
Privacy Skyline: Privacy with Multidimensional
Adversarial Knowledge

Bee-Chung Chen* Kristen LeFevre† Raghu Ramakrishnan

 University of Wisconsin – Madison, USA Yahoo! Research
 {beechung, lefevre}@cs.wisc.edu ramakris@yahoo-inc.com

ABSTRACT

Privacy is an important issue in data publishing. Many

organizations distribute non-aggregate personal data for research,

and they must take steps to ensure that an adversary cannot

predict sensitive information pertaining to individuals with high

confidence. This problem is further complicated by the fact that, in

addition to the published data, the adversary may also have access

to other resources (e.g., public records and social networks relating

individuals), which we call external knowledge. A robust privacy

criterion should take this external knowledge into consideration.

In this paper, we first describe a general framework for reasoning

about privacy in the presence of external knowledge. Within this

framework, we propose a novel multidimensional approach to

quantifying an adversary’s external knowledge. This approach

allows the publishing organization to investigate privacy threats

and enforce privacy requirements in the presence of various types

and amounts of external knowledge. Our main technical

contributions include a multidimensional privacy criterion that is

more intuitive and flexible than previous approaches to modeling

background knowledge. In addition, we provide algorithms for

measuring disclosure and sanitizing data that improve

computational efficiency several orders of magnitude over the

best known techniques.

1. INTRODUCTION

A number of recent high-profile attacks have illustrated the

importance of protecting individuals’ privacy when publishing or

distributing sensitive personal data. For example, by combining a

public voter registration list and a released database of health

insurance information, Sweeney was able to identify the medical

record of the governor of Massachusetts [16].

In the context of data publishing, it is intuitive to think of privacy

as a game between a data owner, who wants to release data for

research, and an adversary, who wants to discover sensitive

information about the individuals in the database. Following most

of the previous literature, we take a constrained optimization

approach. That is, the data owner seeks to find the “snapshot”

(release candidate) of her original dataset that simultaneously

satisfies the given privacy criterion and maximizes some utility

measure. Note that the privacy criterion determines the safety of

the released data, and the utility measure is an orthogonal issue.

The focus of this paper is developing a practical privacy criterion

that captures the problem of attribute disclosure in the presence of

external knowledge. Specifically, we consider the case where the

data owner has a table of data (denoted by D), in which each row

is a record pertaining to some individual. The attributes of this

table consist of (1) a set of identifier (ID) attributes which will be

removed from the released dataset, (2) a set of quasi-identifier

(QI) attributes that together can potentially be used to re-identify

individuals, and (3) a sensitive attribute (denoted by S), which is

possibly set-valued. For example, consider the original data in

Figure 1. In this example, Name is the ID attribute. Age, Gender,

Zipcode are the QI attributes, and Disease is the sensitive attribute.

After applying an “anonymization” procedure, the data owner

publishes the resulting release candidate D*. In this paper, we

consider two approaches to generating D*. The first approach

generalizes the QI attribute values to obtain a generalized table

(as in [7, 8, 16]). Figure 2 shows an example. The second

approach partitions the individuals into disjoint groups, producing

a bucketized dataset, and releases the multiset (or bag) of sensitive

values for each group (as in [14, 17]), e.g., Figure 3.

Now consider an adversary whose goal is to predict whether a
target individual t has a target sensitive value s. In making this
prediction, he has access to the released dataset D*, as well as his
own external knowledge K. This external knowledge may include
similar datasets released by other organizations, social networks
relating individuals, and other instance-level information. A
robust privacy criterion should place an upper bound on the
adversary’s confidence in predicting that any individual t has
sensitive value s. In other words, the criterion should guarantee
that Pr(t has s | K, D*) is sufficiently small.

Returning to the example in Figure 3, assume that each individual

has only one disease in the original dataset. In the absence of

external knowledge, intuitively the adversary can predict Tom to

have AIDS with confidence Pr(Tom has AIDS | D*) = 1/4 because

there are four individuals in group 2, only one of whom has AIDS.

However, the adversary can improve his confidence based on

external knowledge:

• The adversary knows Tom personally, and is sure he does not

have Cancer. After removing the record with Cancer, the

probability of Tom having AIDS becomes 1/3.

• From another dataset, the adversary determines that Gary has

Flu. By further removing Gary’s Flu record, the probability of

Tom having AIDS becomes 1/2.

• From public records, the adversary knows that Ann is Tom’s

wife. Thus, it is likely that if Ann has AIDS, then Tom does

as well. We will return to this example later in the paper.

In designing a privacy criterion incorporating adversarial
knowledge, we must address two key problems. First, we must

This work is supported in part by NSF grants ITR IIS-0326328 and IIS-0524671
*Bee-Chung Chen is supported by a Microsoft Research fellowship.
†
Kristen LeFevre is supported by an IBM Ph.D. fellowship.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

provide the data owner with the means to specify adversarial
knowledge K. Second, we must compute Pr(t has s | K, D*).
Unfortunately, the first problem is further complicated by the fact
that, in general, the data owner does not know precisely what
knowledge an adversary has. In fact, when data is published on
the worldwide web, there may be many different adversaries, each
with different external knowledge.

Martin et al. provide the first formal treatment of adversarial
external knowledge in attribute disclosure [14]. Their framework
provides a language for expressing such knowledge. Because it is
nearly impossible for the data owner to anticipate specific
adversarial knowledge, they instead propose quantifying the
external knowledge, and releasing data that is resilient to a certain
amount of knowledge (in the worst case, regardless of the specific
content of this knowledge). Unfortunately, the way that they
quantify external knowledge (the maximum number k of
implications that an adversary may know) is not intuitive. In
practice, this makes it difficult for the data owner to set an
appropriate k value. One of our main goals is to provide intuitive,
and hence more usable, quantification of external knowledge.

1.1 Contributions & Organization

In Section 2, we describe a theoretical framework for computing
the breach probability Pr(t has s | K, D*). This is related to several
Bayesian interpretations of privacy in data publishing [12, 14, 18].
In addition, we extend the study of attribute disclosure under
adversarial knowledge to set-valued sensitive attributes, which has
not previously been studied.

In Section 3, we describe our desiderata for the design of a
practical privacy criterion. Following these desiderata, in Section
4, we develop a novel multidimensional approach to quantifying
adversarial knowledge, creating a multidimensional knowledge
space for data privacy, which has not been studied before.

Using this multidimensional approach, we make several important
technical contributions: (1) In Section 4.2, we define a novel
skyline privacy criterion, which provides the data owner a flexible
way to enforce her privacy policy. (2) In Section 4.3, we propose
a novel skyline exploratory tool, which allows the data owner to
investigate the multidimensional knowledge space and understand
whether a particular release candidate is safe in the presence of
various types and amounts of adversarial knowledge. Using this
tool, we show (in Section 7.3) that an ℓ -diverse [12] release
candidate can be unsafe under certain types of external
knowledge. (3) In Sections 5 and 6, we develop efficient and
scalable algorithms for measuring disclosure and sanitizing data
(using an advanced multidimensional generalization technique [8])
in the presence of external knowledge. Each of these algorithms
is based on an important “congregation” property, and as shown
in Section 7, the algorithms improve computational efficiency
several orders of magnitude over the best known technique ([14]).

2. THEORETICAL FRAMEWORK

In this section, we give an overview of the theoretical framework
for computing the probability of a target statement E about an
original dataset D (e.g., individual t has sensitive value s in D)
given a release candidate D* derived from D and external
knowledge K about D, where D is not observed. The framework is
depicted diagrammatically in Figure 4.

2.1 Formalism

Like [12, 14], we conservatively assume that whenever the
adversary has knowledge about an individual, he always knows
the individual’s QI values, or full identification information (e.g.,
from public records). Under this assumption, we model the
original dataset as a set of individuals, each with a set or multiset
of associated sensitive values.

Original dataset: An original dataset is of the following form:

D = {(u1, S1), …, (un, Sn)},

where u1, …, un are n distinct individuals, and S1, …, Sn are sets or
multisets of sensitive values. We say t has s (denoted by s ∈ t[S])
in D iff (t, t[S]) ∈ D and s ∈ t[S].

Integrity Constraints: Integrity constraints may be defined on
the original dataset. In this paper, we consider the following cases:

• SVPI (single value per individual): Each individual has exactly
one sensitive value in D. That is, |Si| = 1, for all i. Note that the
case where some individuals do not have any sensitive values
can be handled by including a special sensitive value meaning
“no sensitive value.” Many studies of data privacy only
consider the SVPI case.

• MVPI (multiple values per individual): Each individual can
have multiple sensitive values in D. We further distinguish two
sub-cases. In the MVPI-Set case, each Si is a (possibly empty)
set. In the MVPI-Multiset case, each Si is a (possibly empty)
duplicate-preserving multiset.

In the rest of the paper, we will treat these three cases (SVPI,
MVPI-Set, and MVPI-Multiset) separately, whenever necessary.

Release candidate: An anonymization procedure takes the original
dataset as input, and produces a release candidate. We model a
release candidate as a set of disjoint groups, each of which
contains a set of individuals and their respective sensitive values.
Formally, a release candidate for original dataset D is of the form:

D* = {(G1, X1), …, (GB, XB)},

such that ∪i Gi = {u1, …, un}, Gi ∩ Gj = ∅ for i ≠ j, and Xi is the
multiset containing all occurrences of all sensitive values for all
the individuals in Gi. We call each (Gi, Xi) a QI-group. Notice
that generalized tables (Figure 2) and bucketized datasets (Figure
3) can be modeled in this way. For example, the bucketized data
in Figure 3 is represented as follows: D* =

{(G1={Ann, Bob, Cary, Dick}, X1={AIDS, AIDS, Flu, Flu}),

(G2={Ed, Frank, Gary, Tom}, X2={AIDS, Cancer, Flu, Flu})}.

Name Age Gender Zipcode Disease

Ann 20 F 12345 AIDS

Bob 24 M 12342 Flu

Cary 23 F 12344 Flu

Dick 27 M 12343 AIDS

Ed 35 M 12412 Flu

Frank 34 M 12433 Cancer

Gary 31 M 12453 Flu

Tom 38 M 12455 AIDS

Figure 1. Original dataset

 Age Gender Zipcode Disease

(Ann)

(Bob)

(Cary)

(Dick)

2* * 1234*

AIDS

Flu

Flu

AIDS

(Ed)

(Frank)

(Gary)

(Tom)

3* M 124**

Flu

Cancer

Flu

AIDS

 Figure 2. Generalized table

 Age Gender Zipcode Group

(Ann) 20 F 12345

(Bob) 24 M 12342

(Cary) 23 F 12344

(Dick) 27 M 12343

1

(Ed) 35 M 12412

(Frank) 34 M 12433

(Gary) 31 M 12453

(Tom) 38 M 12455

2

Figure 3. Bucketized dataset

Group Disease

1

AIDS

Flu

Flu

AIDS

2

Flu

Cancer

Flu

AIDS

Reconstruction: After observing D*, the adversary tries to

reconstruct the original dataset. A reconstruction R is an

assignment that matches each occurrence of each sensitive value

in Xi with some individual in Gi, such that the result satisfies the

integrity constraints defined on the original dataset. We use R(D*)

to denote the result, which is a possible original dataset. For

example, consider the bucketization in Figure 3; the following is

one of many reconstructions in the MVPI-Multiset case:

R(D*) = {(Ann, {Flu, Flu}), (Bob, {AIDS}), (Cary, {AIDS}),

(Ed, {Cancer, Flu}), (Frank, {AIDS, Flu})}.

Notice that the above R(D*) is not a reconstruction in the SVPI or
MVPI-Set case because it does not satisfy the corresponding
integrity constraints. In addition to integrity constraints, the
adversary may be able to eliminate certain reconstructions based
on his external knowledge.

External Knowledge: The adversary may also have access to
some external knowledge. In a very general sense, we can model
this external knowledge using a logical expression, possibly
containing variables. We say that an expression is ground if it
contains no variables. A ground expression can be evaluated on a
possible original dataset, and it returns true or false. We say that
reconstruction R satisfies expression E iff E is true on R(D*).

The precise syntax of expressions is application dependent and
need not be logic sentences. In this paper, we call an expression
of the form s∈t[S] or s∉t[S] a literal. An example of a ground
logic expression is (Flu∈Ann[S] ∧ Flu∈Bob[S]). The above
example reconstruction does not satisfy this expression. Suppose
t1 and t2 are variables ranging over individuals. In this case,
(Flu∈t1[S] → Flu∈t2[S]) is an expression with variables. The
substitution of variables with actual individuals or sensitive values
is called grounding. One grounding of the above example
substitutes t1 and t2 with Ann and Bob, respectively. We use
ground(E, K) to denote the set of all pairs of ground expressions
that can be derived from a pair (E, K) of expressions.

Worst-Case Disclosure: Given a release candidate D*, a known
set of integrity constraints, and an external knowledge expression
K, our goal is to compute (and ultimately bound) the probability
of a target expression E. Because we want to provide worst-case
safety, when K or E has variables, we compute

max {Pr(E′ | K′, D*) : (E′, K′) ∈ ground(E, K)}.

For ease of exposition, we use the following notation.

{Pr(E | K, D*)} ≡ {Pr(E′ | K′, D*) : (E′, K′) ∈ ground(E, K)}.

For example, the data owner may believe that an adversary has the
ability to obtain a sensitive value for each of k individuals. Thus,
let K = (∧i∈[1,k] si∈ti[S]), where ti and si are variables. The data
owner wants to guarantee that, regardless of which k individuals
and sensitive values the adversary knows, the probability that the
adversary can determine that another individual t (a variable) has
sensitive value s (a variable) is lower than threshold c. Formally,
this is stated as follows:

max {Pr(s∈t[S] | (∧i∈[1,k] si∈ti[S]), D*)} < c.

The max function gives the variables the “for all” semantics; for
all groundings of the variables, the criterion must hold.

Probability Computation: When computing probabilities, we
make the standard random worlds assumption, following [2, 14,
18]. Let E and K be two ground expressions. Let {R1, …, RN}
denote the set of all reconstructions of D*. In the absence of any
information in addition to D*, we assume each reconstruction is
equally likely. Under this assumption,

Pr(E | D*) = |{Ri : Ri satisfies E}| / N.

By the definition of conditional probability,

Pr(E | K, D*) = |{Ri : Ri satisfies both E and K}| / |{Ri : Ri satisfies K}|.

Note that the above formula defines the answer to Pr(E | K, D*),
but to find the answer, it is not always necessary to enumerate the
reconstructions of D*. Finally, let ε be a special expression,
meaning empty. For pedantic reasons, we define Pr(ε | K, D*) = 1.

2.2 Conjunctions of Literals

One important class of expressions, considered throughout this
paper, consists of expressions that are conjunctions of literals. In
this section, we briefly describe two propositions that will be used
later in the paper. The basic idea is that, for conjunctions of literals,
the probability computation for each QI-group is independent.

Let Eg and Kg denote two ground conjunctions of literals that only
involve individuals in QI-group g (i.e., individuals in Gg), for g =
1, …, B. For example, E1 = (Flu∈Ann[S] ∧ AIDS∉Bob[S]),
where Ann and Bob are in QI-group 1.

Proposition 1. Pr(∧g∈[1,B] Eg | ∧g∈[1,B] Kg, D
*) = ∏g∈[1,B] Pr(Eg | Kg, D

*).

Let Eg,x and Kg,x denote two ground conjunctions of literals that
only involve individuals in Gg and sensitive value x ∈ Xg, for g =
1, …, B. For example, E1,Flu = (Flu∈Ann[S] ∧ Flu∉Bob[S]).

Proposition 2. In the MVPI (either Set or Multiset) case,

Pr(∧g∈[1,B], x∈Xg
 Eg,x | ∧g∈[1,B], x∈Xg

 Kg,x, D
*) = ∏g∈[1,B] ∏x∈Xg

 Pr(Eg,x | Kg,x, D
*).

The proofs are in [3]. Note that Eg, Kg, Eg,x and Kg,x can be ε (the
empty expression), and “x∈Xg” in the subscript means “for each
distinct x ∈ Xg.” Also note that Proposition 1 applies to both the
SVPI and MVPI cases. If E and K are two conjunctions of literals,
then, to compute Pr(E | K, D*), we first rewrite E and K as ∧g∈[1,B]
Eg and ∧g∈[1,B] Kg and then compute Pr(Eg | Kg, D

*) independently.
Similarly, Proposition 2 says, in the MVPI case, each distinct
sensitive value in each QI-group is reconstructed independently.

2.3 Research Direction

In general, computing Pr(E | K, D*) is NP-hard, even if E and K

are ground. Martin et al. [14] showed that, if K is ground and of

the form (∧i∈[1,k] (xi∈ti[S] ↔ yi∈ui[S])), it is NP-complete to

decide whether Pr(K | D*) > 0 and #P-complete to compute

Pr(s∈t[S] | K, D*). We can also prove that even if D* consists of

only one QI-group (i.e., D* = {(G1, X1)}), it is still NP-complete to

decide whether Pr(K | D*) > 0 (see [3]).

Figure 4. Theoretical framework

Because of the hardness results, developing a general technique to
compute Pr(s∈t[S] | K, D*) is not a practical goal. Broadly
speaking, the interesting research questions involve finding
classes of expressions that are of practical interest and efficiently
solvable. The work in [14] shows a special case that is polynomial-
time solvable, but does not correspond well to natural real-world
scenarios. In this paper, we identify three types of expressions
representing external knowledge that arise naturally in practice.
We show in Sections 5 and 6 that expressions that combine these
types of knowledge can be handled very efficiently. Assume the
adversary wants to discover Tom’s sensitive value. We consider

• Knowledge about the target individual: An interesting class
of instance-level knowledge involves information that the
adversary may know about the target individual. For example,
Tom does not have cancer.

• Knowledge about others: Similarly, the adversary may have
information about individuals other than the target. For
example, Gary has flu.

• Knowledge about same-value families: We think the most
intuitive kind of knowledge relating different individuals is the
knowledge that a group (or family) of individuals have the
same sensitive value. For example, {Ann, Cary, Tom} could be
a same-value family, meaning if any one of them has a
sensitive value (e.g., Flu), all the others tend also to have the
same sensitive value.

While the technical contributions of this paper focus on these

classes of expressions, these are by no means the only interesting

knowledge expressions. In Section 8, we describe several other

natural expression types that should be considered in future work.

3. DESIDERATA & RELATED WORK

In this section, we outline a number of characteristics we consider
crucial to the design of a practical privacy criterion. At the same
time, we review the literature, indicating how previous work does
not match our desired characteristics.

From our perspective, a practical privacy criterion should display
the following characteristics:

1. Intuitive: The data owner (usually not a computer scientist)
should be able to understand the privacy criterion in order to
set the appropriate parameters.

2. Efficiently checkable: Whether a release candidate satisfies
the privacy criterion should be efficiently checkable.

3. Flexible: In data publishing, the data owner often considers a
tradeoff between disclosure risk and data utility. A practical
privacy criterion should provide this flexibility.

4. External knowledge: The privacy criterion should guarantee
safety in the presence of common types of external knowledge.

5. Value-centric: Often, different sensitive values have different
degrees of sensitivity (e.g., AIDS is more sensitive than flu).
Thus, a practical privacy criterion should have the flexibility to
provide different levels of protection for different sensitive
values, not just uniform protection for all the values in the
sensitive attribute. We call the latter attribute-centric. An
attribute-centric criterion tends to over-protect the data. For
example, to protect individuals having AIDS, the data owner
must set the strongest level of protection, which is not
necessary for individuals having flu. Instead, we take the more
flexible value-centric approach.

6. Set-valued sensitive attributes: In many real-world scenarios,
an individual may have several sensitive values, e.g., diseases.

No existing privacy criterion fully satisfies our desiderata. The
most closely-related work is that of Martin et al. [14], which

considers adversarial knowledge ℒbasic(k) to be a conjunction of k
basic implications. Each basic implication is of the form ((∧i∈[1,m]
xi∈ui[S]) → (∨j∈[1,n] yj∈vj[S])), where m > 0, n > 0, and xi, ui, yj
and vj are all variables. A release candidate D* is (c,k)-safe if max
{Pr(s∈t[S] | K, D*)} < c, where s and t are also variables. The
authors showed that the probability is maximized when K is of a
simpler form ℒ simple(k) = ∧i∈[1,k] (zi∈wi[S] → s∈t[S]), and
developed a polynomial time algorithm to solve

max {Pr(s∈t[S] | ∧i∈[1,k] (zi∈wi[S] → s∈t[S]), D*)},

where all t, s, wi, zi are variables.

While groundbreaking in the treatment of external knowledge, the
approach has several important shortcomings:

• The knowledge quantification is not intuitive. It is hard to
understand the practical meaning of k implications.

• Martin et al. showed that their language can express any
logic-based expression of external knowledge, when the
number k of basic implications is unbounded. However, their
language cannot practically express some important types of
knowledge, e.g., simply Flu∈Bob[S] (a very common kind of
knowledge that the adversary may obtain from a similar
dataset). Expressing such knowledge in their language
requires (|S|−1) basic implications, where |S| is the number of
sensitive values. However, with this number of basic
implications, no release candidate can possibly be safe. Thus,
Flu∈Bob[S] will never be used in their criterion. A formal
study of practical expressibility is in [3].

• The privacy criterion is attribute-centric, and there is no
straightforward extension of the proposed algorithm to the
more flexible value-centric case. The reason is that the
algorithm can only compute max {Pr(s∈t[S] | K, D*)} for the
sensitive value s that is most frequent in at least one QI-
group. However, the sensitive values that need the most
protection (e.g., AIDS) are usually infrequent ones.

• Each individual is assumed to have only one sensitive value.

Our work builds upon [14] and addresses the above issues. Note
that our language can express some knowledge (e.g., Flu∈Bob[S])
that cannot be practically expressed in their language, and vice
versa. For details, see Section 4.4.

In other related work, k-Anonymity and ℓ-diversity are privacy
criteria that attempt to capture adversarial knowledge in a less
formal way. k-Anonymity requires that no individual be
identifiable from a group of k individuals[16]. ℓ-Diversity requires
that each QI-group contain at least ℓ “well-represented” sensitive
values [12]. In Section 4.4, we show these two criteria are special
cases of our basic privacy criterion.

Query-view privacy was studied in [4, 5, 13, 15]. Given a set of
public views of a database, the goal is to check whether they
reveal any information about a private view of the same database,
where views are defined by conjunctive queries. Views can be
used to express adversarial knowledge. However, each of [5, 13,
15] uses an extremely strong definition of privacy, requiring the
sensitive information to be completely independent of the released
data. This approach does not provide flexibility to tradeoff privacy
for utility. Dalvi et al. relax the strong requirement [4], but describe
a privacy criterion based on asymptotic probabilities when the
domain size goes to infinity, which is not intuitive. Checking query-
view safety in the general setting is NP-hard [5, 15]. Polynomial
time algorithms for some special cases were given in [4, 13]. Other
studies of data privacy in multiple (project-only or select-project)
views of a single original table are [6, 19].

Several other recent works have considered probabilistic
disclosure, but have not incorporated adversarial knowledge,

including [11, 18] and others. Ignoring external knowledge can be
dangerous. Consider the following QI-group:

({Ann, Bob, Cary, Dick, Ed}, {Flu, Flu, Flu, Flu, AIDS}).

In the SVPI case, the probability that any one has AIDS is 0.2,
which may be sufficiently low. However, by an investigation of
only 4 individuals (i.e., knowing 4 individuals not having AIDS),
one can conclude that the other one has AIDS. In this sense, this
QI-group does not preserve privacy as well as a QI-group
containing 100 individuals, 20 of whom have AIDS, despite the
fact that the disclosure probability is the same in both cases (0.2).

Finally, though not specifically concerned with data privacy, the
framework described in Section 2 is closely related to the
framework for reasoning about uncertainty (the “random worlds
approach”) in the presence of specific logical and probabilistic
knowledge that was introduced by Bacchus et al. [2].

4. MULTIDIMENSIONAL PRIVACY

We now define our privacy criterion. To incorporate external
knowledge, the data owner needs to specify the knowledge that an
adversary may have. Because it is nearly impossible for the data
owner to anticipate the specific knowledge available to an
adversary, we take the approach of [14], and propose a new
mechanism for “quantifying” external knowledge. In this
approach, the privacy criterion must guarantee safety when the
adversary has up to a certain “amount” of knowledge, regardless
of the specific things that are known.

As discussed in Section 2.3, in general, it is NP-hard to check
safety of a release candidate. Thus, our goal is to find special
cases that are both useful in practice and efficiently solvable.

In the rest of this section, we propose an intuitive and usable
approach to quantifying adversarial knowledge. The key idea is
to break down quantification into several meaningful components,
rather than a single number as in [14]. We then define a skyline
privacy criterion and a skyline exploratory tool.

4.1 Three-Dimensional Knowledge

Consider an adversary who wants to determine whether target
individual t (a variable) has target sensitive value σ (a specific
value, e.g., AIDS). Note that t is a variable because the target can
be anyone, while σ is not because we want to provide a possibly
different safety guarantee for each unique sensitive value σ.
Intuitively, we consider the following three types of knowledge:
(note the subscripts, where σ denotes the target sensitive value)

• Kσ|t: Knowledge about the target individual t.
• Kσ|u: Knowledge about individuals (u1, …, uk) other than t.
• Kσ|v,t: Knowledge about the relationship between t and other

individuals (v1, …, vm).

We note that knowledge about relationships is the most interesting
type of knowledge. In this paper, we focus on same-value families,
which we consider to be the most natural form of relationship in
attribute disclosure. In general, relationships may be expressed
using graphs, which is future work.

We use the following convention throughout the paper.

• σ is the target sensitive value (a specific value, not a variable).
• t is the target individual (a variable).
• ui, vi are variables ranging over individuals.
• xi, yi are variables ranging over sensitive values.

• f, g are (the indices of) QI-groups.

Because the SVPI case and MVPI case have very different

characteristics, we discuss these two cases separately.

4.1.1 Case of Single Value per Individual

We use (ℓ , k, m) to quantify the three types of knowledge,
respectively. Specifically, this indicates that the adversary knows:
(1) ℓ sensitive values that target individual t does not have, (2) the
sensitive values of k other individuals, and (3) m members in t’s
same-value family (a group of people who tend to have the same
sensitive values). Note that the precise meaning of the third
dimension is “m individuals such that if any one of them has σ,
then t also has σ.” Consider t = Tom, σ = AIDS, and (ℓ, k, m) = (2,
3, 1). An example of adversary’s knowledge is the conjunction of
the following three expressions:

• Flu∉Tom[S] ∧ Cancer∉Tom[S] (obtained from Tom’s friends).

• Flu∈Bob[S] ∧ Flu∈Cary[S] ∧ Cancer∈Frank[S] (obtained
from another hospital’s medical records)

• AIDS∈Ann[S] → AIDS∈Tom[S] (because Ann is Tom’s wife).

Definition: ℒℒℒℒt,σσσσ
SVPI(ℓℓℓℓ, k, m). Formally, an adversary’s knowledge

is a parameterized expression ℒt,σ
SVPI(ℓ, k, m) = Kσ|t(ℓ) ∧ Kσ|u(k) ∧

Kσ|v,t(m), where

• Kσ|t(ℓ) = (∧i∈[1,ℓ] xi∉t[S]) indicates that the adversary knows ℓ
sensitive values (the xi’s) that the target t does not have.

• Kσ|u(k) = (∧i∈[1,k] yi∈ui[S]) where ui ≠ t, indicates that the
adversary knows the sensitive values (the yi’s) of k individuals
(the ui’s) other than the target t.

• Kσ|v,t(m) = (∧i∈[1,m] (σ ∈vi[S] → σ ∈t[S])) where vi ≠ uj and vi
≠ t, indicates that the adversary knows m individuals such that
if any one of them has σ, then t also has σ.

Note that ui≠t, vi≠t and vi≠uj specify the constraints on variable
grounding, meaning when we substitute the variables with actual
individuals, we cannot assign the same individual to ui and t, and
so on. The reason is that if ui = t, the adversary knows t’s sensitive
value without the released dataset. Similarly, if vi = uj, the
adversary also knows t’s sensitive value without the released
dataset because (σ ∈vi[S]) ∧ (σ ∈vi[S] → σ ∈t[S]) implies σ∈t[S].

Also note that the subscript of ℒt,σ
SVPI(ℓ, k, m) indicates that the

target individual is variable t and the target sensitive value is σ.

4.1.2 Case of Multiple Values per Individual

The types of knowledge considered in the MVPI case are different
from those in the SVPI case. Consider two different sensitive
values σ1 and σ2. We first note that a special case of proposition 2 is

Pr(σ1∈t[S] | σ2∈u[S], D*) =

Pr(σ1∈t[S] | ε, D*)⋅Pr(ε | σ2∈u[S], D*) = Pr(σ1∈t[S] | D*),

where ε is the empty expression. This means σ1∈t[S] is independent
of σ2∈u[S] (also σ2∉u[S]) as long as σ1 ≠ σ2, regardless of
whether t= u. Thus, the first two forms of knowledge in the SVPI
case are useless to the adversary in determining whether t has σ.

Instead, in the MVPI case, we use (ℓ, k, m) to indicate that the
adversary knows: (1) ℓ sensitive values that co-occur with target
value σ for target individual t, (2) k other individuals who do not
have σ, and (3) m members in t’s same-value family. Consider
t=Tom, σ =AIDS, and (ℓ, k, m) = (1, 3, 1), examples of the three
types of knowledge in the MVPI case are:

• Cancer∈Tom[S] → AIDS∈Tom[S] (obtained from a
hypothetical medical study).

• AIDS∉Bob[S] ∧ AIDS∉Cary[S] ∧ AIDS∉Frank[S] (obtained
from another hospital’s medical records)

• AIDS∈Ann[S] → AIDS∈Tom[S] (because Ann is Tom’s wife).

Definition: ℒℒℒℒt,σσσσ
MVPI(ℓℓℓℓ, k, m). Formally, an adversary’s knowledge

is expression ℒt,σ
MVPI(ℓ, k, m) = Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), where

• Kσ|t(ℓ) = (∧i∈[1, ℓ] (xi∈t[S] → σ ∈t[S])) indicates that the

adversary knows ℓ sensitive values (the xi’s) that co-occur
with target value σ for target individual t. Thus, if t has any xi,
t should also have σ.

• Kσ|u(k) = (∧i∈[1,k] σ ∉ui[S]) where ui ≠ t, indicates that the
adversary knows k individuals (the ui’s) who do not have
sensitive value σ.

• Kσ|v,t(m) = (∧i∈[1,m] (σ ∈vi[S] → σ ∈t[S])) where vi ≠ uj and vi
≠ t. This is the same as the Kσ|v,t(m) in the SVPI case.

For ease of exposition, we use Kσ|t(ℓ) and Kσ|u(k) to denote the first
two dimensions in both the SVPI and the MVPI cases, even
though the actual expressions are different in the two cases. If we
want to distinguish the two cases, we will say so explicitly.

4.2 Privacy Criterion

In the rest of this paper, we use ℒ t,σ(ℓ , k, m) to denote both

ℒt,σ
SVPI(ℓ, k, m) and ℒt,σ

MVPI(ℓ, k, m). Also, if (ℓ, k, m) is not

important in our discussion, we just write ℒt,σ
SVPI and ℒt,σ

MVPI.

Given a release candidate D*, for a particular grounding of the
variables, Pr(σ ∈ t[S] | ℒ t,σ(ℓ , k, m), D*) is the adversary’s
confidence that individual t has sensitive value σ given external
knowledge. A privacy criterion should provide a worst-case
guarantee. That is, no matter how we substitute variables with the
actual individuals and sensitive values, the adversary’s confidence
should not exceed a given threshold value c. This leads to the
following definition.

Definition: Basic 3D privacy criterion. Given knowledge

threshold (ℓ, k, m) and confidence threshold c, release candidate
D* is safe for sensitive value σ iff

max {Pr(σ ∈t[S] | ℒt,σ(ℓ, k, m), D*)} < c.

We call max{Pr(σ ∈t[S] | ℒt,σ(ℓ, k, m), D*)} the breach probability.

For example, in the SVPI case, suppose that the data owner
specifies (ℓ, k, m) = (1, 5, 2) and c = 50% for sensitive value
AIDS. The privacy criterion guarantees that the adversary cannot
predict any individual t to have AIDS with confidence ≥ 50% if
the following conditions hold: (1) The adversary knows ℓ ≤ 1
sensitive values that target individual t does not have, (2) the
adversary knows the sensitive values of k ≤ 5 other individuals,
and (3) the adversary knows m ≤ 2 members in t’s same-value
family. It is easy to see that the breach probability increases with
increasing amounts of adversarial knowledge. Thus, if D* is safe
under (1, 5, 2), it is also safe under any (ℓ, k, m) such that ℓ ≤ 1, k ≤
5 and m ≤ 2, which is the shaded region of Figure 5 (a). For
simplicity, we only show a two-dimensional plot.

The basic privacy criterion is useful and intuitive, but it may not
be sufficient for expressing the data owner's desired level of
privacy. For example, the threshold (1,5,2) provides no protection
guarantee for (1,3,4) because (1,3,4) is not in the shaded region of

Figure 5 (a). To provide more precise and flexible control, we
extend the basic privacy criterion to allow the data owner to
specify a set of incomparable points called a skyline (e.g., as
shown in Figure 5 (b), the skyline is {(1,1,5), (1,3,4), (1,5,2)})
such that release candidate D* is safe if the breach probability is
less than the confidence threshold (e.g., 50%) given any
adversary’s knowledge with amount beneath the skyline (e.g., the
shaded area in Figure 5 (b)).

We can also include the confidence threshold c in the skyline. We
say (ℓ1, k1, m1, c1) dominates (ℓ2, k2, m2, c2) if ℓ1 ≥ ℓ2, k1 ≥ k2, m1 ≥
m2 and c1 ≤ c2. It can be easily seen that if D* is safe under (ℓ1, k1,
m1, c1), it is also safe under (ℓ2, k2, m2, c2). A set of points is a
skyline if no point dominates another.

Definition: Skyline privacy criterion. Given a skyline {(ℓ1, k1,
m1, c1), …, (ℓ r, kr, mr, cr)}, release candidate D* is safe for
sensitive value σ iff, for i = 1 to r,

max {Pr(σ ∈t[S] | ℒt,σ(ℓi, ki, mi), D
*)} < ci.

In practice, the data owner specifies a skyline for each sensitive
value. The skyline privacy criterion is attractive because it allows
the data owner to enforce privacy requirements for different
situations separately. Although a skyline involves many parameter
values, it is much more intuitive for the data owner to specify a
skyline (in a case-by-case manner) than to figure out a way to
combine many considerations into a single threshold value. Also,
the data owner can set default parameter values for common cases
and only fine-tune some special cases.

4.3 Skyline Exploratory Tool

In the skyline privacy criterion, the user specifies a skyline, and
the system checks whether a release candidate is safe under the
skyline. However, the skyline itself may be a useful exploratory
tool, providing valuable information to the data owner in
considering a particular release candidate.

We say that a point is beneath a skyline if it is dominated by any
point in the skyline. Otherwise, we say that it is above the skyline.

Definition: Knowledge Skyline. The knowledge skyline of
release candidate D* at confidence threshold c for sensitive value

σ is the set {(ℓ1, k1, m1), …, (ℓr, kr, mr)} of skyline points such that
D* is safe for σ with respect to any (ℓ, k, m) beneath the skyline,
but not safe with respect to any (ℓ, k, m) above the skyline.

For a given release candidate, the knowledge skyline separates the
multidimensional knowledge space into two regions. The release
candidate is resilient to adversarial knowledge below or on the
skyline, but not to knowledge above the skyline.

Knowledge skylines are a useful exploratory tool. Regardless of
whether the released data is generated based on our privacy
criterion, before the data is actually released, it is always good for
the data owner to check the knowledge skyline of the release
candidate, and see whether the dataset is safe or not under various
amounts and types of adversarial external knowledge.

4.4 Comparisons

We first compare ℒt,σ
SVPI with ℒt,σ

MVPI, and then compare ℒt,σ
SVPI

with k-anonymity [16], ℓ-diversity [12] and ℒbasic [14].

As described in [14], in the SVPI case, (∧i∈[1,ℓ] (xi∈t[S]→ σ∈t[S]))
is actually equivalent to (∧i∈[1,ℓ] xi∉t[S]), because t can only have
one sensitive value. Thus, the Kσ|t(ℓ) in the SVPI case actually has
the same form as the Kσ|t(ℓ) in the MVPI case, although they have
different interpretations. Now, the only difference between the
two cases is in Kσ|u(k), which represents knowledge about
individuals other than the target. We think (∧i∈[1,k] yi∈ui[S]) is the

Figure 5. Example of privacy skylines

m

k

ℓ ≤ 1

(5,2)

(a)

m

k

ℓ ≤ 1

(5,2)

(b)

(3,4)
(1,5)

most natural knowledge about individuals. Thus, we use it in the
SVPI case. However, in the MVPI case, yi∈ui[S] is independent of
σ ∈ t[S] if yi ≠ σ. Even if yi = σ, the knowledge of σ ∈ui[S] cannot
help the adversary increase his confidence. Thus, in the MVPI
case, we choose (∧i∈[1,k] σ ∉ ui[S]) because it is still easily
interpretable and is also useful for the adversary.

We now compare ℒt,σ
SVPI with k-anonymity [16], ℓ-diversity [12]

and ℒbasic [14], which are all in the SVPI case. For proofs, see [3].

Proposition 3. k-anonymity (in our framework, defined as each
QI-group having at least k individuals) is a special case of the
basic 3D privacy criterion when the sensitive values are the

identities of the individuals, the knowledge threshold is (0, k−2, 0)
and the confidence threshold is 1, for all sensitive values σ.

Proposition 4. (c,ℓ)-diversity is a special case of the basic 3D

privacy criterion when the knowledge threshold is (ℓ−2, 0, 0) and
the confidence threshold is c/(c+1), for all sensitive values σ.

Basically, k-anonymity considers knowledge of form Kσ|u(k) and
ℓ-diversity considers knowledge of form Kσ|t(ℓ) in the SVPI case.
For the comparison of ℒt,σ

SVPI and ℒbasic, no one is more general
than the other, because ℒt,σ

SVPI cannot express, say, (Flu∈Bob[S]
→ AIDS∈Tom[S]), and ℒ basic cannot practically express, say,
Flu∈Bob[S] (as discussed in Section 3). However, our ℒt,σ

SVPI is
more intuitive and quantifies knowledge more precisely than ℒbasic.
A formal comparison between ℒt,σ

SVPI and ℒbasic is in [3].

5. EFFICIENT, SCALABLE ALGORITHMS

In this section, we develop algorithms: SkylineCheck for checking
whether a release candidate is safe and SkylineAnonymize for
generating a safe and useful release candidate. We omit the
algorithm for finding the knowledge skyline of a release candidate
for lack of space. The algorithm can be found in [3].

Our algorithms rely critically upon a proposed congregation
property. Because we carefully design our knowledge quantification
to satisfy this property, our algorithms are very efficient when the
number of distinct sensitive values is a constant. In contrast, the
knowledge quantification of Martin et al. [14] does not satisfy this
property. Although both algorithms run in polynomial time, there is
a big difference in efficiency between their algorithm and ours.

In this section, we describe a general computation framework that
works for the three cases (SVPI, MVPI-Set and MVPI-Multiset).
In Section 6, we provide the formulas for the probability
computation specific to each case.

5.1 SkylineCheck Algorithm

SkylineCheck algorithm checks whether a release candidate
satisfies a skyline criterion for every sensitive value. The main ideas
behind SkylineCheck are as follows:

1. Convert implication-based knowledge into literals (so that
we can use Propositions 1 and 2).

2. Show that the breach probability is maximized when all the
individuals (involved in adversarial knowledge) congregate
in no more than two QI-groups.

We first focus on checking whether release candidate D* is safe for
a single sensitive value σ, and then extend to all σ’s. Note that we
have abstracted the knowledge expressions in both the SVPI and the
MVPI cases in the same form: (Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m)). As
described in Section 4.4, in the SVPI case, (∧i∈[1,ℓ] (xi∈t[S] → σ

∈t[S])) is equivalent to Kσ|t(ℓ) = (∧i∈[1,ℓ] xi∉t[S]) because t can have
only one sensitive value. Thus, we use Kσ|t(ℓ) = (∧i∈[1,ℓ] xi∈t[S] →
σ ∈t[S])), for both the SVPI and the MVPI cases. Now, the only
difference between the two cases is in Kσ|u(k).

Given knowledge threshold (ℓ, k, m) and confidence threshold c,
D* = {(G1, X1), …, (GB, XB)} is safe for σ if the breach probability
is less than c, where the breach probability (BP) is

BPσ(ℓ, k, m) = max{Pr(σ ∈t[S] | Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), D*)}.

The above maximization is over the following variables:

• Individuals: t (in Kσ|t(ℓ)), u1, …, uk (in Kσ|u(k)) and v1, …, vm
(in Kσ|v,t(m)).

• Sensitive values: x1, …, xℓ (in Kσ|t(ℓ)), y1, …, yk (in Kσ|u(k)).

Note that we sometimes directly call t, ui’s and vi’s individuals.

Now our goal is to compute BPσ(ℓ, k, m). Note that Kσ|t(ℓ) and
Kσ|v,t(m) involve implications. Probability computation under
implication-based knowledge is not easy. Thus, we use Lemma 1
(which is Lemma 12 in [14]) to convert implications into literals.

Lemma 1. Pr(σ ∈t[S] | Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), D*) =
1 / (NR + 1), where

)),(|][Pr(

)),(|])[(])[(][Pr(

*
|

*
|],1[],1[

D

D

kKSt

kKSvStxSt
NR

u

uimiii

σ

σ

σ

σσ

∈

∉∧∧∉∧∧∉
=

∈∈ l .

We call NR the negated ratio. (For the proof, see [3] or [14].)

Note that Lemma 1 is true for both the SVPI and the MVPI cases.
Also note that, because Kσ|u(k) is a conjunction of k literals, NR
only involves conjunctions of literals.

Based on Lemma 1, to maximize the breach probability is to
minimize the negated ratio. Thus, we define:

minNRσ(ℓ, k, m) = min t, vi, xi, Kσ|u(k) NR.

Since BPσ(ℓ, k, m) = 1 / (minNRσ(ℓ, k, m) + 1), our goal now is to
compute minNRσ(ℓ, k, m), which only involves literals.

In general, minimizing the negated ratio is not easy. In principle, we
need to try all possible groundings of the variables and find the one
that gives the minimum. In each grounding, we need to set variables
t, u1, …, uk and v1, …, vm to individuals in possibly different QI-
groups of D*. After fixing the QI-groups of the individuals, the
minimum negated ratio (over variables x1, …, x ℓ, y1, …, yk for
sensitive values) can be computed using the formulas in Section 6.
In this section, we focus on how to distribute the individuals (t, ui’s
and vi’s) into QI-groups in order to minimize the negated ratio.

To find the minimum negated ratio, we may need to try all
possible ways of distributing those individuals into the QI-groups
in D*. A dynamic-programming technique [14] can find the
minimum in polynomial time, but computational efficiency is still
an issue. Thus, the following congregation property is extremely
useful. Intuitively, we say that Kσ|u(k) (or Kσ|v,t(m)) is 1-group
congregated iff the breach probability is maximized (i.e., the
negated ratio is minimized) when all the individuals except t
(which we do not care about) involved in Kσ|u(k) (or Kσ|v,t(m)) are in one
QI-group. If Kσ|u(k) and Kσ|v,t(m) are both 1-group-congregated,
then a much more simple and efficient algorithm is possible.

Definition: Congregation. Let K = K1∧…∧Kn be an expression
with variables. Ki is 1-group congregated in K iff there exists a

grounding maximizing Pr(σ ∈ t[S] | K, D*) such that, in the
grounding, all the variables other than t (the target, which we do
not care about) that represent individuals involved in Ki are set to

individuals in one QI-group.

Theorem 1. Kσ|u(k) and Kσ|v,t(m) are both 1-group congregated, in
all the three cases (SVPI, MVPI-Set and MVPI-Multiset).

We defer the proof to Section 6, or see [3] for details.

We now discuss how to use Theorem 1 to develop an efficient
algorithm. First, recall that Kσ|t(ℓ) only involves individual t (the
target), Kσ|u(k) only involves individuals u1, …, uk, and Kσ|v,t(m)

only involves individuals v1, …, vm and t. By Theorem 1, the
negated ratio is minimized when all u1, …, uk are in one QI-group
and all v1, …, vm are in one QI-group.

Without loss of generality, we assume the negated ratio is
minimized when 1

t is in QI-group g and v1, …, vm are in QI-group f.

Proposition 5. The negated ratio is minimized when all the ui’s
(in Kσ|u(k)) are either in QI-group g or QI-group f.

Rationale: By Proposition 1, if ui is not in QI-group g or f, then
yi∈ui[S] (in Kσ|u(k) for the SVPI case) and σ ∉ui[S] (in Kσ|u(k) for
the MVPI case) are independent of the negated ratio; i.e., they will
not affect the value of the negated ratio. Thus, to minimize the
negated ratio, all the ui’s should be in QI-group g or f. For details,
see [3]. �

By Proposition 5, the negated ratio is minimized when all the
individuals (in the adversary’s knowledge) are in QI-group g or f.
If g = f, we define the following.

Definition: minNRσσσσ(g, ℓℓℓℓ, k, m).

minNRσ(g, ℓ, k, m) = min t, vi, xi, Kσ|u(k) NR,

such that t, v1, …, vm and u1, …, uk (in Kσ|u(k)) are in QI-group g,
where NR is the negated ratio defined in Lemma 1.

Thus, if g=f, then minNRσ(g, ℓ, k, m) is the minimum negated ratio.

Now consider g ≠ f. We define the following.

Definition: Tσσσσ(g, ℓℓℓℓ, k) and Vσσσσ(f, m, k).

)),(|][Pr(

)),(|])[(][Pr(
min),,(

*
|

*
|],1[

)(,, | D

D

kKSt

kKStxSt
kgT

u

uii

kKxt ui

σ

σ
σ

σ

σ
σ ∈

∉∧∧∉
=

∈ l
l ,

such that t and u1, …, uk are in QI-group g.

Vσ(f, m, k) = min vi, Kσ|u(k) Pr(∧i∈[1,m] σ ∉vi[S] | Kσ|u(k), D*),

such that v1, …, vm and u1, …, uk (in Kσ|u(k)) are in QI-group f.

Consider the following situation: (0 ≤ h ≤ k)

• QI-group g contains t and u1, …, uh.

• QI-group f contains v1, …, vm and the rest (k−h) of the ui’s.

If g ≠ f, by Proposition 1, the literals in NR that involve t and u1,
…, uh are independent of the literals that involve v1, …, vm and the
rest (k−h) of the ui’s. Thus, the minimum negated ratio becomes

min t, vi, xi, Kσ|u(k) NR = Tσ(g, ℓ, h)⋅Vσ(f, m, k−h),

by applying Proposition 1 to both the numerator and denominator
of NR. (For detailed derivation, see Derivation 1 in [3].)

By Theorem 1, we know all the ui’s are in one QI-group; i.e., h is
either 0 or k. The computation of minNRσ(g, ℓ, k, m), Tσ(g, ℓ, k)
and Vσ(f, m, k) is case-specific and will be discussed in Section 6.

Theorem 2. The minimum negated ratio minNRσ(ℓ , k, m) on
release candidate D* is the minimum of the following three:

• min g∈D* minNRσ(g, ℓ, k, m),

• (min g∈D* Tσ(g, ℓ, 0)) ⋅ (min f∈D* Vσ(f, m, k)),

• (min g∈D* Tσ(g, ℓ, k)) ⋅ (min f∈D* Vσ(f, m, 0)),

where “g∈D*” means “for each QI-group g in D*.”

Proof: By Theorem 1, we only need to consider the situations in
which all the ui’s are in one QI-group and all the vi’s are in one
QI-group. If t, the ui’s and the vi’s are all in one QI-group, then the
first case above gives the minimum negated ratio. Otherwise, let t
be in group g and all the vi’s be in group f, where g ≠ f. By

1
 We assume that t, u1, …, uk and v1, …, vm can fit in each QI-group of D*

that contains σ. Otherwise, the breach probability is simply one.

Proposition 5, all the ui’s are either in g or f. If all the ui’s are in f,
then the minimum negated ratio is

min g, f Tσ(g, ℓ, 0)⋅Vσ(f, m, k) = (min g∈D* Tσ(g, ℓ, 0))⋅(min f∈D* Vσ(f, m, k)),

which gives the second case. Note that if the above is minimized
at g = f (i.e., all t, ui’s, vi’s are in one QI-group), then the first case
will be even smaller because, as can be seen from the computation
formulas in Section 6,

minNRσ(g, ℓ, k, m) = Tσ(g, ℓ, k)⋅Vσ(g, m, k+1) ≤ Tσ(g, ℓ, 0)⋅Vσ(g, m, k),

for all g. Thus, the first case will be the minimum and give the
correct answer.
Similarly, if all the ui’s are in g, we obtain the third case. �

Sufficient Statistics: Given release candidate D* and knowledge
threshold (ℓ, k, m) for sensitive value σ, the five minimum quantities
in Theorem 2 are sufficient for computing the minimum negated
ratio, thus the breach probability. We call them the sufficient
statistics for (ℓ, k, m) on D*, and use the following notation:

SS1σ,(ℓ, k, m)(D
) = min g∈D minNRσ(g, ℓ, k, m).

SS2σ,(ℓ, k, m)(D
) = min g∈D Tσ(g, ℓ, 0).

SS3σ,(ℓ, k, m)(D
) = min g∈D Tσ(g, ℓ, k).

SS4σ,(ℓ, k, m)(D
) = min g∈D Vσ(g, m, 0).

SS5σ,(ℓ, k, m)(D
) = min g∈D Vσ(g, m, k).

Note that, to compute minNRσ(g, ℓ, k, m), Tσ(g, ℓ, ⋅) and Vσ(g, m,⋅),
we only need data in a single QI-group g.

SkylineCheck algorithm: Given release candidate D*, in which
the QI-groups are clustered (i.e., all the data in a QI-group is
stored on disk consecutively), and a skyline {(ℓ1, k1, m1, c1), …,
(ℓr, kr, mr, cr)}, our goal is to check whether D* is safe for sensitive
value σ; i.e., 1 / (minNRσ(ℓ i, ki, mi) + 1) < ci, for all i. The
algorithm is simple. We scan D* once, during which, for each QI-
group, we maintain the sufficient statistics for each (ℓi, ki, mi).
Finally, we check whether 1 / (minNRσ(ℓi, ki, mi) + 1) < ci, for all i.

Theorem 3. The above algorithm correctly checks whether D* is
safe for sensitive value σ under a skyline of r points by a single
scan over D* using memory O(r) to keep the sufficient statistics.

It can be easily seen that the above algorithm also works for
checking safety for all the sensitive values. Now, r becomes the
total number of skyline points in all the skylines, each of which is
for a sensitive value.

5.2 SkylineAnonymize Algorithm

In this section, we describe a simple and efficient algorithm using
multidimensional generalization [8] to find a minimal safe release
candidate based on the congregation property, which allows us to
use just five global sufficient statistics to check safety for a skyline
point. It has been shown in [8, 9] that multidimensional
generalization techniques produce more useful data than single-
dimensional generalization techniques [7]. Thus, we only develop
an algorithm based on the former. An algorithm based on the latter
is straightforward. For ease of exposition, we describe the algorithm
for a single skyline point (ℓ, k, m, c), but the extension to multiple
skyline points for each sensitive value is straightforward. The
algorithm is based on an adaptation of a partitioning scheme
originally proposed for k-anonymity in [8].

Intuitively, a release candidate is minimal if it is safe and no QI-
group can be safely divided. Formally, we define a partial
ordering over all the release candidates of an original dataset D as
follows. Let D*

1 and D*
2 be release candidates of D, we say D*

1 ≼
D*

2 iff, for each QI-group (Gg, Xg) ∈ D*
1, there exists a QI-group

(Gf, Xf) ∈ D*
2 such that Gg ⊆ Gf. That is, each QI-group in D*

2 is
the union of one or more QI-groups in D*

1.

Definition: Minimal Release Candidate. Release candidate D*
is said to be minimal iff it is safe and there does not exist any

other safe release candidate D*
1 such that and D*

1 ≼ D*.

To find a minimal release candidate, we use the following
properties. We say that QI-groups g1, …, gn partition QI-group g if
they are disjoint and the union of them is g.

Theorem 4. If QI-groups g1, …, gn partition QI-group g, then in
the SVPI case, for any fixed (ℓ, k, m), the following hold:

• Tσ(g, ℓ, k) ≥ min 1≤i≤n Tσ(gi, ℓ, k),

• Vσ(g, m, k) ≥ min 1≤i≤n Vσ(gi, m, k),

• minNRσ(g, ℓ, k, m) ≥ the minimum of:

(a) min 1≤i≤n minNRσ(gi, ℓ, k, m),

(b) (min 1≤i≤n Tσ(gi, ℓ, k)) ⋅ (min 1≤i≤n Vσ(gi, m, 0)).

Definition: Monotonicity. Let D*
1 and D*

2 be release candidates
of D such that D*

1 ≼ D*
2. A privacy criterion is monotonic iff the

fact that D*
1 is safe under the criterion implies that D*

2 is also safe.

Corollary. In the SVPI case, the basic 3D privacy criterion and
the skyline privacy criterion are monotonic.

The proofs of Theorem 4 and its corollary are in [3]. We note that
Theorem 4 and its corollary do not apply to the MVPI case. We
discuss the implication later.

Our algorithm works as follows. Starting from a single QI-group,
which is the original dataset, we recursively partition (or split)
each QI-group in a “greedy” manner as long as it is still safe to do
so. In each step, if there are several ways to partition a QI-group,
we choose the one that is expected to generate the most useful
release candidate based on an application-specific split criterion
(e.g., [9]). The algorithm maintains the five global sufficient

statistics (across all the QI-groups in the current partitioning).
Using only these statistics, we are able to check whether or not
splitting a QI-group increases the breach probability beyond the
specified confidence threshold c. It is important to note that we do
not need to look at the entire dataset in order to determine whether
it is safe to split a particular group g. Instead, this determination
can be made using only the global statistics and the data in g. The
pseudo-code for the algorithm is given in Figure 6. In the safeSplit
subroutine, candidate splits for QI-group g can be selected and
prioritized using any application-specific criteria (e.g., [9]).

Theorem 5. The anonymization algorithm produces a safe release

candidate. In the SVPI case, the release candidate is minimal.

Proof sketch: The BP computed in the safeSplit subroutine is
always greater than or equal to the breach probability on the
current D* with QI-group g replaced by g1, …, gn. Thus, if BP < c,
the breach probability must be less than c; i.e., it is safe to split g
into g1, …, gn. In the SVPI case, by Theorem 4, BP is actually
equal to the breach probability, and by the corollary, the returned
release candidate is minimal. The detailed proof is in [3]. �

Scalability: The anonymization algorithm can be implemented in
a scalable way using the Rothko-Tree approach described in [10].
Specifically, candidate splits can be chosen and evaluated based
on the set of (unique attribute value, unique sensitive value,

count) triples, which is often much smaller than the size of the full
input dataset and usually fits in memory.

Discussion: Our algorithm is guaranteed to produce a minimal
release candidate in the SVPI case. In the MVPI case, it is
guaranteed to produce a safe release candidate, but the candidate
may not be minimal. We have done a simulation study, which
shows that the chances that Theorem 4 holds in the MVPI case are
very high (only 100 counterexamples in 7,778,625,148 randomly
generated partitionings). Thus, we think, in practice, our algorithm
will generate nearly minimal release candidates in the MVPI case.

Comparison: The efficiency and scalability of the anonymization
algorithm come from the congregation property. Because of this
property, we are able to use just five global variables (for each
skyline point) to check safety. We note that if we were to adapt
the same partitioning scheme to the privacy criterion of Martin et
al. [14], the resulting algorithm would be complex, less efficient
and not scalable because their knowledge expression does not
satisfy the congregation property. Intuitively, the resulting
algorithm may need to go through all QI-groups once for each
candidate split (in the safeSplit subroutine). When the dataset is
large, the QI-groups may not fit in memory.

6. CASE-SPECIFIC FORMULAS & PROOF

We will show the computation formulas for minNRσ(g, ℓ, k, m),
Tσ(g, ℓ, k) and Vσ(g, m, k) defined in Section 5.1, and discuss the
proof of Theorem 1. For detailed explanations, see [3].

We use the following notation:

• ng denotes the number of distinct individuals in QI-group g.

• #σg denotes the number of the occurrences of σ (the target
sensitive value) in QI-group g.

• sg(1), …, sg(ℓ) denote the ℓ most frequent sensitive values in
QI-group g with σ removed (i.e., σ ≠ sg(i), for all i).

• #sg(1.. ℓ) is shorthand for ∑i∈[1,ℓ] #sg(i).

• Pr(E | K, g) is shorthand for Pr(E | K, D*), such that all the
individuals in expressions E and K are in QI-group g.

6.1 Computation Formulas

In all three cases, minNRσ(g, ℓ, k, m) = Tσ(g, ℓ, k) ⋅ Vσ(g, m, k+1).

Input: Original dataset as QI-group g0, privacy parameters (ℓ, k, m) and c
Output: A minimal release candidate safe under (ℓ, k, m) and c
Global variables: Sufficient statistics SS1, SS2, SS3, SS4, SS5.

anonymize(g0, ℓ, k, m, c)
// Initialize the global sufficient statistics
SS1 = minNRσ(g0, ℓ, k, m); SS2 = Tσ(g0, ℓ, 0); SS3 = Tσ(g0, ℓ, k);
SS4 = Vσ(g0, m, 0); SS5 = Vσ(g0, m, k);

// Greedily partition (split) the data and maintain the statistics
D* = empty;
queue.pushBack(g0);
while(queue is not empty)

g = queue.popFront();
if ({g1, …, gn} = safeSplit(g, ℓ, k, m, c) is not empty)

for (i = 1 to n)
queue.pushBack(gi);
SS1 = min{ SS1, minNRσ(gi, ℓ, k, m) };
SS2 = min{ SS2, Tσ(gi, ℓ, 0) }; SS3 = min{ SS3, Tσ(gi, ℓ, k) };
SS4 = min{ SS4, Vσ(gi, m, 0) }; SS5 = min{ SS4, Vσ(gi, m, k)};

else D*.pushBack(g);
return D*;

subroutine safeSplit(g, ℓ, k, m, c)
sort candidate splits of g by priority; // application-specific ordering

// Check safety for each candidate split
for each candidate split that splits g into {g1, …, gn}

A1 = SS1; A2 = SS2; A3 = SS3; A4 = SS4; A5 = SS5;
for (i = 1 to n)

A1 = min{ A1, minNRσ(gi, ℓ, k, m) };
A2 = min{ A2, Tσ(gi, ℓ, 0) }; A3 = min{ A3, Tσ(gi, ℓ, k) };
A4 = min{ A4, Vσ(gi, m, 0) }; A5 = min{ A4, Vσ(gi, m, k)};

NR = min{ A1, A2*A5, A3*A4 };
BP = 1 / (NR + 1);
if (BP < c) return {g1, …, gn};

return empty;

Figure 6. SkylineAnonymize algorithm

In the SVPI case:

• Tσ(g, ℓ, k) = (ng − #σg − #sg(1.. ℓ) − k) / #σg

• Vσ(g, m, k) = ∏i∈[0,m−1] ((ng − #σg − k − i) / (ng − k − i))

In the MVPI-Set case:

• Tσ(g, ℓ, k) = [(ng−#σg−k) / #σg]⋅[∏i∈[1,ℓ] ((ng−#sg(i)) / ng)]

• Vσ(g, m, k) = ∏i∈[0,m−1] ((ng − #σg − k − i) / (ng − k − i))

In the MVPI-Multiset case:

•)..1(#

#

#

]/)1[(
)]/()1[(1

)]/()1[(
),,(l

l
g

g

g

s

gg

gg

gg
nn

knkn

knkn
kgT −⋅

−−−−

−−−
=

σ

σ

σ

• gknmknkmgV gg

σ
σ

#
)]/()[(),,(−−−=

If the numerator of any of the above fractions becomes negative,
then the corresponding formula is set to be 0. For detailed
explanations, see [3].

6.2 Proof of Theorem 1

We will use the following four propositions (proven in [3]).

Proposition 6. Let α1 ≥ … ≥ αm ≥ 0 and β1 ≥ … ≥ βm ≥ 0 be two
non-increasing series of numbers. Then, (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi),
for 0 ≤ h ≤ m, is minimized when h = 0 or m.

Proposition 7. Let a, b, c, d, m be positive numbers, such that m ≤
min{a, c}. Then, the following formula, for 0 ≤ h ≤ m, is
minimized when h = 0 or m.

db

c

hmc

a

ha

 −−

 −)((1)

Proposition 8. Let a, b, c, d, k and m be positive numbers such
that c < d and k ≤ min{a, c−(m−1)}. Then, the following formula,
for 0 ≤ p ≤ k, is minimized when p = 0 or k.

∏ −∈ −−−

−−−
⋅

−
]1,0[)(

)(

mi pkid

pkic

b

pa (2)

Proposition 9. Let a, b, c, d, e, k and n be positive numbers such

that c < d and k ≤ min{n−1, c}. Then, the following formula, for 0

≤ p ≤ k, is minimized when p = 0 or k.
e

a

a

pkd

pkc
b

pnpn

pnpn

−−

−−
⋅⋅

−−−−

−−−

)(

)(

)]/()1[(1

)]/()1[((3)

Theorem 1 states that the breach probability is maximized when
u1, …, uk (in Kσ|u(k)) are in a single QI-group and v1, …, vm (in
Kσ|v(m) are in a single QI-group. By Lemma 1, it is equivalent to
show that the negated ratio (NR) is minimized in this situation.
Basically, we consider how to distribute t, u1, …, uk and v1, …, vm
into QI-groups in order to minimize the negated ratio.

In the following proof, we assume the minimum negated ratio is
greater than 0. The proof for the boundary case is straightforward.

We prove Theorem 1 by induction on the number B of QI-groups.

Base case: When B = 1, our claim trivially holds. Thus, we
consider B = 2. The two QI-groups are QI-group g and QI-group f.
Without loss of generality, assume that when the negated ratio is
minimized, the following two hold:

• QI-group g contains t, u1, …, up and v1, …, vh.

• QI-group f contains the rest (k−p) of ui’s and (m−h) of vi’s.

Our goal is to prove h = 0 or m (i.e., all the vi’s are in a single
group), and p = 0 or k (i.e., all the ui’s are in a single group).

By Proposition 1, the literals in NR (defined in Lemma 1) that
involve t, u1, …, up and v1, …, vh are independent of the literals
that involve the rest (k−p) of the ui’s and (m−h) of the vi’s. Thus,
the minimum negated ratio becomes

min t, vi, xi, Kσ|u(k) NR = minNRσ(g, ℓ, p, h) ⋅ Vσ(f, m−h, k−p)

= Tσ(g, ℓ, p) ⋅ Vσ(g, h, p+1) ⋅ Vσ(f, m−h, k−p).

(For detailed derivation, see Derivation 1 in [3].)

Congregation of the vi’s: We now show NR is minimized when
all the vi’s are in one QI-group; i.e., h = 0 or m. Since Tσ(g, ℓ, p)
does not involve any vi by definition, we only need to prove the
following formula (4) is minimized when h = 0 or m.

Vσ(g, h, p+1) ⋅ Vσ(f, m−h, k−p). (4)

In the following, the proof is case-specific.

• In the SVPI and MVPI-Set cases, if we let αi = (ng−#σg−p−i) /
(ng−p−i) and βi = (nf−#σf−(k−p)−i+1) / (nf−(k−p)−i+1), we can
rewrite formula (4) as (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi). Note that
here i start from 1, not 0. Then, by Proposition 6, formula (4)
is minimized when h = 0 or m.

• In the MVPI-Multiset case, we can rewrite formula (4) as
formula (1) by setting a = ng−(p+1), b = #σg, c = nf−(k−p), and
d = #σf. Then, by Proposition 7, formula (4) is minimized
when h = 0 or m.

Since NR is minimized when all the vi’s are in one QI-group,
Kσ|v,t(m) is 1-group congregated.

Congregation of the ui’s: We now show NR is minimized when
all the ui’s are in one QI-group; i.e., p = 0 or k. If all the vi’s are in
QI-group g (i.e., h = m), the minimum negated ratio becomes

Tσ(g, ℓ, p) ⋅ Vσ(g, m, p+1),

because Vσ(f, 0, k−p) = 1. It is easy to see that p = k maximizes the
above formula. Thus all the ui’s are in one QI-group.

Now, if all the vi’s are in QI-group f (i.e., h = 0), the minimum
negated ratio becomes the following formula (5).

Tσ(g, ℓ, p) ⋅ Vσ(f, m, k−p). (5)

We need to show formula (5) is minimized when p = 0 or k.

• In the SVPI and MVPI-Set cases, we can rewrite formula (5)
as formula (2) by appropriately setting a, b, c, d, k, m. Thus,
by Proposition 8, formula (5) is minimized at p = 0 or k.

• In the MVPI-Multiset case, we can rewrite formula (5) as
formula (3) by appropriately setting a, b, c, d, e, k, n. Thus, by
Proposition 9, formula (5) is minimized when p = 0 or k.

Since NR is minimized when all the ui’s are in one QI-group,
Kσ|u(k) is 1-group congregated.

Induction argument: Now assume Theorem 1 holds for (B−1)
QI-groups. We show that it also holds for B QI-groups. We first
consider the vi’s. Without loss of generality, assume the negated
ratio is minimized when v1, …, vh are in the first (B−1) QI-groups
and the rest (m−h) are in the Bth QI-group. By the induction
assumption, v1, …, vh are in one QI-group, say g. Now, the vi’s
can only be in two QI-groups. Similar to the argument in the base
case, h = 0 or m. Thus, all the vi’s are in one QI-group; i.e.,
Kσ|v,t(m) is 1-group congregated.

By a similar argument, it is easy to show that all the ui’s are in one
QI-group; i.e., Kσ|u(k) is 1-group congregated. �

7. EXPERIMENTS

In this section, we describe a set of experiments intended to
address the following three high-level questions. First, recall that
in Section 5.1 we developed an efficient algorithm for checking
the safety of a release candidate in the presence of three-
dimensional external knowledge, based on the congregation
property. In Section 7.1, we show that this algorithm improves
performance several orders of magnitude over the best existing

technique [14]. Second, we describe (in Section 7.2) an experiment
demonstrating the efficiency and scalability of the anonymization
algorithm described in Section 5.2. Finally, in Section 7.3, we
present an interesting case study, which demonstrates how the
skyline exploratory tool can be used in a practical setting.

7.1 Efficiency Comparison

Our algorithms rely heavily on the congregation property. In this
experiment, we show the importance of this property. Recall that,
to check whether a release candidate is safe, we maximize the
breach probability. Without the congregation property, the best
known technique for maximizing the breach probability is the
dynamic-programming technique developed in [14]. Although the
technique was originally developed for computing the breach
probability under a knowledge expression different from ours, it
can be adapted to ours easily. In addition, we use a simple
technique to remove recursive calls to make the dynamic-
programming algorithm faster. For details, see [3].

We generate release candidates synthetically. There are 20 distinct
uniformly distributed values in the sensitive attribute. We fix the
size of each QI-group to be 100 individuals. By varying the
number of QI-groups in a release candidate, we generate release
candidates with sizes from one million records to five million
records. We define the improvement ratio to be the CPU time of
the dynamic-programming algorithm over the CPU time of the
SkylineCheck algorithm (described in Section 5.1) when they
applied to a same release candidate. Both algorithms have the
same IO time and always output the same answer. The experiment
was run on a Windows XP machine with a 2.0 GHz dual-core
processor and 2 GB memory. The breach probabilities were
computed for the SVPI case.

Figure 7 shows the experimental results. Each point in the plots is
an average improvement ratio over five runs. In Figure 7 (a), we
set the knowledge threshold to be (ℓ, k, m) = (10, 10, 10) and vary
the size of the release candidate. In this setting, our algorithm is
about 140 times faster than the dynamic programming algorithm.
In Figure 7 (b), we vary ℓ from 0 to 16. The improvement

decreases as ℓ increases, because both algorithms have roughly the
same computational dependency on the ℓ value. As the ℓ value
increases, it gradually dominates the running time. Thus, the
difference between the two algorithms becomes smaller. In Figure
7 (c), we vary k from 0 to 32 and observe that the improvement
increases as k increases. At k = 32, our algorithm is about 1,000
times faster than the dynamic-programming algorithm. Note that,
in practice, the k value may be even larger. Finally, in Figure 7
(d), we vary m from 0 to 16, and also observe that the
improvement increases as m increases.

Note that in this experiment, we compare the two algorithms for
checking whether a release candidate is safe. The algorithm for
generating a safe release candidate is more complex than that for
checking safety. Although we did not show experimental results
comparing our technique with the dynamic-programming
technique for generating a safe release candidate, it can be easily
seen that the improvement will be larger.

7.2 Scalability

We also conducted an experiment that demonstrates the scalability
of the SkylineAnonymize algorithm (in Section 5.2) using the
Rothko-Tree approach described in [10]. The scale-up experiment
was run on a single-processor 2.4 GHz Linux machine with 512
MB of memory. We used a synthetic data set similar to that
described in [1], and each data tuple was a fixed 44 bytes.
Hypothetically, we set Zipcode (9 distinct values) to be the
sensitive attribute. Figure 8 shows our results for two different
privacy settings. In each case, the scale-up performance is well-
behaved for datasets substantially larger than main memory. The
case of (ℓ, k, m) = (0, 1000, 0) roughly corresponds to generating a
k-anonymous dataset with k = 1000. The case of (ℓ, k, m) = (3,
1000, 10), we think, is a more reasonable privacy setting. Because
the number of sensitive value is just 9, the ℓ value cannot be large.
Also, considering that the adversary knows m=10 members in the
target individual’s same-value family is usually sufficient. We set
k to be a much larger number, because k represents that the
adversary obtains a list of k individuals from other datasets, which
can be large.

7.3 Case Study: Adult Dataset

The adult dataset from the UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html) has been
used in a number of privacy-related studies (e.g., [8, 12, 14]). In
this section, we describe a case study, using the skyline
exploratory tool to investigate the safety of release candidates. In
particular, we find that an ℓ-diverse [12] release candidate can be
unsafe in the presence of certain kinds of adversarial knowledge.
Based on the experiment in [14], ℓ-diversity has similar behavior
to (c, k)-safety [14]. Thus, our case study also suggests that a (c,
k)-safe release candidate may also be unsafe in the presence of
certain external knowledge.

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

Dataset Size (Millions of Records)

E
la

p
s
e
d

 T
im

e
 (

S
e
c
)

(ℓ,k,m)=(0,1000,0)

(ℓ,k,m)=(3,1000,10)

 Figure 8. Scalability experimental result

(ℓ=10, k =10, m =10)

0

50

100

150

200

1M 2M 3M 4M 5M

Number of records

Im
p
ro

v
e
m

e
n
t
ra

tio

(ℓ: x -axis, k =10, m =10)

0

50

100

150

200

0 4 8 12 16
ℓ

Im
p
ro

v
e
m

e
n
t

ra
tio

(ℓ=10, k : x -axis, m =10)

0

200

400

600

800

1000

0 8 16 24 32
k

Im
p
ro

v
e
m

e
n
t
ra

tio

(ℓ=10, k =10, m : x -axis)

0

50

100

150

200

250

0 4 8 12 16
m

Im
p
ro

v
e
m

e
n
t
ra

tio

Figure 7. Improvement over the dynamic programming technique [14]

Confidence threshold: 1

Knowledge threshold:

(a) (b) (c) (d)

The adult dataset has 45,222 records after removing records with
missing values. Following [12, 14], we treat Occupation (14
distinct values) as the sensitive attribute. Each individual has
exactly one sensitive value (i.e., the SVPI case). Suppose the data
owner wants to publish a safe version of the adult dataset using ℓ-
diversity. She first generates a (c=3, ℓ =6)-diverse release
candidate, where (c=3, ℓ=6) is a common setting in [12, 14]. Note
that (c=3, ℓ=6)-diversity is actually equivalent to our basic 3D
privacy criterion by setting (ℓ, k, m) = (4, 0, 0) and confidence
threshold to be 75%, for all sensitive values. Thus, we use our
anonymization algorithm to generate such a release candidate.

Before publishing the release candidate, the data owner
investigates how safe the release candidate is under various
amounts and types of external knowledge using the knowledge
skyline. The following are the resulting skyline points for
sensitive value “Exec-managerial” at confidence threshold 95%:

 ℓ k m ℓ k m ℓ k m ℓ k m

(0, 4, 0), (1, 3, 1), (2, 2, 2), (3, 1, 2),
(2, 1, 3), (4, 0, 3), (3, 0, 4).

When the number of points on the skyline is large, we can show
these points in a 3D visualization interface. The release candidate
is safe if and only if the adversary has knowledge with amount
below or on the skyline points. Thus, the first point (0, 4, 0) tells
us that, in the worst case, if the adversary knows the sensitive
values of only 5 individuals (and nothing else), then he would be
able to successfully predict a target individual to be an executive
manager with confidence at least 95%. This is a privacy breach.
One may say that it is unlikely to be the worst case. However, our
exploratory tool can also identify the five individuals that cause
the worst case (by looking at the grounding of the variables that
maximizes the breach probability). Thus, after the release
candidate is published, the adversary can also use our tool to
identify those five individuals and, by a small-scale investigation
of five people, he can achieve 95% confidence. This demonstrates
that an ℓ-diverse release candidate can be quite unsafe.

As another example, consider the skyline point (2, 1, 3). This
point tells us that the adversary cannot succeed if he knows ≤ 2
sensitive values that the target individual does not have, the
sensitive value of ≤ 1 other individual, and ≤ 3 other members of
the target individual’s same-value family. However, if the
adversary has any knowledge more than this amount, in the worst
case, he could succeed.

8. CONCLUSIONS & FUTURE WORK

In this paper, we first described a clean theoretical framework for

reasoning about attribute disclosure in the presence of external

knowledge. In general, the problem of measuring disclosure is

NP-hard when external knowledge is involved. For this reason,

the interesting research direction is to find special forms of

external knowledge that both arise naturally in practice and can be

efficiently handled. Previous work [14] identified a special form

that can be handled in polynomial time but is not very natural.

Thus, we defined a privacy criterion based on a combination of

three special forms of knowledge that arise naturally in practice,

and developed efficient and scalable algorithms for checking

safety and generating safe release candidates. We showed that our

checking algorithm improves efficiency several orders of

magnitude over the best known technique [14], and our

anonymization algorithm is well-behaved on datasets much larger

than main memory. Based on the three special forms, we also

proposed a three-dimensional skyline exploratory tool that is

useful for investigating the safety of a dataset to be released.

In the future, an important research direction is identifying other

classes of background knowledge that are both natural and can be

handled efficiently. In particular, there are several types of

external knowledge that we find especially compelling:

• Graphs: It is natural to express relationships among individuals

using graphs, in which nodes are properties of individuals and

edges represent relationships. What kinds of graphs are both

useful and efficiently solvable is an open problem.

• Other release candidates: The adversary may have access to

other release candidates (e.g., an anonymized dataset from

another organization). How to express this kind of knowledge

and what special cases are efficiently solvable are wide open.

• Probabilistic external knowledge: In Section 2, we described

a theoretical framework based on deterministic external

knowledge. An interesting extension to this framework would

allow external knowledge to be probabilistic. In particular,

when we evaluate an expression E on a possible original

dataset R(D*), instead of returning either true or false, we

return Pr(E | R(D*)). In this extension, assuming that each

reconstruction R is equally likely in the absence of any

external knowledge, we obtain

Pr(E | K, D*) = ∑R Pr(E ∧ K | R(D*)) / ∑R Pr(K | R(D*)),

This extension is closely related to the language of (sometimes

uncertain) knowledge bases described in [2].

9. REFERENCES
[1] Agrawal, R., Ghosh, S., Imielinski, T., and Swami, A. Database

mining: A performance perspective. TKDE, 1993.
[2] Bacchus, F., Grove, A.J., Halpern, J., and Koller, D. From statistical

knowledge bases to degrees of belief. A.I., 87(1-2), 1996.
[3] Chen, B.-C., LeFevre, K., Ramakrishnan, R. Privacy skyline.

Technical Report 1596, Computer Sciences, UW – Madison, 2007.
[4] Dalvi, N., Miklau, G., and Suciu, D. Asymptotic conditional

probabilities for conjunctive query. ICDT, 2005.
[5] Deutsch, A., Papakonstantinou, Y. Privacy in database publishing.

ICDT, 2005.
[6] Kifer, D., and Gehrke, J. Injecting utility into anonymized datasets.

SIGMOD, 2006.
[7] LeFevre, K., DeWitt, D., Ramakrishnan, R. Incognito: Efficient full-

domain k-anonymity. SIGMOD, 2005.
[8] LeFevre, K., DeWitt, D., Ramakrishnan, R. Mondrian:

Multidimensional k-anonymity. ICDE, 2006.
[9] LeFevre, K., DeWitt, D., Ramakrishnan, R. Workload-aware

anonymization. SIGKDD, 2006.
[10] LeFevre, K., DeWitt, D. Scalable anonymization algorithms for large

data sets. University of Wisconsin Technical Report 1590, 2007.
[11] Li, N, Li, T., Venkatasubramanian, S. t-Closeness: Privacy beyond k-

anonymity and l-diversity. ICDE, 2007.
[12] Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.

ℓ-diversity: Privacy beyond k-anonymity. ICDE, 2006.
[13] Machanavajjhala, A., and Gehrke, J. On the efficiency of checking

perfect privacy. PODS, 2006.
[14] Martin, D., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern J.

Worst-case background knowledge in privacy. ICDE, 2007.
[15] Miklau, G., and Suciu, D. A formal analysis of information disclosure

in data exchange. SIGMOD, 2004.
[16] Sweeney, L. K-anonymity: A model for protecting privacy. Int. J. on

Uncertainty, Fuzziness and Knowledge-based Systems, 2002.
[17] Xiao, X., and Tao, Y. Anatomy: Simple and effective privacy

preservation. VLDB, 2006.
[18] Xiao, X., and Tao, Y. Personalized privacy preservation. SIGMOD, 2006.
[19] Yao, C., Wang, X.S., Jajodia, S. Checking for k-anonymity violation

by views. VLDB, 2005.

