid x, S)$
 - − **S**: A set of training examples

Location	Time	Race	Sex	•••	Approval
AL, USA	Dec, 85	White	М		Yes
•••	•••				
WY, USA	Dec, 85	Black	F		No

[Yes: 80%, No: 20%]

Bottom-Up Score Computation

- Base cells: The finest-grained (lowest-level) cells in a cube
- Base subsets $b_i(\mathbf{D})$: The lowest-level data subsets
 - The subset of data records in a base cell is a base subset
- Properties:
 - $-\mathbf{D} = \bigcup_i b_i(\mathbf{D})$ and $b_i(\mathbf{D}) \cap b_i(\mathbf{D}) = \emptyset$
 - Any subset $\sigma_S(\mathbf{D})$ of \mathbf{D} that corresponds to a cube cell is the union of some base subsets
 - Notation:
 - $\sigma_{S}(\mathbf{D}) = b_{i}(\mathbf{D}) \cup b_{j}(\mathbf{D}) \cup b_{k}(\mathbf{D})$, where $S = \{i, j, k\}$

Bottom-Up Score Computation

Domain Lattice

Data subset:

$$\sigma_{S}(\mathbf{D}) = \bigcup_{i \in S} b_{i}(\mathbf{D})$$

Scores:

$$Score(y, \mathbf{x}; \sigma_{\mathbf{S}}(\mathbf{D})) = F(\{Score(y, \mathbf{x}; b_{i}(\mathbf{D})) : i \in \mathbf{S}\})$$

	1985	•••
All	$\sigma_{S}(\mathbf{D})$	•••

	1985	•••
WA	$b_{I}(\mathbf{D})$	•••
WI	$b_2(\mathbf{D})$	
WY	$b_3(\mathbf{D})$	•••

	1985	•••
All	$Score(y, x; \sigma_S(\mathbf{D}))$	

	1985	•••
WA	$Score(y, x; b_I(\mathbf{D}))$	•••
WI	$Score(y, x; b_2(\mathbf{D}))$	
WY	$Score(y, x; b_3(\mathbf{D}))$	•••

Decomposable Scoring Function

- Let $\sigma_{\mathbf{S}}(\mathbf{D}) = \bigcup_{i \in \mathbf{S}} b_i(\mathbf{D})$.
 - $-b_i(\mathbf{D})$ is a base (lowest-level) subset
- Distributively decomposable scoring function:
 - $-Score(y, \mathbf{x}; \sigma_{\mathbf{S}}(\mathbf{D})) = F(\{Score(y, \mathbf{x}; b_i(\mathbf{D})) : i \in \mathbf{S}\})$
 - -F is an distributive aggregate function
- Algebraically decomposable scoring function:
 - $-Score(y, \mathbf{x}; \sigma_{\mathbf{S}}(\mathbf{D})) = F(\{G(y, \mathbf{x}; b_i(\mathbf{D})) : i \in \mathbf{S}\})$
 - -F is an algebraic aggregate function
 - $-G(y, x; b_i(\mathbf{D}))$ returns a length-fixed vector of values

Algorithm

- Input: The dataset **D** and test set Δ
- For each lowest-level cell, which contains data $b_i(\mathbf{D})$:
 - Build a model on $b_i(\mathbf{D})$
 - For each $x \in \Delta$ and y, compute:
 - $Score(y, x; b_i(\mathbf{D}))$, if distributive
 - $G(y, x; b_i(\mathbf{D}))$, if algebraic
- Use standard data cube computation technique to compute the scores in a bottom-up manner (by Observation 2)
- Compute the cell values using the scores (by Observation 1)

Probability-Based Ensemble

• Scoring function:

$$h_{PBE}(\boldsymbol{x}; \boldsymbol{\sigma}_{S}(\mathbf{D})) = \operatorname{arg\,max}_{y} Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{\sigma}_{S}(\mathbf{D}))$$

$$Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; b_{i}(\mathbf{D})) = h(\boldsymbol{y} \mid \boldsymbol{x}; b_{i}(\mathbf{D})) \cdot g(b_{i} \mid \boldsymbol{x})$$

$$Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{\sigma}_{S}(\mathbf{D})) = \sum_{i \in S} \left(Score_{PBE}(\boldsymbol{y}, \boldsymbol{x}; b_{i}(\mathbf{D}))\right)$$

- $-h(y \mid x; b_i(\mathbf{D}))$: Model h's estimation of $p(y \mid x, b_i(\mathbf{D}))$
- $-g(b_i | \mathbf{x})$: A model that predicts the probability that \mathbf{x} belongs to base subset $b_i(\mathbf{D})$

Optimality of PBE

• $Score_{PRF}(y, x; \sigma_{S}(\mathbf{D})) = c \cdot p(y \mid x, x \in \sigma_{S}(\mathbf{D}))$ $p(y \mid x, x \in \sigma_s(\mathbf{D}))$ $= \frac{p(y, x \in \sigma_S(\mathbf{D}) \mid x)}{p(x \in \sigma_S(\mathbf{D}) \mid x)}$ $= z \cdot p(y, x \in \sigma_{s}(\mathbf{D}) \mid x)$ $= z \cdot \sum_{i \in S} p(y, x \in b_i(\mathbf{D}) \mid x) \qquad [b_i(\mathbf{D})' \text{s partitions } \sigma_S(\mathbf{D})]$ $= z \cdot \sum_{i \in S} \left(p(y \mid \boldsymbol{x} \in b_i(\mathbf{D}), \boldsymbol{x}) \cdot p(\boldsymbol{x} \in b_i(\mathbf{D}) \mid \boldsymbol{x}) \right)$ $= z \cdot \sum_{i=s} \left(h(y \mid \boldsymbol{x}; b_i(\mathbf{D})) \cdot g(b_i \mid \boldsymbol{x}) \right)$

Efficiency Comparison

Where is the Time Spend on

- Goal:
 - To compare **PBE** with the **gold standard**
 - PBE: A set of *n* J48s/RFs each of which is trained on a small partition of the whole dataset
 - Gold standard: A J48/RF trained on the whole data
 - To understand how the number of base classifiers in a PBE affects the accuracy of the PBE
- Datasets:
 - Eight UCI datasets

Adult Dataset

Nursery Dataset

Error = The average of the absolute difference between a **ground-truth** cell value and a cell value computed by **PBE**

