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Big Picture
• We are not trying to build a single accuracy “model”
• We want to find interesting subsets of the dataset

– Interestingness: Defined by the “model” built on a subset
– Cube space: A combination of dimension attribute values 

defines a candidate subset (just like regular OLAP)
• We are not using regular aggregate functions as the 

measures to summarize subsets
• We want the measures to represent 

decision/prediction behavior
– Summarize a subset using the “model” built on it
– Big difference from regular OLAP!!
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One Sentence Summary

• Take OLAP data cubes, and keep everything 
the same except that we change the meaning 
of the cell values to represent the 
decision/prediction behavior
– The idea is simple, but it leads to interesting and 

promising data mining tools
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Example (1/5): Regular OLAP

Location Time # of App.
… … ...

AL, USA Dec, 04 2
… … …

WY, USA Dec, 04 3

Z: Dimensions Y: MeasureGoal: Look for patterns of unusually
high numbers of applications

……………………
………108270USA
……3025502030CA
…Dec…JanDec…Jan
…20032004

Cell value: Number of loan applications

…………
…9080USA
…90100CA
…0304

Roll up

Coarser
regions

………………
………10WY

……5…
………55AL

USA

…1535YT
…2025…
…151520AB

CA

…Dec…Jan
…2004

Drill
down

Finer regions
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Example (2/5): Decision Analysis
Goal: Analyze a bank’s loan decision process

w.r.t. two dimensions: Location and Time

Model h(X, σZ(D))
E.g., decision tree

No…FBlackDec, 04WY, USA
………………

Yes…MWhiteDec, 04AL, USA

Approval…SexRaceTimeLocation
Z: Dimensions X: Predictors Y: Class
Fact table D

cube subset

Location Time
All

Japan USA Norway

AL W Y

All

Country

State
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Example (3/5): Questions of Interest

• Goal: Analyze a bank’s loan decision process with 
respect to two dimensions: Location and Time

• Target: Find discriminatory loan decision
• Questions:

– Are there locations and times when the decision making 
was similar to a set of discriminatory decision examples
(or similar to a given discriminatory decision model)?

– Are there locations and times during which Race or Sex
is an important factor of the decision process?
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Example (4/5): Prediction Cube

Model h(X, σ[USA, Dec 04](D))
E.g., decision tree

2004 2003 …
Jan … Dec Jan … Dec …

CA 0.4 0.8 0.9 0.6 0.8 … …

USA 0.2 0.3 0.5 … … …

… … … … … … … …

1. Build a model using data 
from USA in Dec., 1985

2. Evaluate that model
Measure in a cell:
• Accuracy of the model
• Predictiveness of Race

measured based on that
model

• Similarity between that
model and a given model

N…FBlackDec, 04WY, USA
………………
Y…MWhiteDec, 04AL ,USA

Approval…SexRaceTimeLocation

Data  σ[USA, Dec 04](D)
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Example (5/5): Prediction Cube
2004 2003 …

Jan … Dec Jan … Dec …
CA 0.4 0.1 0.3 0.6 0.8 … …

USA 0.7 0.4 0.3 0.3 … … …

… … … … … … … …

………………………

…………0.80.70.9WY

………0.10.10.3…

…………0.20.10.2AL
USA

………0.20.10.20.3YT

………0.30.30.10.1…

……0.20.10.10.20.4AB
CA

…Dec…JanDec…Jan
…20032004

Drill down

…………

…0.30.2USA

…0.20.3CA
…0304Roll up

Cell value: Predictiveness of Race
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Outline

• Motivating example
• Definition of prediction cubes
• Efficient prediction cube materialization
• Experimental results
• Conclusion



10

Prediction Cubes

• User interface: OLAP data cubes
– Dimensions, hierarchies, roll up and drill down

• Values in the cells:
– Accuracy
– Similarity
– Predictiveness

→ Test-set accuracy cube
→ Model-similarity cube
→ Predictiveness cube
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Test-Set Accuracy Cube

No…FBlackDec, 04WY, USA
………………

Yes…MWhiteDec, 04AL, USA

Approval…SexRaceTimeLocation
Data table DGiven:

- Data table D
- Test set ∆

No…MBlack
…………

Yes…FWhite
Approval…SexRace

Test set ∆

……………………
………0.90.30.2USA
……0.50.60.30.20.4CA
…Dec…JanDec…Jan
…20032004

Level: [Country, Month]

The decision model of USA during Dec 04
had high accuracy when applied to ∆

Build a model
Accuracy

Yes
…

Yes

Prediction
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Model-Similarity Cube

No…FBlackDec, 04WY, USA
………………

Yes…MWhiteDec, 04AL, USA

Approval…SexRaceTimeLocation
Data table DGiven:

- Data table D
- Target model h0(X)
- Test set ∆ w/o labels

…MBlack
………
…FWhite
…SexRace

Test set ∆

……………………
………0.90.30.2USA
……0.50.60.30.20.4CA
…Dec…JanDec…Jan
…20032004

Level: [Country, Month]

The loan decision process in USA during Dec 04
was similar to a discriminatory decision model h0(X)

Build a model

Similarity

No

…

Yes

Yes

…

Yes
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Predictiveness Cube

2004 2003 …
Jan … Dec Jan … Dec …

CA 0.4 0.2 0.3 0.6 0.5 … …
USA 0.2 0.3 0.9 … … …

… … … … … … … …

Given:
- Data table D
- Attributes V
- Test set ∆ w/o labels

Data table D

Build models

…MBlack
………
…FWhite
…SexRace

Test set ∆

Level: [Country, Month]
Predictiveness of V

Race was an important factor of loan approval 
decision in USA during Dec 04

h(X) h(X−V)

No…FBlackDec, 04WY, USA
………………

Yes…MWhiteDec, 04AL, USA

Approval…SexRaceTimeLocation

Yes
No
.
.
No

Yes
No
.
.
Yes
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Outline

• Motivating example
• Definition of prediction cubes
• Efficient prediction cube materialization
• Experimental results
• Conclusion
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One Sentence Summary

• Reduce prediction cube computation to data 
cube computation
– Somehow represent a data-mining model as a 

distributive or algebraic (bottom-up computable) 
aggregate function, so that data-cube techniques 
can be directly applied
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Full Materialization
Full Materialization Table

[All,All]

[Country,Year]

[All,Year][Country,All]

Level Location Time Cell Value

[All,All] ALL ALL 0.7

CA ALL 0.4

… ALL …

USA ALL 0.9

ALL 1985 0.8

ALL … …

ALL 2004 0.3

CA 1985 0.9

CA 1986 0.2

… … …

USA 2004 0.8

[Country,Year]

[All,Year]

[Country,All]

USA

…

CA

2004…19861985

All

2004…19861985

[All, Year]

USA

…

CA

All

All

All

[All, All]

[Country, Year] [Country, All]
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Bottom-Up Data Cube 
Computation

1985 1986 1987 1988

Norway 10 30 20 24

… 23 45 14 32

USA 14 32 42 11

1985 1986 1987 1988

All 47 107 76 67

All

All 297

All

Norway 84

… 114

USA 99

Cell Values: Numbers of loan applications
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Functions on Sets
• Bottom-up computable functions: Functions that can be 

computed using only summary information
• Distributive function: α(X) = F({α(X1), …, α(Xn)})

– X = X1 ∪ … ∪ Xn and Xi ∩ Xj = ∅
– E.g., Count(X) = Sum({Count(X1), …, Count(Xn)})

• Algebraic function: α(X) = F({G(X1), …, G(Xn)})
– G(Xi) returns a length-fixed vector of values
– E.g., Avg(X) = F({G(X1), …, G(Xn)})

• G(Xi) = [Sum(Xi), Count(Xi)]
• F({[s1, c1], …, [sn, cn]}) = Sum({si}) / Sum({ci})
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Scoring Function
• Represent a model as a function of sets.
• Conceptually, a machine-learning model h(X; σZ(D)) 

is a scoring function Score(y, x; σZ(D)) that gives 
each class y a score on test example x
– h(x; σZ(D)) = argmax y Score(y, x; σZ(D))
– Score(y, x; σZ(D)) ≈ p(y | x, σZ(D))
– σZ(D): The set of training examples (a cube subset of D)
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Bottom-up Score Computation
• Key observations:

– Observation 1: Score(y, x; σZ(D)) is a function of cube 
subset σZ(D); if it is distributive or algebraic, the data 
cube bottom-up technique can be directly applied

– Observation 2: Having the scores for all the test 
examples and all the cells is sufficient to compute a 
prediction cube

• Scores  ⇒ predictions  ⇒ cell values
• Details depend on what each cell means (i.e., type of prediction

cubes); but straightforward



21

1985 1986 1987 1988

Norway

…

USA

1985 1986 1987 1988

All

All

Norway

…

USA

All

All

scores scores scores scores

scores scores scores scores

scores scores scores scores

scores scores scores scores

scores

scores

scores

scores

value value value value

value value value value

value value value value

value value value value 

value 

value 

value 

value 

1. Build a model for each lowest-level cell
2. Compute the scores using data cube bottom-up technique

• Ob. 1: Distributive scoring function ⇒ bottom up
3. Use the scores to compute the cell values

• Ob. 2: Having scores  ⇒ having cell values



22

Machine-Learning Models

• Naïve Bayes:
– Scoring function: algebraic

• Kernel-density-based classifier:
– Scoring function: distributive

• Decision tree, random forest:
– Neither distributive, nor algebraic

• PBE: Probability-based ensemble (new)
– To make any machine-learning model distributive
– Approximation
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Probability-Based Ensemble
PBE version of decision 

tree on [WA, 85]Decision tree on [WA, 85]

1985

W
A

Jan … Dec

…
…
…

W
A

1985

…
…
…

Dec…Jan

Decision trees built on 
the lowest-level cells
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Probability-Based Ensemble

• Scoring function:

– h(y | x; bi(D)): Model h’s estimation of p(y | x, bi(D))
– g(bi | x): A model that predicts the probability that x

belongs to base subset bi(D)

))(;,(maxarg))(;( DD SS xx σσ yScoreh PBEyPBE =

( )∑ ∈
=

SS xx
i iPBEPBE byScoreyScore ))(;,())(;,( DDσ

)|())(;|())(;,( xxx iiiPBE bgbyhbyScore ⋅= DD
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Outline

• Motivating example
• Definition of prediction cubes
• Efficient prediction cube materialization
• Experimental results
• Conclusion
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Experiments

• Quality of PBE on 8 UCI datasets
– The quality of the PBE version of a model is slightly 

worse (0 ~ 6%) than the quality of the model trained 
directly on the whole training data.

• Efficiency of the bottom-up score computation 
technique

• Case study on demographic data

W
A

1985

…
…
…

…

W
A

1985

…
…
…

…

PBE vs.
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Efficiency of the Bottom-up 
Score Computation

• Machine-learning models:
– J48: J48 decision tree
– RF: Random forest
– NB: Naïve Bayes
– KDC: Kernel-density-based classifier

• Bottom-up method vs. Exhaustive method
− PBE-J48
− PBE-RF
− NB
− KDC

− J48ex
− RFex
− NBex
− KDCex
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Synthetic Dataset

• Dimensions: Z1, Z2 and Z3.

• Decision rule:

All

0 1 n

All

A B C D E

0   1   2   3   4   5   6   7   8   9

Z1 and Z2 Z3

Condition Rule
When Z1>1 Y = I(4X1+3X2+2X3+X4+0.4X6 > 7)
else when Z3 mod 2 = 0 Y = I(2X1+2X2+3X3+3X4+0.4X6 > 7)
else Y = I(0.1X5+X1>1)
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Efficiency Comparison
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Take-Home Messages

• Promising exploratory data analysis paradigm:
– Use models to identify interesting subsets
– Concentrate only on subsets in the cube space

• Those are meaningful subsets

– Precompute the results
– Provide the users with an interactive tool

• A simple way to plug “something” into cube-style 
analysis:
– Try to describe/approximate “something” by a 

distributive or algebraic function
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Related Work: Building models 
in OLAP 

• Multi-dimensional regression [Chen, VLDB 02]
– Goal: Detect changes of trends
– Build linear regression models for cube cells

• Step-by-step regression in stream cube [Liu, PAKDD 03]
• Loglinear-based quasi cubes [Barbara, J. IIS 01]

– Use loglinear model to approximately compress dense 
regions of a data cube

• NetCube [Margaritis, VLDB 01]
– Build Bayes Net on the entire dataset of approximately 

answer count queries
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Related Work: Advanced Cube-
Style Analysis

• Cubegrades [Imielinski, J. DMKD 02]
– Extend data cubes using ideas from association rules
– How the measure changes when we rollup or drill down

• Constrained gradients in data cube [Dong, VLDB 01]
– Find pairs of similar cell characteristics associated with 

big changes in measure
• User-cognizant multidimensional analysis 

[Sarawagi, VLDBJ 01]
– Help users to explore the most informative unvisited 

regions in a data cube using max entropy principle



Questions
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What are Our Assumptions?

• Machine-learning models are good approximation 
of the true decision/prediction model
– Evaluate accuracy

• The size of each base subset is large enough to 
build a good model
– Future work: Find the proper levels of subsets to start 

from

• Model properties are evaluated by test sets
– We did not consider looking at the models themselves
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Why Test Set?
• To obtain quantitative model properties, we need 

test set
• Questions: Why to let users to provide test sets?
• Flexibility vs. ease of use

– Flexibility: The user can specify p(X) that he/she is 
interested in (e.g., focus on rich people)

• E.g., compare p1(Y | X, σ(D)) with p2(Y | X, σ(D))
– Simple fix:

• Sample test set from the dataset.
• Cross-validation cube
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Why PBE is not that good?

• If the probability estimation of the base models is 
correct, then PBE is optimal

• Why it is not optimal in reality?
– The probability estimation method is not good
– The training datasets for base models are too small

• Fix:
– Work on the probability estimation method
– Build models for some non-base-level cells
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Feature Selection vs. Prediction Cubes

• Feature selection:
– Goal: Find the best k predictive attributes
– Search space: 2n   (n: number of attributes)

• Prediction cubes:
– Goal: Find interesting cube cells
– Search space: 2d (d: number of dimension attributes)
– You may use accuracy cube to find predictive 

dimension attributes, but not is not our goal
– For the predictiveness cube, the attributes whose 

predictiveness is of interest is given
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Why We Need Efficient 
Precomputation?

• Several hours vs. several days vs. several months
• For upper level cells, if the machine learning 

algorithm is not scalable and we do not have a 
bottom-up method, we may never get the result



Backup Slides
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Theoretical Comparison

• Training complexity:
– Exhaustive:
– Bottom-up:

( )∑ ∈
×××

Levelsll lltrain
l

d
l

d d
d nfZZ

],...,[ ],...,[
)()(

1
1 1

1 )(||...|| 

)(||...|| ]1,...,1[
)1()1(

1 nfZZ traind ×××

All

MA WI MN

Madison, WI Green Bay, WI

Z1
(3) = All All

85 86 04

Jan., 86 Dec., 86

Z1
(2) = State

Z1
(1) = City

Z2
(3) = All

Z2
(2) = Year

Z2
(1) = Month

Z1 = Location Z2 = Time
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Theoretical Comparison

• Testing complexity:
– Exhaustive:
– Bottom-up:

( )∑ ∈
×××

Levelsll lltest
l

d
l

d d
d nfZZ

],...,[ ],...,[
)()(

1
1 1
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×××
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[3,3]

[2,2]

[1,1]
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[3,2][2,3]

Levels
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Test-Set-Based Model Evaluation

• Given a set-aside test set ∆ of schema [X, Y]:
– Accuracy of h(X):

• The percentage of ∆ that are correctly classified
– Similarity between h1(X) and h2(X):

• The percentage of ∆ that are given the same class 
labels by h1(X) and h2(X)

– Predictiveness of V ⊆ X: (based on h(X))
• The difference between h(X) and h(X−V) measured 

by ∆; i.e., the percentage of ∆ that are predicted 
differently by h(X) and h(X−V)
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Model Accuracy

• Test-set accuracy (TS-accuracy):
– Given a set-aside test set ∆ with schema [X, Y],

• |∆|: The number of examples in ∆
• I(Ψ) = 1 if Ψ is true; otherwise, I(Ψ) = 0

• Alternative: Cross-validation accuracy
– This will not be discussed further!!

∑ ∈
=

∆),(
));((

||
1

y
yhI

x
Dx

∆accuracy(h(X; D) | ∆) =
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Model Similarity

• Prediction similarity (or distance):
– Given a set-aside test set ∆ with schema X:

• Similarity between ph1
(Y | X) and ph2

(Y | X):

– phi
(Y | X): Class-probability estimated by hi(X)

∑ ∈
=

∆∆ x
xx ))()((

||
1

21 hhIsimilarity(h1(X), h2(X)) =

∑ ∑∈∆∆ x y
h

h
h xyp

xyp
xyp

)|(
)|(

log)|(
||

1

2

1

1KL-distance =

distance(h1(X), h2(X)) = 1 – similarity(h1(X), h2(X))
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Attribute Predictiveness

• Predictiveness of V ⊆ X: (based on h(X))
– PD-predictiveness:

– KL-predictiveness:

• Alternative:
accuracy(h(X)) – accuracy(h(X – V))

– This will not be discussed further!!

distance(h(X), h(X – V))

KL-distance(h(X), h(X – V))
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Target Patterns
• Find subset σ(D) such that h(X; σ(D)) has high prediction 

accuracy on a test set ∆
– E.g., The loan decision process in 2003’s WI is similar to 

a set ∆ of discriminatory decision examples
• Find subset σ(D) such that h(X; σ(D)) is similar to a given 

model h0(X)
– E.g., The loan decision process in 2003’s WI is similar to 

a discriminatory decision model h0(X)
• Find subset σ(D) such that V is predictive on σ(D)

– E.g., Race is an important factor of loan approval 
decision in 2003’s WI
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Test-Set Accuracy

• We would like to discover:
– The loan decision process in 2003’s WI is similar to a 

set of problematic decision examples

• Given: 
– Data table D: The loan decision dataset
– Test set ∆: The set of problematic decision examples

• Goal:
– Find subset σLoc,Time(D) such that h(X; σLoc,Time(D)) has 

high prediction accuracy on ∆
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Model Similarity

• We would like to discover:
– The loan decision process in 2003’s WI is similar to a 

problematic decision model

• Given:
– Data table D: The loan decision dataset
– Model h0(X): The problematic decision model

• Goal:
– Find subset σLoc,Time(D) such that h(X; σLoc,Time(D)) is 

similar to h0(X)
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Attribute Predictiveness

• We would like to discover:
– Race is an important factor of loan approval decision 

in 2003’s WI

• Given:
– Data table D: The loan decision dataset
– Attribute V of interest: Race

• Goal:
– Find subset σLoc,Time(D) such that h(X; σLoc,Time(D)) is 

very different to h(X – V; σLoc,Time(D))
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Model-Based Subset Analysis

• Given: A data table D with schema [Z, X, Y]
– Z: Dimension attributes, e.g., {Location, Time}
– X: Predictor attributes, e.g., {Race, Sex, …}
– Y: Class-label attribute, e.g., Approval

No…FBlackDec, 04WY, USA
………………

Yes…MWhiteDec, 04AL, USA

Approval…SexRaceTimeLocation
Data table D
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Model-Based Subset Analysis

No…FBlackDec, 04WY, USA
………………

Yes…MWhiteDec, 04AL, USA

Approval…SexRaceTimeLocation
Z: Dimension X: Predictor Y: Class

σ[USA, Dec 04](D)

• Goal: To understand the relationship between X and Y on 
different subsets σZ(D) of data D
– Relationship: p(Y | X, σZ(D))

• Approach: 
– Build model h(X; σZ(D)) ≈ p(Y | X, σZ(D))
– Evaluate h(X; σZ(D))

• Accuracy, model similarity, predictiveness
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Dimension and Level

All

MA WI MN

Madison, WI Green Bay, WI

Z1
(3) = All All

85 86 04

Jan., 86 Dec., 86

Z1
(2) = State

Z1
(1) = City

Z2
(3) = All

Z2
(2) = Year

Z2
(1) = Month

Z1 = Location Z2 = Time

[3,3]

[2,2]

[1,1]

[2,1][1,2]

[3,1][1,3]

[3,2][2,3]

[All,All]

[State,Year]

[City,Month]

[City,Year]

[All,Month][City,All]

[All,Year][State,All]

[State,Month]
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Example: Full Materialization

[All,All]

[State,Year]

[City,Month]

[City,Year]

[All,Month][City,All]

[All,Year][State,All]

[State,Month]

All

All

[All, All]

All

AL

…

WY

85 … 05

All

[City, Month]
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Scoring Function
• Conceptually, a machine-learning model h(X; S) is 

a scoring function Score(y, x; S) that gives each 
class y a score on test example x
– h(x; S) = argmax y Score(y, x; S)
– Score(y, x; S) ≈ p(y | x, S)
– S: A set of training examples

x

h(X; S)

No…FBlackDec, 85WY, USA
………………

Yes…MWhiteDec, 85AL, USA

Approval…SexRaceTimeLocation

S

[Yes: 80%, No: 20%]
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Bottom-Up Score Computation

• Base cells: The finest-grained (lowest-level) cells 
in a cube

• Base subsets bi(D): The lowest-level data subsets
– The subset of data records in a base cell is a base subset

• Properties:
– D = ∪i bi(D) and bi(D) ∩ bj(D) = ∅
– Any subset σS(D) of D that corresponds to a cube cell is 

the union of some base subsets
– Notation: 

• σS(D) = bi(D) ∪ bj(D) ∪ bk(D), where S = {i, j, k}
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Bottom-Up Score Computation
Domain
Lattice

Scores:
Score(y, x; σS(D)) =
F({Score(y, x; bi(D)) : i ∈ S})

Data subset:
σS(D) =  ∪i∈S bi(D)

1985 …

WA b1(D) …

WI b2(D)

WY b3(D) …

1985 …

All σS(D) …

1985 …

All Score(y, x; σS(D)) …[All,All]

[State,Year]

[All,Year][State,All]

1985 …

WA Score(y, x; b1(D)) …

WI Score(y, x; b2(D))

WY Score(y, x; b3(D)) …
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Decomposable Scoring Function

• Let σS(D) = ∪i∈S bi(D).
– bi(D) is a base (lowest-level) subset

• Distributively decomposable scoring function:
– Score(y, x; σS(D)) = F({Score(y, x; bi(D)) : i ∈ S})
– F is an distributive aggregate function

• Algebraically decomposable scoring function:
– Score(y, x; σS(D)) = F({G(y, x; bi(D)) : i ∈ S})
– F is an algebraic aggregate function
– G(y, x; bi(D)) returns a length-fixed vector of values
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Algorithm

• Input: The dataset D and test set ∆
• For each lowest-level cell, which contains data bi(D):

– Build a model on bi(D)
– For each x ∈ ∆ and y, compute:

• Score(y, x; bi(D)), if distributive
• G(y, x; bi(D)), if algebraic

• Use standard data cube computation technique to compute 
the scores in a bottom-up manner (by Observation 2)

• Compute the cell values using the scores (by Observation 1)
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Probability-Based Ensemble

• Scoring function:

– h(y | x; bi(D)): Model h’s estimation of p(y | x, bi(D))
– g(bi | x): A model that predicts the probability that x

belongs to base subset bi(D)

))(;,(maxarg))(;( DD SS xx σσ yScoreh PBEyPBE =

( )∑ ∈
=

SS xx
i iPBEPBE byScoreyScore ))(;,())(;,( DDσ

)|())(;|())(;,( xxx iiiPBE bgbyhbyScore ⋅= DD
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Optimality of PBE

• ScorePBE(y, x; σS(D)) = c ⋅ p(y | x, x∈σS(D))
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Efficiency Comparison
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Where is the Time Spend on
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Accuracy of PBE
• Goal:

– To compare PBE with the gold standard
• PBE: A set of n J48s/RFs each of which is trained 

on a small partition of the whole dataset
• Gold standard: A J48/RF trained on the whole data

– To understand how the number of base 
classifiers in a PBE affects the accuracy of the 
PBE

• Datasets:
– Eight UCI datasets
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Accuracy of PBE
Adult Dataset
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Accuracy of PBE
Nursery Dataset
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Accuracy of PBE
Error = The average of the absolute difference between

a ground-truth cell value and a cell value computed by PBE

Flat Dataset
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