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ABSTRACT
Record matching is the task of identifying records that match the
same real world entity. This is a problem of great significance for
a variety of business intelligence applications. Implementations of
record matching rely on exact as well as approximate string match-
ing (e.g., edit distances) and use of external reference data sources.
Record matching can be viewed as a query composed of a small set
of primitive operators. However, formulating such record matching
queries is difficult and depends on the specific application scenario.
Specifically, the number of options both in terms of string matching
operations as well as the choice of external sources can be daunt-
ing. In this paper, we exploit the availability of positive and negative
examples to search through this space and suggest an initial record
matching query. Such queries can be subsequently modified by the
programmer as needed. We ensure that the record matching queries
our approach produces are (1) efficient: these queries can be run on
large datasets by leveraging operations that are well-supported by
RDBMSs, and (2) explainable: the queries are easy to understand so
that they may be modified by the programmer with relative ease. We
demonstrate the effectiveness of our approach on several real-world
datasets.

1. INTRODUCTION
Data cleaning is a critical element for developing effective busi-

ness intelligence applications. The inability to ensure data quality
can negatively affect downstream data analysis and ultimately key
business decisions. A very important data cleaning operation is that
of identifying records which match the same real world entity. For
example, owing to various errors in data and to differences in con-
ventions of representing data, product names in sales records may
not match exactly with records in master product catalog tables. In
these situations, it would be desirable to match similar records across
relations. This problem of matching similar records has been studied
in the context of record linkage (e.g. [15, 20, 12]) and of identifying
approximate duplicate entities in databases (e.g., [14, 22, 24]).

Given two relations R and S, the record matching problem is to
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identify pairs of records inR×S that “represent” the same real world
entity. Consider the scenario that arose after the hurricane Katrina
hit the gulf coast. While affected people were registered into evac-
uee camps, relatives and friends across the country were enquiring
for their safety. Figure 1 shows a few example records in two re-
lations, Evacuees (affected people registered at evacuee camps) and
Enquiries (requests for whereabouts of evacuees).1 As seen from
the example, both relations are quite unclean with lots of incorrect,
abbreviated, and missing values, and therefore the task of design-
ing a program for accurately matching enquiry records with evacuee
records is quite challenging. Such challenges also arise in record
matching scenarios across a variety of other domains: matching cus-
tomers across two sales databases, matching patient records across
two databases in a large hospital, matching product records across
two catalogs, etc. In all these scenarios, a primary requirement be-
sides accuracy is that record matching programs be also efficiently
executable over very large relations.

Programming Primitives: One of our primary design goals is to
ensure that record matching programs be executable efficiently and
scalably over large input relations. Towards that goal, we model the
record matching task as that of designing an operator tree obtained
by composing a few primitive operators.

A variety of string similarity functions have been widely used for
declaring record pairs with high similarities to be matches [20, 24,
21, 14, 22, 12]. However, no single string similarity function is
known to be the overall best [23, 33].

More complex functions may be built upon these basic functions
in order to improve accuracy. In the example of Figure 1, father’s
name may only be used if it is not null. Or, one may use edit dis-
tance on the (Name, Father’s Name) columns and jaccard similarity
on the (Name, Address) columns, and “combine” the similarity val-
ues in order to arrive at an accurate record matching program. The
similarity join operator implements this intuition (see tutorial [27]).
Informally, a similarity join between two relations R and S is a join
where the join predicate is a conjunction of one or more similarity
function predicates each requiring that similarities between record
pairs be greater than a threshold. Similarity joins for a broad class
of similarity functions have been shown to be efficiently executable
(e.g., [22, 26, 13, 2], tutorial [27]), and thus fit our design goals.

Often, domain information such as US postal service address ta-
bles, and soft functional dependencies (zipcode determines city)
which are valid for a large subset of the data are also available. Such
information can be effectively used for transforming attribute values
in order to correct errors or fill in missing values. Therefore, we also
consider a broad class of (efficient) attribute value transformation
operators (discussed in Section 6).

1The figure shows example records appropriately modified to pre-
serve privacy.



Enquiries: R 
ID Name Address City State Zip Mothers Name Fathers Name Phone 
1 Gail Smith 10 Main St Chicago Illinois 60602 Mary Smith NULL 163-1234 

2 Kevin J #1344 Mont Ave NULL Wisc 53593 Stephanie Joule  608-234-
0098 

3 Sandra C #245 First Ave  Texus  NULL Charles Calvin 332-1288 

… … … … … … … … … 

Evacuees: S 
ID Name Address City State Zip Mothers Name Fathers Name Phone 
1 Gershwin K 35 Forest Dr NULL WI 53593 Georgia K Ben Kirsten 608-

1123445 
2 Mary Green 24 Second Ave Verona WI  NULL Emma Green Anthony Green  
3 Ted Johnson 412 Madison St Verona  NULL 53593 Olivia J Ethan Johnson  

4 C. Larson 18 Main St Fitchburg WI 53593 Ashley Larson Michael Larson  
5 G. Smith 135 Dayton St NULL WA 98052 Mary Carlton Tom Smith 234-0098 

6 G Smith Main Street Chicago IL 60608 M Smyth Bart Smith … 

… … … … … … … … … 

R S 

Join 
Jaccard (addr) > 0. 8 

EditSim(Names)> 0 . 9

Union
U 

R

ρ Lookup: State

ρ FD : City   −>  State
S 

Figure 1: A record matching example & query

Join predicate Precision Recall 

Baseline—any 1 similarity predicate >95% 0% 

Jaccard(Names, FatherName) > 0.4 
&&  

Jaccard(Address) > 0.7 
>95% 11% 

Jaccard(Names, FatherName) >= 1.0 
&& 

Jaccard(Phone) > 0.5 
>95% 30% 

Figure 2: Example queries & accuracy

Figure 1 illustrates an example operator tree involving union, at-
tribute value transformation operations, and similarity join predi-
cates. This view of composing basic operators into data cleaning
programs has been explored in commercial systems (e.g., ETL tools
such as IBM Ascential) and in research initiatives such as Ajax [21],
Morpheus [19], and Potters wheel [30]. A similar compositional ap-
proach is also being explored in the context of information extrac-
tion [18]. In this paper, we focus on the record matching problem.

Challenges: A programmer who designs a record matching op-
erator tree based on the above primitives is faced with many pos-
sibilities and questions. A small group of programmers (including
us) at Microsoft developed software to match Enquiries with Evac-
uees relation after the hurricane Katrina [35]. Developing an accurate
program to match records across the two relations was hard because
the number of possible matching predicates was quite high and each
one would yield different matching pairs. A priori, it was not clear
which option would best deal with the inaccuracies in both the Evac-
uees and Enquiries relations. A few questions that we had to grapple
with while identifying accurate operator trees are as follows. What
columns must we use for measuring similarities between records;
for example, do we use mother’s or father’s name, which sometimes
may be missing, or both along with other attributes? Which similar-
ity function (edit distance or jaccard similarity) do we use to com-
pare records along each or both these attributes? What is the thresh-
old (0.9 or 0.85) for a chosen similarity function value above which
record pairs would be considered matches? For instance, Figure 2
shows the recall for a few high precision (> 95%) join predicates
matching enquiry records with evacuee records. (Precision is the
percentage of all pairs returned by a record matching program which
are true matches, while recall is the percentage of matching records
that are in the result. Accuracy is often measured in terms of pre-
cision and recall.) The first row indicates that using a join predicate
based on a single similarity function (any one among edit, jaccard, or
generalized edit similarity on any combination of attributes) to match

enquiry and evacuee records was not sufficient to achieve a non-zero
recall at high precision. The second and third rows indicate that dif-
ferent queries may yield very different accuracies. Thus, matching
predicates may have to be fairly complex in order to achieve high
accuracy, and the accuracy varies widely across various predicates.
Thus, the right predicates have to be used. The challenge now is to
identify one or a few such predicates to achieve high accuracy.

In this paper, we address the above issues and develop techniques
to assist the creation of efficient record matching operator trees. We
exploit the availability of examples of matching and non-matching
pairs for this purpose. It is often much easier for a programmer to
provide a set of example matching and non-matching record pairs,
perhaps based on a sample of the result of an initial query or through
manual examination, than it is to design an accurate query from
scratch and working their way manually through the numerous range
of available choices.

Using examples to create models is a standard machine learning
practice. In fact, machine learning based approaches have also been
applied in the context of record matching for learning combination
functions over several similarity functions, e.g., [31, 8, 37, 36]. Our
approach differs in the following ways. Machine learning models are
usually applied on individual records from a single relation whereas
in the record matching problem, we join records across two relations
R and S. Therefore, in order to apply a machine learning model we
are either forced to perform a cross product and then apply the model
or employ a method which can push the model into the join opera-
tion. For example, consider the class of support vector machines
(SVM) which have been shown to result in the most accurate mod-
els for record matching [8]. To the best of our knowledge, there is
no method to efficiently perform a join between two large input re-
lations when the join predicate is an SVM model. (See Section 2 for
further discussion.)

Our contributions are summarized below.

1. We propose techniques for assisting a programmer in design-
ing the highest “quality” record matching operator trees. In-
formally, the quality of a record matching operator treeQ with
respect to a set of examples is the number of matching exam-
ples included in the result of Q subject to the constraint that
none or very few (less than a user-specified fraction β) given
non-matching examples are in the result of Q. (We discuss al-
ternative formulations within our framework in Section 6.2.)
Because we return operator trees, a programmer is easily able
to interpret, review, and modify the operator tree if required.

2. Through an extensive empirical evaluation on real datasets
from a variety of domains, we demonstrate that operator trees
determined by our techniques compare favorably in quality
with currently known best SVM models for record matching,



while being a lot more scalable and efficient to execute. For the
address domain in particular, we show that our auto-generated
operator trees are comparable in accuracy to a carefully engi-
neered address-matching system Trillium [34].

We anticipate that our techniques would enable interactive record
matching query design tools that further enhance interactive data
cleaning environments [30, 31]. We discuss these possibilities in
Section 6.2.

The remainder of the paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we formally define the op-
erator tree design problem, and then describe an algorithm in Sec-
tion 4. We then incorporate (domain-specific) attribute value trans-
formations in Section 5. We discuss extensions to our algorithm in
Section 6. In Section 7, we present an experimental study, and con-
clude in Section 8.

2. RELATED WORK
As discussed earlier, several efficient similarity join algorithms

have been recently proposed in the context of record matching (e.g.,
[22, 26, 13, 2]). Koudas et al. present an excellent tutorial of various
similarity functions and similarity join algorithms in the context of
record matching [27].

In contrast to our similarity join based combination of similarity
function values

∧
i fi > αi, another natural predicate would have

been a thresholded linear combination of all similarity function val-
ues being greater than a threshold α: Σiwifi > α. This combination
is adopted by SVM models [17]. As discussed earlier, one of our de-
sign goals is to ensure that our primitive operators are efficiently exe-
cutable. We are not aware of any method to efficiently perform a join
between two large input relations when the join predicate is a thresh-
olded linear combination. Especially, when some of the weights are
negative, which is often the case when one learns SVM models, it
is not clear how to execute the join efficiently. Even in the special
case when all weights wi are positive, we may produce a conjunc-
tion of join predicates fi > α

wi
, which reduces to our similarity join

formalism.
Decision tree models have also been applied to learn combina-

tions over similarity functions in the context of record matching [31,
37, 36]. If we restrict the class of decision tree models learnt (to
those which satisfy a certain “monotonicity” property with respect
to record matching), they can be cast as similarity joins. However,
SVM models have been shown to be significantly more accurate than
decision tree models for record matching purposes [8].

Our techniques exploit the monotonicity property of similarity
functions for record matching. Informally, the monotonicity property
requires that any pair of matching records have a higher similarity
value than a non-matching pair on at least one similarity function. In
contrast, machine learning techniques (including SVMs or decision
trees) are generically applicable to many other problems and hence
do not exploit the monotonicity property.

Recently, blocking [4] and canopy cluster [16, 28] heuristics have
been applied to efficiently execute more sophisticated record match-
ing functions (say, those learnt by machine learning models such
as SVMs). Blocking heuristics partition each of the two relations
based on a key (potentially derived using a user-specified function)
and only records in groups that agree on the key value are compared
further. Thus, blocking forces an equi-join on the partitioning key
attribute before further filters are applied. In the language of simi-
larity functions, blocking functions are boolean similarity functions,
which indicate that a pair of records either match or do not. Canopy
clustering generalizes the blocking heuristics and allows records in
a relation to be in multiple clusters. The clustering is performed by

employing a (user-specified) similarity function. Similar approaches
have also been adopted by Sarawagi et al. [32] in the context of de-
cision tree models. However, the blocking and canopy clustering
heuristics may not preserve the accuracy of SVMs.

Independent of our work, Bilenko et al. [6] and Knoblock
et al. [29] have developed techniques for choosing appropriate block-
ing heuristics to reduce the time required to execute record matching
models without reducing their accuracy. First, our framework is
more general in that we consider the general class of similarity
functions, which includes all blocking and canopy functions, and
attribute value transformations. Therefore, our techniques will select
the blocking and canopy functions if they improve quality. Or, a
programmer may constrain that these (blocking) similarity functions
be chosen. (We discuss constrained scenarios in Section 6.) Second,
many of the blocking and canopy functions that were considered
in [6, 29] can be implemented significantly more efficiently using
the set similarity join operator that we developed in prior work [13,
2]. Therefore, our framework can handle a richer class of operators
during the design and can execute the resulting operator trees more
efficiently. We note that operator trees in our class can be either
used directly to match records or as efficient filters before applying
more sophisticated decision functions such as SVMs from machine
learning, or even user-defined domain logic. Thus, our record
matching operator trees enable efficient and scalable execution of
sophisticated record matching programs.

Rahm et al. have proposed an extensible architecture for collec-
tively matching multiple object types across databases [38]. The sys-
tem (iteratively) matches objects of the same type (say, authors) and
exploits them to match objects of other types (say, publications). Our
techniques are complementary to this approach and can be plugged in
their architecture to generate matches between the same object types
(same-mappings, in their nomenclature).

3. PROBLEM DEFINITION
In the rest of the paper, we assume that the schemas of R and S

have been reconciled (i.e., attribute names in R have been mapped
to corresponding attribute names in S). Further, we assume for ease
of exposition and without loss of generality that the corresponding
attribute names in R and S are identical. Let the attribute ID be an
identifier attribute in both R and S.

3.1 SJU Operator Trees
We now formally define the SJU operator trees containing similar-

ity joins and unions. In Section 5, we extend this class with attribute
value transformation operators.

Let g1, . . . , gN be similarity functions such that 0 ≤ gi(v1, v2) ≤
1 and gi(v1, v2) = 1 iff v1 = v2. LetA1, . . . , AC denote the column
sequences in R and S we might compare using one or more similar-
ity functions. Note that, in general, we may concatenate different
column sequences (e.g., R.[City] and S.[City, State]) while compar-
ing two tuples across R and S. For ease of exposition, and without
loss of generality, we assume that the column sequence concatena-
tions compared across R and S are identical. Given a tuple r ∈ R,
we use r.A to denote the concatenation of (with a white space delim-
iter inserted between) attribute values in a column sequence A in the
relation R.

Given any pair of tuples r ∈ R and s ∈ S, let gj(r.Ai, s.Ai)
denote the similarity using gj between attribute value concatenations
r.Ai and s.Ai. For example, jaccard(r.〈city, state〉, s.〈city, state〉)
compares the jaccard similarity between the strings obtained by con-
catenating city and state values of r and s. Let gj(R.Ai, S.Ai) > α
denote a similarity function predicate which for any pair of records
r ∈ R and s ∈ S returns true if gj(r.Ai, s.Ai) > α.



Definition 1. The similarity join between relations R and
S over similarity function predicates g1(R.Ai1, S.Ai1) >
α1, . . . , gd(R.Aid, S.Aid) > αd, is the join between R and S

where the join predicate is
∧d
j=1 gj(R.Aij , S.Aij) > αj .

For example, edit(R.Name, S.Name) > 0.9 ∧
jaccard(R.Address, S.Address) > 0.8 is an example of a
similarity join as shown in the rightmost path in Figure 1.

SJU Trees: Any operator tree which is a union of similarity joins is
an SJU tree. The class of SJU trees is rich enough to include many
previous record matching techniques [27].

3.2 Record Matching Operator Tree Design
Given two relations, there is a large number of choices for creating

a record matching operator tree. Further, these choices usually lead
to different solutions (i.e., different subsets of R × S). To identify
the best record matching operator tree among all possible candidates,
we need to quantify the quality of a record matching operator tree.
Our approach is based on leveraging a given set of matching and
non-matching pairs of examples.
Examples: An example is a record pair belonging to R × S along
with a label indicating whether or not the pair is considered a match.
Let ∆+ denote the set of example matching record pairs and ∆−

denote the set of example non-matching pairs.
Let T (R,S) be an SJU operator tree over input relations R and

S. Since it will be clear from the context, we also use T (R,S) to
denote the result of executing T (R,S) on relations R and S.

Definition 2. The coverage of T (R,S) with respect to X ⊆
R × S is the fraction of records in ΠR.ID,S.IDX that are also in
ΠR.ID,S.IDT (R,S).

Given 0 ≤ β ≤ 1, an operator tree T (R,S) is β-neg if the cov-
erage of T (R,S) with respect to ∆− is less than or equal to β. The
quality of T (R,S) is its coverage with respect to ∆+.

Definition 3. (Operator tree design problem) Given 0 ≤ β < 1,
the goal in the operator tree design problem is to find a β-neg opera-
tor tree T ∗(R,S) with the maximum quality.

A similarity join involves three different elements: (i) a set of
similarity functions (such as edit similarity, hamming, etc.), (ii)
the column sequences compared using the similarity functions, and
(iii) the thresholds over the resulting similarity values in order to
define the join predicates. For example, if we consider the set of
edit and jaccard similarity functions, the columns {Name, Address}
from two relations R and S, then we get a total of eight simi-
larity functions: four corresponding to measuring edit similarity
between all non-empty sub-sequence pairs {(〈R.Name〉, 〈S.Name〉),
(〈R.Address〉, 〈S.Address〉), (〈R.Name, R.Address〉, 〈S.Name,
S.Address〉), (〈R.Address, R.Name〉, 〈S.Address, S.Name〉)}; and
four corresponding to measuring jaccard similarity between the same
column combinations. Note that for certain similarity functions, the
order of the attributes may not be important, or that they may not
be applied on certain combinations. In such cases, the number of
relevant combinations would be less. In the rest of the paper, we
assume that all relevant combinations of similarity functions with
column sequences are given. If not, we can easily define a macro to
generate all possible combinations.

Let there be D such combinations f1, . . . , fD . Each fi (implic-
itly) associates a similarity function gj with a column sequence Ak.
A similarity join is written as a conjunction of fi > αi. Henceforth,
we loosely refer to each fi, denoting a gj and Ak association, as a
similarity function.

Bounded SJU Trees: Let d ≤ D and K ≥ 1 be two integers.
We study a restricted class where each operator tree is allowed to
be a union of at most K similarity joins, and where each similarity
join may have at most d similarity function predicates. We denote
this restricted class of operator trees by SJU(d,K). Configuring
a similarity join in SJU(d, 1) requires us to (i) choose d out of D
similarity functions and (ii) the corresponding thresholds. And, con-
figuring an operator tree in SJU(d,K) now requires us to configure
the union of K such similarity joins. The number of these choices
defines the SJU operator tree space.

We consider bounded operator trees for the following three intu-
itive reasons. First, the restriction is a mechanism to avoid “over-
fitting.” A very large operator tree might be able to identify precisely
all the matching pairs in a given set of examples quite well but it
may not generalize well to the remaining pairs of tuples in R × S.
Second, programmers are able to easily interpret and modify smaller
operator trees. Third, smaller operator trees are usually more effi-
ciently executable. Specifically, given two operator trees where one
is a sub-tree of the second, then the first smaller operator tree is often
more efficiently executable.

Definition 4. (Bounded operator tree design problem) GivenK ≥
1, d ≤ D, and 0 ≤ β < 1, the goal in the operator tree design
problem is to find a β-neg operator tree T ∗(R,S) in SJU(d,K)
with the maximum quality.

We only focus on the bounded operator tree design problem in this
paper. Hence, we loosely say operator tree design problem to refer
to the bounded variant.

3.3 Monotonicity
We say that the record matching problem between R and S is

monotonic with respect to a set {f1, . . . , fD} of similarity functions
if, for any matching pair (r1, s1) and non-matching pair (r0, s0) in
R× S, there exists an fi such that fi(r1, s1) > fi(r0, s0).

Note that the monotonicity property only requires that any pair of
matching records have a higher similarity value than a non-matching
pair on at least one similarity function. We empirically observed that
this property is satisfied in most record matching scenarios. Let us
consider all real example sets from the RIDDLE repository [7] and
proprietary data that we used to evaluate our techniques in Section 7.
Even with small d values, more than 99% of the matching record
pairs can be covered by an operator tree in the SJU class if we allow
a small number (less than 5%) of given non-matching pairs in the
result. These observations provide evidence that record matching is
monotonic with respect to a set of common similarity functions.

Observation: If the record matching problem is monotonic with re-
spect to {f1, . . . , fD}, then there exists an SJU operator tree which
correctly identifies all the matching records, and only those, inR×S.

4. ALGORITHMS
We now describe our algorithm for identifying the best record

matching operator tree. Since the problem (as will be shown in Sec-
tion 4.3) is NP-hard, we develop approximation algorithms. We first
describe an algorithm for the restricted version of the problem where
the operator tree can only contain one similarity join. We reduce the
restricted operator tree design problem when K = 1 to that of iden-
tifying the “best” d-dimensional hyper-rectangle in a D-dimensional
“similarity space” induced by the similarity values between record
pairs; each hyper-rectangle uniquely determines an operator tree with
one similarity join (Section 4.1). We then describe our algorithm
(Section 4.2). We build upon this algorithm to describe an approx-
imation algorithm when the operator tree is allowed to contain K



similarity joins (Section 4.3). The algorithm for the restricted version
with one similarity join is one of our main contributions, and forms
the basis for applying known set coverage approximation techniques
to the more general problem.

4.1 Reduction to Maximum Rectangle Problem
We define the maximum hyper-rectangle problem and then show

its equivalence with the operator tree design problem when it is re-
stricted to have only one similarity join operator. Recall that each fi
associates a similarity function gj with a column sequence Ak.

Definition 5. Similarity Space: Consider the D-dimensional
space [X1, . . . , XD] where each dimensionXi corresponds to a sim-
ilarity value based on fi between record pairs in R×S. Each record
pair (r, s) ∈ ∆+ ∪ ∆− maps to a point, [f1(r, s), . . . , fD(r, s)],
in the similarity space. We tag the mapped points corresponding to
record pairs in ∆+ as positive (+) and those in ∆− as negative (−)
points. For ease of exposition, we will refer to the set of points in the
similarity space corresponding to matching and non-matching pairs
as ∆+ and ∆−, respectively.

Figure 3 illustrates an example set of mapped points along with
their positive and negative tags.

Definition 6. A point p1 dominates a point p2 if p1’s values in
all dimensions are greater or equal to that of p2’s, and at least on
one dimension p1’s value is greater than that of p2. We say that p1

strongly dominates p2 if p1[i] > p2[i], 1 ≤ i ≤ D. That is, p1’s
values are strictly greater than that of p2 on each dimension. 2

For reasons which will be clear later, we require a point which
every point in the similarity space strongly dominates. Since all sim-
ilarity values are non-negative, we use −ε (Xi = −ε, 1 ≤ i ≤ D,
for an arbitrarily small ε > 0) for this point.

Definition 7. A point p in the similarity space defines the follow-
ing two hyper-rectangles. The lower rectangle lrect(p) of p is the
set of points strongly dominated by p. We call this lrect(p) because
it is the set of all points inside the hyper-rectangle defined by the
corners −ε and p. The upper rectangle urect(p) of p is the set of
all points strongly dominating p. urect(p) is set of points inside the
hyper-rectangle defined by corners p and 1 (Xi = 1, 1 ≤ i ≤ D).

Given a point p, we say that urect(p) is d-dimensional if at least
d attribute values of p are non-negative, i.e., we require at least d
hyper-planes (Xi > p[i]) to define urect(p).

A hyper-rectangle containing less than β · |∆−| negative points
is a β-neg rectangle. Likewise, the coverage of a hyper-rectangle
urect(p) with respect to a set X of points is the fraction of points in
X that are inside urect(p). 2

We often loosely use rectangle to also mean a hyper-rectangle
when the dimensionality is greater than 2. Figure 3 illustrates
the lower and upper 2-dimensional rectangles, lrect(P2) and
urect(P2) respectively. The problem of designing (from examples)
the best β-neg operator tree with one similarity join now reduces
to that of identifying a d-dimensional upper rectangle with the
maximum number of positive points but at most β · |∆−| negative
points.

Definition 8. Maximum rectangle problem: Given an integer
d ≤ D and a constant 0 ≤ β < 1 and sets ∆+ and ∆− of positive
and negative points, respectively, in a D-dimensional space, find a
point α such that urect(α) is a d-dimensional β-neg hyper-rectangle
whose coverage with respect to ∆+ is maximum. 2
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Consider the rectangle urect([α1, . . . , αD]) and the operator tree
T with the similarity join predicate

∧D
i=1 fi(R.Ai, S.Ai) > αi.

Each record pair in the result of T maps to a point in the rectan-
gle. Figure 3 illustrates the equivalence of the problems of finding
the best 0-neg operator tree and that of finding the best 0-neg (i.e.,
β = 0) hyper-rectangle in 2 dimensions when the similarity func-
tions are edit similarity on the Name column and Jaccard similarity
on the Address column. The figure on the left side shows an operator
tree T with one similarity join while the rectangle on the right shows
a rectangle whose bottom left corner is [α1, α2]. The rectangle con-
sists of all the points corresponding to record pairs in the result of
T . The intuition extends to the case when similarity joins are only
allowed to contain at most d similarity functions, and is formalized
below.

LEMMA 1. The maximum hyper-rectangle problem is equivalent
to that of finding the best operator tree with one similarity join.

4.2 Algorithm for Maximum Hyper-rectangle
Our goal here is to identify [α1, . . . , αD] such that

urect([α1, . . . , αD]) is the best d-dimensional β-neg rectangle.
Such a rectangle would uniquely correspond to the similarity join
with predicate

∧
αi≥0 fi(R.Ak, S.Ak) > αi. Recall that each fi

associates a similarity function gj with a column sequence Ak. We
start by describing our algorithm for the 0-neg rectangle problem.
We then relax this constraint and allow β > 0. In this section, we
assume that the numbers of examples in ∆+ and ∆− can fit in main
memory. In Section 6.1, we discuss techniques to handle very large
sets of examples.

We adopt a recursive divide and conquer strategy and successively
eliminate regions in the similarity space which cannot contain the
bottom left corner of a 0-neg rectangle. We then recursively solve
the problem in the remaining smaller sub-regions. Let us illustrate
our approach with an example in 2 dimensions as shown in Figure 4.
Consider the point P2. We first observe that lrect(P2) cannot con-
tain the bottom left corner of any 0-neg rectangle because any such
rectangle contains the negative point P2. In fact, any negative point



defines such a region which can be eliminated from further consider-
ation. The remaining region is the union of two new sub-regions:
urect([P2[X1],−ε]) and urect([−ε, P2[X2]]). Note that these
new regions correspond to translating the origin to [P2[X1],−ε]
and [−ε, P2[X2]], respectively. We now recurse over each one of
these two regions for determining the best rectangle. While process-
ing urect(P2[X1],−ε]) suppose we choose the negative point P3.
One of the newer regions is the rectangle urect([P2[X1], P3[X2]])
which contains only positive points and hence is a valid rectangle.
Among all such valid rectangles encountered during the recursive
traversal of our algorithm, we choose the one with the highest num-
ber of positive points.

As illustrated above, each of the negative points defines a candi-
date lower rectangle which can be eliminated. We can further reduce
the number of candidate lower rectangles for elimination due to the
following observation.
Skyline: The skyline of a set of points contains all points which do
not “dominate” each other [11]. For the example in Figure 4, the
points P2 and P3 are on the skyline of negative points while P1
is not because it is dominated by both P2 and P3. We refer to the
skyline of the negative points ∆− as the negative skyline S−.

PROPERTY 1. Let p be a point in S−. Then, for any point p′ in
lrect(p), urect(p′) cannot be a 0-neg hyper-rectangle. 2

For example, the rectangle lrect(P2) corresponding to the neg-
ative skyline point P2 in Figure 4 cannot contain the bottom left
corner p′ of any 0-neg rectangle urect(p′). Among all negative sky-
line points, we choose one point p uniformly at random, eliminate
the rectangle lrect(p), and then recurse on the new upper rectangles.

Stopping Condition: During any given recursive call we explore a
sub-region which is the upper rectangle urect(O) of some pointO in
the similarity space. When an upper rectangle is “valid” (i.e., it does
not contain any negative skyline point and hence no negative point),
we stop recursing on this sub-region. For the example in Figure 4,
suppose we choose P4. We then generate two new upper rectangles
urect([−ε, P4[X2]]) and urect([P4[X1],−ε]), respectively. The
first upper rectangle is valid since it contains only positive points,
and we would not recurse.

The above approach can be extended even if we require the final
rectangles to be d-dimensional for some d < D. If the number d′

of non-negative dimension values of O is greater than d then we re-
quire at least d′ hyper-planes to describe any rectangle contained in
urect(O). Hence, urect(O) cannot contain a valid d-dimensional
rectangle. Therefore, we stop recursing. This intuition is formalized
below.

PROPERTY 2. LetO be a point, and p be any point which strongly
dominates O. The dimensionality of urect(O) is a lower bound of
the minimum dimensionality of urect(p).

We now describe our algorithm, which is outlined in Figure 5. The
overall algorithm consists of three steps. First, we build the negative
skyline. The second main step is the QuickCorners algorithm for
identifying the best corner. The third step adjusts the corner of the
rectangle returned by QuickCorners.

Step 1—Negative skyline identification: We identify the skyline
S− of all negative points. Any of the known skyline identification
algorithms can be used for this purpose. In our implementation, we
use the algorithm based on nested loop joins [11].

BestHyperRectangle(∆+, ∆−, d)
Initialization: C = [−ε, . . . ,−ε] where ε > 0 is a small constant.
(1) Build the skyline S− of negative points ∆−

(2) coverage = QuickCorners(∆+, ∆−, S−, ref C, d, 0)
(3) AdjustCorner(ref C,∆+)

QuickCorners(∆+, ∆−, S−, ref C, d, d′)
/* Stop conditions */
(1) if (d′ > d) return 0
(2) If V alidCorner(C, S−)

return v = Coverage(urect(C),∆+)
/* Recursion */
(3) Else, randomly pick a point p ∈ S− which strongly dominates C.
(4) v∗ = 0; C∗ = null
(5) foreach dimension i,

C′ = [C[1], . . . , p[i], . . . , C[D]]
d′′ = d′

if (C[i] == −ε) d′′ = d′ + 1
v = QuickCorners(∆+, ∆−, S−, C′, d, d′′)
if (v > v∗)thenv∗ = v;C∗ = C′ endif

end foreach
(6) C = C∗

ValidCorner(C, S−)
(1) foreach p ∈ S−
(2) if p strongly dominates C

return false
(3) return true

AdjustCorner(ref C, ∆+)
foreach dimension i

C′[i] = MIN {p[i] such that p ∈ ∆+ strongly dominates C}
end foreach
C = C+C′

2

Figure 5: Maximum 0-neg rectangle algorithm

Step 2—QuickCorners: We recursively explore the similarity
space. Each call to the recursive algorithm takes a corner C which
defines a candidate hyper-rectangle urect(C). Initially, we start with
the corner −ε, where each attribute value is set to the lowest bound-
ary value. Given a corner C, we first check whether or not we can
stop. We stop when we find a valid rectangle or when we cannot find
a valid rectangle. If we found a valid hyper-rectangle, the current
QuickCorners call returns the number of positive points contained in
urect(C). If we determined that urect(C) cannot contain a valid
rectangle, we return 0. We discuss the stopping conditions after we
discuss the sub-region enumeration.
Step 2.1—New urect enumeration: If we could not stop, urect(C)
must contain at least one negative skyline point which strongly dom-
inates C. (Otherwise, from Property 1 we know that urect(C) is
a valid rectangle and we would have stopped.) Among all such
strongly dominating negative skyline points, we choose a point p
uniformly at random and identify new sub-regions of urect(C) to re-
curse on. The new sub-regions are obtained by eliminating lrect(p)
from urect(C) such that their union equals urect(C) − lrect(p).
Consider the upper rectangles of new corners C1, . . . , CD defined
as follows: Ci is obtained by replacing C[i] with p[i]; on all other
dimensions j 6= i, Ci[j] = C[j]. Intuitively, these new upper rect-
angles are obtained by translating the original corner C along each
of the dimensions until p. We then call QuickCorners on each new
corner.

By construction, the point p cannot strongly dominate any of
the new corners C1, . . . , CD . Therefore, the number of dominat-
ing negative skyline points in each urect(Ci) is less than that of
urect(C) by at least one. Thus, each call to QuickCorners makes
definite progress by eliminating at least one negative skyline point.
Therefore, the algorithm terminates.
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Step 2.2—Stopping and Validation Check: We now describe the
conditions for stopping and for determining whether or not we found
a valid hyper-rectangle urect(C). The two conditions when we
can stop are (i) we found a valid hyper-rectangle in that there is no
negative point which strongly dominates C (Property 1), and (ii) we
are sure that there can be no valid hyper-rectangle in d dimensions,
i.e., d′ > d from Property 2.

Step 3—Corner Adjustment:
The rectangle returned by the maximum rectangle algorithm

touches the negative points and may be far from the positive points.
Once we have identified the best valid rectangle, we can analyze
the distribution of the positive points and “move” the rectangle to
be closer to the positives. After we find the best hyper-rectangle
urect(C) we adjust its corner such that the adjusted rectangle is be-
tween the positive points and negative points. We first find the corner
C′ as follows. On each dimension Xi in the relevant subset of d di-
mensions, C′[i] is set to be the minimum attribute value among all
positive points in urect(C). Note that urect(C′ − ε) contains all
positive points in urect(C) but there does not exist another point
C′′ which (i) dominates C′ and (ii) contains all positive points in
urect(C). Intuitively, C′ defines the corner until which C can be
pushed towards the positive points without reducing the coverage of
urect(C) with respect to ∆+.

The new adjusted corner Cnew is the average of C and C′. We
note that other adjustment policies may be easily adopted.

In Figure 4, urect([P2[X1], P3[X2]]) would be returned by
QuickCorners. And, urect(C′) is the minimal rectangle touching
positive points in urect([P2[X1], P3[X2]]). We adjust the corner
to be the average of [P2[X1], P3[X2]] and C′.

Pruning Corners Optimization
In the QuickCorners algorithm, it is further possible to avoid pro-
cessing a rectangle urect(C) for the best rectangle when we know
that any rectangle urect(C′) contained in urect(C) would have a
quality less than that of the current best hyper-rectangle.

An upper bound on the quality of any rectangle contained in
urect(C) is the total number of positive points in urect(C). Thus,
we can prune C to be not useful when the upper bound on maximum
quality is less than the current best quality.
Analysis: We now state that the QuickCorners algorithm terminates
and discuss its complexity.

THEOREM 2. The QuickCorners algorithm terminates and re-
turns the maximum d-dimensional hyper-rectangle.

Complexity of QuickCorners: While processing each corner C, we
examine each positive point to check whether C is valid. We may
then examine each negative skyline point to pick one at random for
recursing. The reduction in problem sizes depends on the distribu-
tion of skyline points. For instance when D = 2, the number of sky-

line points which dominate a new corner is expected to be half the
original number of skyline points. However, as for the randomized
convex hull algorithms, it is hard to analyze the expected reduction
especially for higher values ofD and we leave the analysis for future
work. We demonstrate empirically that QuickCorners algorithm is
efficient even for large D values (up to 30) under the typical scenar-
ios when d, the number of similarity functions allowed in similarity
joins, is small. Even though we prefer that training time be not very
large, our main performance and design criterion is that the time for
executing the resulting operator trees be less. As shown in Section 7,
execution times are usually much larger than training times for very
large datasets.

4.3 Union of Similarity Joins
As discussed earlier, a single hyper-rectangle—equivalently, oper-

ator tree—may not be able to cover all the positive points. Therefore,
several rectangles may have to be used to improve the coverage with
respect to ∆+. We now discuss an algorithm to identify a good op-
erator tree (in SJU(d,K)) with at most K similarity joins.

We first observe that this problem is similar to the set coverage
problem [25]. Given a collection of sets S and an integerK, the goal
in the set coverage problem is to pickK sets {S1, . . . , SK} such that
the total number of elements in

⋃K
i=1 Si is maximized. In our prob-

lem, by viewing each 0-neg hyper-rectangle as a set in the collection
of sets, our problem of choosing K (0-neg) hyper-rectangles such
that their coverage with respect to ∆+ is maximized reduces to that
of choosing the best K sets. This relationship is the intuition behind
the following result.

THEOREM 3. The operator tree design problem is NP-hard.

We adapt the greedy algorithm for the set coverage problem to our
scenario. Our main observation is that we can exploit our algorithm
(in Section 4.2) to identify the best hyper-rectangle over a given set
of examples, and avoid the enumeration of all valid hyper-rectangles,
which can be very large. We can greedily pick the best rectangle, re-
move the positive (and negative) points contained in this rectangle,
and repeat the procedure on the remaining examples. We stop when
we have picked K rectangles or when all positive examples are re-
moved. We now show that this greedy strategy yields a good solu-
tion, which is within a factor of the optimal. The proof follows from
the set coverage problem [25].

LEMMA 4. GivenK, the greedy algorithm picks an operator tree
whose coverage with respect to ∆+ is within a factor of (1 − 1

e
) of

the optimal 0-neg operator tree containing a union of K similarity
joins.

4.4 β-neg Operator Trees
Often, allowing rectangles to contain a few negative points may

significantly improve the coverage of the positive points. In this case,
the overall outline of the algorithm remains the same except the val-
idation. The outline of the modified validation function is given in
Figure 7. The intuition is that a rectangle urect(C) is valid if the
number of negatives it contains is less than or equal to β|∆−|.

Note that the modified algorithm when rectangles are allowed to
contain a small number of negative points may not return the max-
imum valid rectangle. However, in Section 7, we empirically show
that the quality of the resulting hyper-rectangles is comparable to
some of the best known machine learning results.

5. INCLUDING RENAME OPERATORS
We now consider a more general class of operator trees, those

containing attribute value transformation operators, which we call



ValidCornerBeta(C, ∆−, β)
(1) Initialization: P− = 0; B = β · |∆−|
(2) foreach p ∈ ∆−

(3) if p strongly dominates C
P− + +
if P− > B return false

endif
(4) return true

Figure 7: Generalization to find β-neg hyper-rectangles
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Figure 8: Rename benefit

rename operators, in addition to similarity join and the union opera-
tors. For instance, the operator tree in Figure 1 illustrates a tree with
these operators. A rename operator is beneficial for record matching
if pairs of matching records become closer while non-matching pairs
move farther away according to one or more similarity functions. We
first characterize the rename operators which can be included in our
framework, give a few example rename operators, and then describe
our algorithm.

Properties of rename operators: Any unary operator ρ that takes
a threshold parameter θ as input and which (i) produces exactly one
output tuple for each input tuple, and (ii) commutes with the union
operator can be implemented as a new rename operator in our frame-
work. That is, applying the operator to a relation R is equivalent
to applying the operator to each individual record r ∈ R and then
taking the union over the results of each application.

Example rename operators: We now illustrate that several useful
data cleaning operations can be instantiated from the rename operator
thus demonstrating the generality of its abstraction.

Fuzzy Lookup Operator: Consider the use of domain-specific
lookup tables for standardizing attribute values. For example, State
values in USA may be abbreviated to 2-character codes based on
a translation table obtained from the US postal service department.
However, due to errors the input values may not match exactly with
the non-abbreviated state names. The fuzzy lookup operator may be
used in such scenarios [12, 34].

Given an input relation R, a lookup table L, a sequence of at-
tributes A, a similarity function f over A, and a threshold parameter
θ, the fuzzy lookup operator joins for each record r ∈ R, the value
r.A with the most similar value l.A if f(r.A, l.A) > θ. When multi-
ple L.A values have the same highest similarity value, any consistent
tie-breaking mechanism may be adopted. Note that we may view
the fuzzy lookup operator as a similarity join operator followed by a
Top-1 operator. We encapsulate these together so that the encapsu-
lation (i) can be implemented as a rename operator, and (ii) can be
implemented more efficiently [12, 33].

Column Segmentation and Concatenation: Consider an operator
which takes an attribute value and segments it into constituent at-
tribute values based on regular expressions [30, 10, 1]. Such an oper-
ator is extremely useful for identifying target attribute values across

a variety of domains: addresses, media databases, etc. For exam-
ple, commercial address cleansing tools (e.g., Trillium) rely heav-
ily on this operator, which they call “parsing”. The concatenation
operator—which is the inverse of segmentation—concatenates mul-
tiple columns together. Note that both these operators modify the
schema of the input relations. Even though the discussion in this pa-
per assumes, for reasons of clarity, that schema is not modified, we
note that our approach is general enough to handle the segmentation
and concatenation operators.

FD-Correction Operator: The FD-correction operator exploits
reference tables and the knowledge of functional dependencies to
correct missing and incorrect values in a record, even when the func-
tional dependency is soft in that it holds for a large subset of the data,
or when we do not have a perfect reference table.

The functional dependency Zip → City is an example of a soft
functional dependency because a few zip codes may actually be asso-
ciated with multiple cities. In a group of records sharing the same zip
value, if a large percentage (greater than a threshold above 50%) of
City values have the same City value, we may then rename the City
values of other records in the group to this dominant value. In order
to avoid conflicts while determining the dominant value in a group,
we restrict the threshold on the percentage to be above 50%. The
FD-Correction operator can in fact be generalized to that of applying
high confidence (greater than 50%) association rules.

RJU Operator Trees
Introducing rename operators into the design space generalizes the
class of operator trees. Any operator tree which is a union of
“rename-join” blocks belongs to our generalized class. Each rename-
join (RJ) block is an operator tree over both input relations involving
a series of rename operators followed by one similarity join. An ex-
ample is shown on the right side in Figure 1. We call this class of
operator trees the RJU class.

A rename operator may be applied to both input relationsR and S
or to only one of the two. For the sake of simplicity, we only discuss
the restricted case where we apply the rename operator to both input
relations. Our techniques can be applied to the more general variants.

Algorithm
Since we consider the class of thresholded rename operators, we have
to decide whether or not to include a rename operator in an operator
tree, and also determine the threshold value. For ease of exposition,
we first consider the restricted case where the thresholds for renames
are fixed.

Consider a rename operator ρ. The benefit of a rename operator
depends on the operator tree following it. We may consider both op-
tions: design the best similarity join preceded by ρ and not preceded
by ρ, and choose the better of the two operator trees. This approach
could be inefficient if the number of rename operators is large. We
adopt a heuristic where we first design a similarity join, and then
evaluate whether or not preceding it with ρ applied to both input re-
lations would improve the quality. We choose the rename operator ρ
with the highest benefit value benefitT (R,S)(ρ,∆), which we define
below. This algorithm can be generalized to also iterate over various
alternate threshold values, and choose the best one.

Let ρ precede an operator tree T with one similarity join opera-
tor. Consider the rectangle equivalent to T in the similarity space.
A measure of benefit of ρ is the sum of the increase in the num-
ber of positive points in the rectangle and the decrease in the num-
ber of negative points. Figure 8 illustrates an example where the
benefit is 2. The positive point P1 moves inside the rectangle
(urect(P2[X1], P3[X2])) and the negative point P4 moves out-
side it. This intuition can in fact be extended to any operator tree,
as follows.



Definition 9. Let ρ(∆) denote the transformed examples where
the rename operator is applied to each example in x ∈ ∆, on both
projections x[R] and x[S] of the example. Formally, the benefit of ρ
with respect to T over ∆ is defined as: benefitT (R,S)(ρ,∆) =

{Coverage(T (R,S), ρ(∆+))− Coverage(T (R,S),∆+)}+
{Coverage(T (R,S),∆−)− Coverage(T (R,S), ρ(∆−))}

The above discussion focuses on the addition of a rename operator
before an operator tree with only a similarity join. However, the
procedure straightforwardly generalizes to an operator tree which is
any member of the RJU class. Thus, we are able to greedily add more
rename operators if they improve the overall quality.

Implementing RJU Class: The rename operators that we con-
sider in this paper (fuzzy lookup [33, 12]), column segmentation
([30, 10, 1]), and FD-correction (as discussed above) have efficient
implementations. By definition, the rename operators commute over
unions. Therefore, a sequence of these rename operators can be ef-
ficiently implemented using the pull-based get next interface. The
similarity joins are implemented using the same get next interface,
and if the input relations are very large we spool the intermediate
relations to disk. A significant number of efficient similarity joins
algorithms are developed earlier for a broad class of similarity func-
tions [22, 2, 27]. We adopt these algorithms in our framework to
efficiently and scalably implement the RJU operator trees.

6. DISCUSSION
We now discuss (i) extensions to handle large example sets, (ii) the

variants of the operator tree design formulation, and (iii) the issue of
gathering examples.

6.1 Large Example Sets
We now discuss a sampling-based technique to deal with a large

number of examples. This strategy also sets the ground for evaluating
the quality of our algorithm over real data where the ground truth as
to which record pairs match is not available.

Our idea is that running our algorithm on a uniform random sam-
ple of examples would return high quality operator trees. The dif-
ference in quality between the result over the sample and that over
the entire example set can be probabilistically bound (using Chernoff
bounds). The intuition is similar to that of estimating selectivities of
predicates using uniform random samples.

LEMMA 5. Let D = D+ ∪ D− be a set of examples. Let S =
∆+ ∪∆− be a uniform random sample of D, and T be an operator
tree in the RJU class. Let the coverage of T with respect to ∆+ and
∆− be β+ and β−, respectively. Then the coverages, denoted X+

and X−, of T with respect to the original example sets D+ and D−

are with a high probability close to β+ and β−, respectively. For
constants δ1 > 0 and δ2 > 0, we have the following bounds.

1. P (X+ < (1− δ1)β+|D+|) < e
−β+|D

+|δ21
2

2. P (X− > (1 + δ2)β−|D−|) < ( eδ2

(1+δ2)(1+δ2) )β−|D
−|

6.2 Variants of the Operator Tree Design Problem
We now discuss a few variants of the operator tree design problem

that are potentially useful in several scenarios, and would greatly
benefit users of interactive data cleaning frameworks (e.g., [30, 31]).

Constrained Coverage: The dual formulation for the record match-
ing query design problem is to find the best operator tree T ∗(R,S)
which minimizes the coverage of T ∗(R,S) with respect to ∆− sub-
ject to the constraint that the coverage with respect to ∆+ is greater
than a constant α.

We can still apply our algorithm for identifying the best hyper-
rectangle, and the greedy algorithm that we use for the union of sim-
ilarity joins. We stop when the desired positive coverage thresholds
are met. Or, return saying that we are unable to meet the specified
coverage threshold with respect to ∆+.

Constrained Structure: Consider an incremental modification sce-
nario where the domain expert has already designed an operator tree
(either based upon a previous set of examples or upon experience)
and wants to adjust it to fit a new or a modified set of examples. The
goal here is to build an operator tree which is structurally the same
or very similar to an input operator tree. Note that the language for
specifying such structural constraints can itself be fairly general. We
only consider the case where a user specifies an operator tree skeleton
and wants to determine the best threshold parameters. We also show
how such functionality can be used in conjunction with the complete
operator tree design functionality to derive “similar” operator trees.

An operator tree skeleton Tskeleton is an operator tree where the
threshold parameters of the similarity joins are left unspecified as
free variables. Formally, given an operator tree Tskeleton(R,S) and
sets of examples ∆+, ∆−, and a constant 0 ≤ β < 1, the structure
constrained operator tree design problem is to determine the best
threshold parameter settings for similarity joins in Tskeleton(R,S)
which maximize the coverage with respect to ∆+ subject to the con-
straint that the coverage with respect to ∆− is less than β.

Using the above functionality, we can build slightly modified op-
erator trees by piping the “residual” examples in ∆+ ∪ ∆− to the
(original) record matching operator tree design problem. The resid-
ual example set is the set of all examples which are not in the result
of T ∗skeleton. That is, T ∗skeleton categorizes these examples to be
non-matches. If there is a significant number of matching pairs from
∆+ in the residual set, then we may determine a new operator tree
T ∗residual over the residual set. We can then union this new operator
tree T ∗residual with T ∗skeleton.

6.3 Gathering More Examples
Suppose we want to add to a small set of new labeled examples

in order to obtain more accurate operator trees. Instead of asking a
programmer to label a random set of record pairs in R × S, we may
adopt active learning approaches in machine learning [3, 31]. The
idea is to identify a set of examples which are likely to result in the
best accuracy improvement over the current operator tree.

The general approach is to identify examples which are close to
the “border” separating positive from negative points. Intuitively,
these are the points where the operator tree (or the model) is the most
unsure of while classifying them as matches or non-matches. In our
case, this border is easy to identify and corresponds to the planes that
define the rectangles equivalent to the similarity joins. Therefore, we
may execute the initial operator tree and sample a few record pairs in
the output that are very close to these planes and ask the programmer
to label them as matches or non-matches. We can add these newly
labeled examples to the original set and redesign the operator tree.

7. EXPERIMENTAL EVALUATION
We now present a thorough evaluation of our techniques. We com-

pare our techniques with domain-specific address cleansing solutions
as well as with currently best known machine learning (SVM) tech-
niques for record matching. In both cases, we demonstrate that our
techniques yield operator trees with comparable and sometimes bet-
ter accuracy. We also show that similarity joins can be executed sig-
nificantly more efficiently than executing a join based on SVM pred-
icates, which require a cross product. Thus, we are able to provide
accurate operator trees which are interpretable, efficient to execute,
and can, if required, be modified by a programmer.
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Evaluation Metrics: We use precision and recall metrics to evalu-
ate any record matching program Q [9]. Recall is the fraction of true
matching record pairs identified by Q. And, precision is the frac-
tion of record pairs Q returns which are true matches. Higher recall
and precision values are better. Comparing recall values at the same
precision (or vice versa) would allow us to compare different record
matching programs. Note that we can control the precision of the
resulting operator trees by varying β.

We implemented the similarity join and rename operators and our
operator tree design techniques as client applications over Microsoft
SQL Server 2005. We ran all our experiments on a desktop PC run-
ning Windows XP SP2 over a 2.2 GHz Pentium 4 CPU with 2GB
main memory. Unless otherwise explicitly mentioned, we allow all
similarity joins to involve at most 4 (i.e., d = 4) similarity functions.
Further, we only consider the union of at most 4 (i.e., K = 4) sim-
ilarity joins in the resulting operator tree. We also evaluate baseline
operator trees, which contain one similarity join with at most one
similarity function predicate (i.e., K = 1 and d = 1).

7.1 Comparison with Trillium
Trillium is a domain-specific address cleansing tool, which relies

on an extensive set of domain-specific rules (e.g., the word “street” at
the end of the address attribute may be replaced with “st”, etc.), orga-
nization and address reference tables. Trillium exploits a significant
amount of domain knowledge (expressed in the form of rules). We
demonstrate that operator trees designed using our domain neutral
techniques are able to achieve accuracy comparable with Trillium.
Therefore, our packages are already very accurate starting points,
which programmers can further enhance.

Dataset: Our first set of experiments are based on a relation
GBROrgs consisting of names and addresses of organizations based
in Great Britain. The relation contains multiple records representing
the same organization. The schema of the relation is Name, Address,
City, State, PostalCode. Our goal here is to identify the matching
record pairs in GBROrgs × GBROrgs and then compare them
with the set of pairs output by Trillium.

We have 29 similarity functions. We use (exact) equality, jaccard,
edit, generalized edit similarity functions on several combinations

of attributes in the GBROrgs table. We also use the following re-
name operators: (1) PostalCode splitter: in Great Britain, a prefix
usually of length of 3, called the out-code, determines the city and
state, while the suffix, called the in-code, determines a small block
of addresses. Therefore, we may use the in-codes to compare street
addresses. We implement the rename operator for splitting the postal
code into out-code and in-code. (2) We also use the FD-correction
operator based on the functional dependencies: Out-code→ City and
Out-code→ State. Note that these two are derived columns obtained
only after the PostalCode splitter is actually applied. We initialize
these attribute values to be null and only if the postal code splitter is
applied these would be populated with non-null values.

Training set: We obtained a training set from the data owners
which they generated for evaluation while tuning the Trillium ad-
dress cleansing tool. The set has 957 examples with roughly equal
numbers of matching and non-matching pairs.

Evaluating Precision: We first evaluate the precision of Trillium
as follows. We choose multiple uniform random samples of size 200
from the matching record pairs output by Trillium, and then manu-
ally examine each pair to check whether or not the two records are
true matches. Therefore, the ratio between the number of correct
matches and 200 is a good unbiased estimate of the true precision
(see Section 6.1). We average the precision values over all samples.
We build an operator tree using our techniques such that our targeted
precision (at 100% recall) is equal to that of Trillium’s estimated pre-
cision p. We then evaluate the precision of the resulting operator tree
again using multiple samples of size 200, and average the precision
estimates.

Table 1 compares the results of our operator tree with that of Tril-
lium. We observe that the precision obtained by using our operator
trees (0.98) is very close to that of Trillium (0.99). Further, the num-
ber of positive pairs that our operator trees detected is much higher
(by about 10%) than that returned by Trillium suggesting that at al-
most the same precision the recall of our operator trees is higher.
Thus, operator trees designed by our domain neutral techniques are
at least of comparable, and quite likely higher, accuracy than that
of the domain specific commercial address cleansing tool Trillium.
Also, observe that the best baseline operator is only able to detect



Table 1: Comparison with Trillium:K = 4, D = 29, d = 4
Estimated precision Recall

Trillium 0.99 144733
Op. Tree 0.98 159354
Baseline 0.98 79600

Table 2: Value of thresholded-renames
Target precision No-Renames With-Renames

0.8 0.53 0.60
0.85 0.48 0.55
0.90 0.46 0.48
0.95 0.42 0.45
0.95 0.39 0.39

less than 50% of positive pairs. Thus it is important to consider more
complex operator trees.

Thresholded rename operators: Table 2 demonstrates the value of
thresholded rename operators such as FD-Correction. We present
the coverage of one 4-dimensional rectangle (i.e., K = 1) versus
the target precision for the address dataset. At almost all target pre-
cision levels, the sequence of postal code splitter followed by the
FD-correction operator (with threshold 0.82) between out-code and
city attributes was chosen. The operator trees with rename operators
have a higher coverage, often by upto 5%. Thus, rename operators
are useful in improving the coverage at the same precision.

7.2 Comparison with SVMs
We now compare our techniques with currently known best tech-

niques based on SVMs for learning effective record matching func-
tions [8, 5]. Techniques based on SVMs have been shown to sig-
nificantly outperform those based on other machine learning tech-
niques such as decision trees [8, 5]. Therefore, we only consider
SVMs. We obtained the implementation of the SVM techniques from
Bilenko et al. We randomly split labeled example pairs into roughly
equal numbers of training and test datasets. We use the training data
to design an operator tree/SVM and test data to evaluate.

We first discuss the results on the hurricane Katrina dataset that
we introduced in Section 1. We obtained a set of 1000 labeled ex-
amples, with around 400 matching pairs. We present the results in
Table 3. We first note that no baseline operator tree satisfies our tar-
get precision constraint (above 0.8); hence recall is set to 0.0. We
observe that for this dataset, SVMs offer better recall at higher preci-
sion (0.95). However, the recall of operator trees at lower precision
is close to that of SVMs. Therefore, as discussed earlier, we can use
our operator trees as efficient filters (with low target precision) before
invoking SVMs enabling efficient execution of SVM models.

We study the comparison on other datasets below, where opera-
tor trees are in fact comparable and sometimes outperform SVMs.
We consider three benchmark datasets drawn from different domains
of the RIDDLE repository [7]: Cora consisting of bibliographic
records, Restaurant consisting of restaurant names and addresses,
and Bird consisting of scientific names of birds.

For these experiments, we only consider edit, jaccard, and gener-

Table 3: Hurricane Katrina data:K = 4, d = 4
Precision

0.80 0.85 0.90 0.95

Recall
Op. Tree 0.78 0.78 0.76 0.53
Baseline 0 0 0 0

SVM 0.85 0.82 0.81 0.70

Table 4: Varying K&d, D = 29
Varying K, d = 4 Varying d, K = 4

K Precision Recall d Precision Recall
1 0.95 0.82 1 0.95 0.89
2 0.96 0.93 2 0.96 0.93
3 0.96 0.94 3 0.96 0.94
4 0.95 0.95 4 0.96 0.95

alized edit similarity functions over multiple attribute combinations,
and do not consider any rename operators. Figures 9, 10, and 11
show the results for both SVM-based techniques and the operator
trees our techniques return. On these datasets, the recall values
achieved by our operator trees are comparable to that of the current
best SVM-based techniques at the same precision. Most of the time,
we obtain equal recall at the same precision and sometimes signifi-
cantly better recall values (e.g., the Bird dataset). The recall obtained
is high even at high precision indicating that there exists an operator
tree and an SVM model which precisely identify all matching pairs
of records. Also observe that baseline operator trees may not be able
to obtain high recall (e.g., Cora) thus indicating that more complex
operator trees are often required.

7.3 Varying K and d

We now evaluate the impact of operator tree complexity on the ac-
curacy using the GBROrgs relation. Recall that K is the maximum
number of similarity joins in an operator tree, and d is the maximum
number of similarity function predicates per similarity join. In order
to measure recall and precision, we synthetically generate data using
error models similar to that of [12, 24] and that available from [7].
We introduce a variety of errors (e.g., spelling errors, missing val-
ues, attribute value truncations, token transpositions, etc.) into a set
of distinct tuples from the GBROrgs relation and create erroneous
versions. The record matching task is to correctly match the erro-
neous tuples with the tuples from which they were derived. The first
three columns in Table 4 show precision and recall while varying K
and fixing d at 4. And, the last three columns show precision and
recall when we fix K = 4 and vary d between 1 and 4. From both
tables, we observe that (i) it is important to consider operator trees
which have more than one similarity join and more than one simi-
larity predicate per join, and (ii) increasing the complexity initially
improves accuracy but the improvements start diminishing quickly.

7.4 Efficiency and Scalability
We now illustrate that similarity joins can be executed signif-

icantly more efficiently than SVM models, even if we apply the
blocking approaches discussed in [6, 29]. In Table 5, we report the
time for executing the similarity join jaccard(Name, Address, City,
State, PostalCode)> θ on a subset of GBROrgs relation consisting
of 500K records with itself; we vary θ. We also report the times
for a cross product required when we have to execute SVM models,
and the time required for implementing the techniques for executing
blocking predicates proposed in [6]. It is clear that the similarity
join implementation is significantly more efficient than either of the
SVM implementations. A more comprehensive evaluation of our
similarity join implementations is in [2].

7.5 Operator Tree Design Time
We now evaluate the time required for designing operator trees.

In Figure 12, we plot the operator tree design times for GBROrgs,
Cora, Restaurant, and Bird datasets at different targeted precision
values while keeping the training data size constant. In Figure 13,



Table 5: Jaccard similarity join
Threshold SimJoin SVM SVM-blocking

0.9 61 sec 10 days 3602 sec
0.85 125 sec 10 days 3602 sec
0.80 285 sec 10 days 3602 sec

we vary the number of training examples for the GBROrgs dataset
and plot the design time. In Figure 14, we vary the number (d) of
similarity functions allowed in a similarity join using the GBROrgs
dataset. Note that in the experiments over the GBROrgs relation,
D = 29.

We observe that the design time can increase (as seen for Cora and
GBROrgs datasets) when the target precision is high. The number
of new sub-regions explored by our algorithm increases when each
valid sub-region is allowed to contain only a very small (5 or less)
negative pairs. Second, the design time depends primarily on the
number of negative skyline points (as seen from Figure 13). We an-
ticipate this dependence because the number of rectangles explored
by our algorithm depends on the number of negative skyline points.
Finally, we observe (from Figure 14) that the design time increases
with d; we explore a larger number of sub-regions as d is increased.

8. CONCLUSION
In this paper, we proposed that record matching programs be

viewed as efficiently executable operator trees built over a small set
of relational and data cleaning operators. Since designing accurate
operator trees is challenging, we propose techniques for creating op-
erator trees that best match a given set of examples. A programmer
is now able to easily interpret, review, and modify the resulting op-
erator trees. We demonstrated that operator trees designed using our
techniques compare favorably in quality with a commercial address
cleansing tool and with current best known machine learning tech-
niques for record matching, while being significantly more efficient
to execute.
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