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Abstract

The key to storage manageability is adaptation. In tradi-
tional storage systems, adaptation is performed by a hu-
man administrator, who must assess problems, and then
manually adjust various knobs and levers to bring the be-
havior of the system back to an acceptable level. Future
storage systems must themselves adapt, and in doing so,
reduce the need for manual intervention.

In this paper, we describe the Wisconsin Network Disks
project (WiND), wherein we seek to understand and de-
velop the key adaptive techniques required to build a truly
manageable network-attached storage system. WIiND
gracefully and efficiently adapts to changes in the envi-
ronment, reducing the burden of administration and in-
creasing the flexibility and performance of storage for an
eclectic range of clients. In particular, WiND will auto-
matically adapt to the addition of new disks to the system,
the failure or erratic performance of existing disks, and
changes in client workload and access patterns.

1 Introduction

Data storage lies at the core of information technology.
Whether in distributed file systems, Internet services, or
database engines, nothing shapes the user’s experience
more than the reliability, availability, and performance of
the 1/0 subsystem.

The basic elements of the storage device industry are
in the midst of radical change. In particular, the ad-
vent of network-attached storage devices [13, 18] * will
fundamentally alter the manner in which data is main-
tained, stored, and accessed. The combination of inex-
pensive yet powerful microprocessors inside every disk,
and high-speed, scalable networks enables storage ven-
dors to move disks off of slow, shared-medium busses and
onto a storage-area network (SAN). Collectively, we refer
to a group of network-attached disks as a storage cluster.

1The group at CMU refers to NASD as “network-attached secure
disks”; since we wish to refer to something more general, we simply
refer to disks on a network as network-attached storage devices.

Storage clusters provide many potential advantages over
traditional storage architectures:

e Scalability: Not limited by a shared-medium inter-
connect such as SCSI, network-attached storage can
deliver scalable bandwidth to multiple clients.

e Fault Tolerance: Ina standard server environment,
software failure on a single host can lead to data un-
availability. In contrast, a storage cluster, accessi-
ble from more than one host, allows multiple access
paths to data, thus increasing data availability.

e Simplicity: File systems built on network-attached
storage can leave low-level layout decisions and per-
formance optimizations to the drives, simplifying
software and increasing maintainability [14].

e Incremental Growth: As compared to a typical
RAID array, network-attached storage allows for es-
sentially unlimited growth in the number of disks, re-
moving the need for a “fork-lift” replacement of an
entire RAID array [10].

e Specialization:  Network-attached storage mixed
within a cluster enables specialization of the sys-
tem in direct response to need; if the system requires
more disk bandwidth or capacity, one can buy more
disks; if the system needs more CPU power, one can
buy processing nodes.

1.1 TheProblem: Management

However, storage clusters also introduce additional chal-
lenges, particularly regarding manageability. Whereas
absolute performance was the goal of a great number of
previous systems, manageability has become the new fo-
cus [16, 25]. Thus, a system that works consistently with
little or no human intervention will be preferred over a
system that sporadically delivers near-peak performance
or requires a large amount of human attention to do so.
Manageability is more challenging in storage clusters
due to their additional complexity. This complexity is a



result of both the networking hardware and protocols be-
tween clients and disks, and the increasingly sophisticated
nature of modern disks drives (e.g., multiple zones [21],
SCSI bad-block remapping [4], sporadic performance be-
fore absolute failure [29]). The result of complexity in
both networks and disks is a system where unpredictable
behavior (especially in terms of performance) is the norm,
not the rare case [4]. The likelihood of unexpected be-
havior is compounded by an increasing demand for large-
scale systems (e.g., a storage-service provider with a
10,000-disk storage farm).

In spite of unpredictability, an ideal manageable storage
system should behave as follows.

e After Upgrade: When a disk is added, the ideal sys-
tem immediately begins utilizing it to its full capac-
ity, both migrating data there to balance load (long-
term data migration) and writing new data to the disk
to increase throughput (short-term adaptation). The
ideal system fully utilizes the disk regardless of its
capacity or performance relative to other disks.

e During Failure: The complexity of modern disks
has introduced a new range of failures: instead of
a binary fail-stop model where components either
work perfectly or not at all, there is a continuous
range where a component may be working but not at
full capacity [4, 29]. The ideal system utilizes such
“performance faulty” components to the degree that
each allows.

o After Workload Delta: With new applications or
data-sets, the access patterns presented to a stor-
age system may change and the previous layout of
data across disks may no longer be satisfactory. The
ideal system reacts by migrating data to better match
current conditions; for example, frequently accessed
data may be migrated to newer, faster disks or be
spread across more disks for increased bandwidth.

e Under Shared Access: With network-attached stor-
age, multiple clients and file systems may simultane-
ously share the underlying disks and therefore have
incomplete knowledge of the activity at each disk.
The ideal system adapts to contention at run-time
and delivers whatever performance is available to the
clients.

Traditional systems react to such scenarios with the as-
sistance of a human administrator, who must assess the
problem and then manually adjust various parameters to
bring the performance of the system back to an acceptable
level. Adaptation is key to manageable storage systems
of the future, where the system itself reacts to changes in
system behavior and automatically adjusts to problems,
thereby reducing the need for manual intervention.

User User Database Parallel
App App Query Operator

SA-NFS || SA-NFS

RiverFS

oy 7 i ciowds K
=
23 |z
L RM)
g2l i iddleware (ST
353 Short-Term Reactive Mid
< c
Wtz
SE|Z
8 T Server Clouds
g Clouds IP1)
§ \.L RAIN  (
NeSTR[NeSTJNeSTJNeSTJ|NeSTJNeST

([ g

Figure 1: WiND System Architecture
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1.2 Wisconsin Network Disks

In this paper, we describe the design and current status
of Wisconsin Network Disks (WiND). Our main focus in
WIiND is to develop the key techniques necessary to build
truly manageable network-attached storage. To achieve
this goal and to fully exploit the potential of the underly-
ing hardware, all of the software we develop will be dis-
tributed and scalable.

WIND is comprised of five major software components,
broken down into two groups. The first three are the run-
time and off-line adaptive elements of WiND: SToRM,
GALE, and Clouds. The other two are key pieces of sup-
porting infrastructure: RAIN and NeST. The overall sys-
tem architecture is presented in Figure 1; we now briefly
describe each of the components.

The first key piece of adaptation software is STORM,
which performs run-time adaptation for data access and
layout. STORM adapts to short-term changes in workload
characteristics and disk performance by quickly adjusting
how much each client reads from or writes to each disk.

However, short-term adaptation alone is not enough; it
lacks global perspective. For this, we introduce GALE,
a software layer that monitors system activity via on-line
simulation and performs global, long-term optimizations
to improve performance and reliability. For example,
GALE may migrate or replicate data to improve read per-
formance or to re-balance the workload across the drives.
GALE tries to place data in accordance with the current
“climate” of the system and the access patterns of ap-
plications. GALE also interacts in important ways with
SToRM. For example, without data replication, STORM
has little or no flexibility as to where to read a given data
block from; when needed, GALE replicates data to pro-
vide increased flexibility for STORM, and thus improves
the adaptivity of the system.

Both STORM and GALE are designed to adapt data



flows to and from disk; however, many requests to a
network-attached disk may be satisfied from in-memory
caches. Thus, Clouds provides flexible caching for
network-attached storage. Clouds provides mechanisms
and policies for both client-side and server-side caches,
taking variable costs into account. Clouds also can em-
ploy cooperative techniques [2] to conglomerate server-
side cache resources, and potentially hide disk variations
from clients.

WIND also contains two key pieces of software infras-
tructure. The first is RAIN, an information architecture
that encapsulates the acquisition and dispersal of informa-
tion within STORM, GALE, and Clouds. RAIN provides
Information Programming Interfaces (IPIs) to each soft-
ware subsystem, which hide details of information flows
and greatly simplify system structure and maintainability.
The second is NeST, which provides flexible and efficient
single-site storage management.

Finally, we eventually plan to implement and evaluate
two file systems on top of the WiND infrastructure. First,
we will build a Striped, Adaptive version of NFS (SA-
NFS), which adheres to the NFS file system interface,
but is modified to stripe data blocks to disk in an adap-
tive fashion. We also plan to construct RiverFS, a paral-
lel, record-oriented file system, designed to support high-
performance parallel query operators found in database
environments. RiverFS takes advantage of relaxed data
semantics to more readily provide robust, consistent per-
formance.

2 Adaptivity in WiND

In this section, we discuss the three major adaptive com-
ponents of WiND: run-time adaptive layout and access in
SToRM, off-line monitoring and adaptation in GALE, and
adaptive caching with Clouds. These three pieces of soft-
ware technology work in harmony to adapt to changes in
the system and thus provide truly “hands off” network-
attached storage.

21 SToRM

SToRM (Short-Term Reactive Middleware) is a dis-
tributed software layer that interposes between clients and
servers to provide adaptive data access. SToRM is used by
file systems to adapt to volatile disk behavior at run-time
and deliver full bandwidth to clients without intervention.

The challenges of STORM are two-fold. First, STORM
must adapt the data streams moving to or from disk. The
general idea is that clients should interact with the higher
performance disks more frequently; that is, a client should
access proportionally more data from faster disks. Sec-
ond, STORM must achieve the first goal with low over-

head, both in extra processing and book-keeping (or meta-
data). However, adaptation and overhead are often at
odds; thus, we seek the “knee of the curve” where adap-
tivity is high and overhead is still acceptable.

The challenges of adapting to allocating writes versus
non-allocating writes and reads are substantially different:
allocating writes can be placed anywhere (as long as one
is willing to pay the cost of book-keeping), whereas non-
allocating writes and reads have less freedom (i.e., they
must be performed on few locations where they are al-
ready stored on disk). We now discuss each operation.

Allocating Writes: When data is written to a file for the
first time, space allocation occurs as blocks are commit-
ted to physical storage; we refer to such writes as allo-
cating writes. For illustrative purposes, we assume data
is striped across a set of remote disks with RAID level
0 (striping without redundancy). Algorithms for allocat-
ing data blocks across disks can be classified in terms of
how frequently they evaluate the relative speeds of each
disk and consequently adapt placement; we now discuss a
range of these algorithms.

e Level gqg: Traditional striping does not gauge the per-
formance of its storage components before allocating
data across them and therefore assumes that all disks
run at the same rate. The strength of this approach
is that the only meta-data needed for block lookup is
block size. The weakness is that all disks are treated
identically and thus system performance tracks the
rate of the slowest disk.

e Level g;: The most primitive adaptive allocation al-
gorithm adjusts to disks delivering data at different
rates, but assumes that each disk behaves in a fixed
manner over time. With a g; algorithm, the rela-
tive speeds of the disks are calculated exactly once,
and then the amount of data striped to each device
is made proportional to its relative speed. To lookup
a logical block, a g, approach requires little addi-
tional meta-data: it must also know the striping ra-
tios across disks.

e Level g,: These algorithms periodically determine
the relative performance of disks and adjust striping
ratios accordingly. Each period with a new striping
ratio is a striping interval. Additional meta-data is
needed: the striping ratio and the size of each striping
interval.

e Level g..: With the most adaptive algorithm, each
client continuously gauges the performance of the
system and writes each data block to the disk it be-
lieves will handle the request the fastest. The advan-
tage of g.. approaches is that they can adapt most



rapidly to performance changes and make small ad-
justments that cannot be reflected in simple integer
striping ratios. The disadvantage is that a significant
amount of meta-data must be recorded: the target
disk and block offset for every logical block written.

To demonstrate the benefit of a g; versus an gq ap-
proach, we present the performance of a user-level library
for file striping. These measurements were performed
on an UltraSPARC | workstation with two internal 5400
RPM Seagate Hawk disks on a single fast-narrow SCSI
and two external 7200 RPM Seagate Barracuda disks on
a fast-wide SCSI. While these measurements were pro-
duced in the context of a single machine with multiple
disks, we believe these results are general and apply to
other environments with heterogeneous disks.

Table 1 compares the performance of go and g; strip-
ing across all four disks. With gq striping, data is striped
in blocks of 64 KB to each disk in the system. The table
shows that gq striping is not effective with disks of differ-
ent speeds, achieving only 77% of peak bandwidth. For
g1 striping, we gauge the relative performance of the disks
via a simple off-line tool [3]; we measure that we can
achieve 8.0 MB/s when writing simultaneously to the two
Hawk disks, and 12.1 MB/s to the two Barracuda disks.
This peak performance measured in isolation determines
the proper ratio of stripe sizes: we write two blocks of
data to each of the slower disks and three to each on the
faster disks. Thus, with g; striping we achieve 95% of
peak bandwidth.

One of the major research issues for STORM is how
to extend the adaptation algorithms (go to g..) to other
RAID levels. We will first concentrate on RAID level 1
(mirroring), because it has excellent performance prop-
erties and is conceptually simple since no parity is cal-
culated. A straight-forward transformation of adaptive
striping into mirrored, adaptive striping is to treat pairs of
disks as a single logical disk and perform adaptive strip-
ing across the logical disks. The major disadvantage of
this approach is that it introduces performance coupling
across pairs of disks; the pair will run at the rate of the
slow disk. Thus, SToRM should couple disks that have
similar performance characteristics (calling on GALE for
hints regarding the best pairing). Alternatively, mirroring
may be performed lazily for files that can tolerate a win-
dow of potential loss; GALE can run later and fill in the
mirrors for full reliability. A similar idea is proposed in
AFRAID, where redundancy is sometimes relaxed to im-
prove RAID-5 performance under small writes [26].

Non-Allocating Writes: ~ With non-allocating writes,
blocks are written over previously allocated blocks in a
file. As a result, STORM has no choice as to which disk
receives a non-allocating write. However, this may still
lead to acceptable performance in many cases.

Disks SCSI Bus | Write | Write
(max) | (actual)

2 Seagate Hawks Narrow 8.0 8.0

2 Seagate Barracudas | Wide 12.1 12.1

All disks (gq striping) | Both 20.1 155

All disks (g; striping) | Both 20.1 19.1

Table 1: Benefits of g; Striping. The table shows the
write bandwidth achieved with g and g, level striping in
MB/s. The first column lists the disks, and the second col-
umn the applicable SCSI buses. The Write(max) column
shows the peak aggregate bandwidths of the disks, while
the Write(actual) column shows the bandwidth achieved
with the striping library.

Given that SToRM initially allocates the amount of data
to a disk depending upon the observed performance of
that disk, it leaves a performance footprint on the stor-
age system. A performance footprint has two contribut-
ing factors: that produced by the disks themselves and
that produced by the workloads currently accessing the
drives. The factor contributed by the devices is simply the
speed at which file data can be sequentially written under
no contention, given a particular layout of blocks on the
disk. The factor contributed by the workload includes the
access pattern of a single application (e.g., sequential or
random) and contention among multiple applications.

There is a very useful implication to formalizing the
concept of a performance footprint. If temporal per-
formance locality exists (i.e., if a performance footprint
changes little from that of the recent past), then clients
that access the file later (with either non-allocating writes
or with reads) will access data from the disks with the op-
timal performance allocation.

However, if temporal performance locality does not ex-
ist, then non-allocating writes are vulnerable to perfor-
mance variations. The only completely general and flex-
ible solution is to transform non-allocating writes into
allocating writes, e.g., build a multi-disk log-structured
file system [24] that incorporates run-time adaptive tech-
niques, akin to the g., approach described above. In this
case, adaptivity comes at a high cost.

We plan to evaluate the relative strengths and weak-
nesses of the range of allocation algorithms in terms of
their adaptivity to changing performance footprints and
the amount of meta-data required. Specifically, we will in-
vestigate algorithms for adaptively determining the length
of each striping interval. When the performance footprint
changes rapidly, the striping interval should be small to
obtain the best bandwidths from the disks; when the per-
formance footprint changes more slowly, the striping in-
terval should be longer to amortize the cost of gauging
and recording meta-data.



Reads: The freedom of reads depends on the level of
replication of the file. For example, with simple striping,
each block of a file is written to only one location; the
block must be read back from that disk regardless of its
later performance. The lack of freedom may be acceptable
if temporal performance locality exists. When the perfor-
mance footprint is no longer valid, we assume that GALE
re-organizes or replicates the data, taking the current cli-
mate into account. STORM must be able to adaptively take
advantage of replicated sources of data under reads. Our
earlier work on Graduated Declustering focused on the
distributed, adaptive use of mirrors for parallel clients [5];
we plan to generalize it to handle more general-purpose
workloads and a variety of replicated layout schemes.

22 GALE

Short-term adaptation does not solve all of the prob-
lems encountered in dynamic, heterogeneous environ-
ments. Short-term adaptations are analogous to greedy
algorithms, which often do not arrive upon the best pos-
sible solution; both lack global perspective. To provide
a long-term view of system and workload activity and to
optimize system performance in ways not possible at run-
time, we are building an additional software structure, the
Globally Adaptive Long-term Engine (GALE).

GALE provides three basic services in WiND. First,
GALE performs system monitoring, using both active and
passive techniques to gather workload access patterns and
device performance characteristics, and detecting anoma-
lies in component behavior. Second, GALE decides when
to perform a global optimization itself via action instan-
tiation; for example, GALE may replicate an oft-read file
for performance reasons. Finally, GALE provides infor-
mation to SToRM and Clouds via hint generation.

System Monitoring: GALE inserts lightweight monitors
into clients and servers to trace workload access patterns
and measure response times. Beyond simple tracing, one
particularly novel aspect of GALE is the use of on-line
simulation to generate performance expectations. Period-
ically, GALE will take a set of actual disk requests and
submit them to a disk simulator. The system will then
compare the performance results from the simulation to
measured performance, and take note if there are stark
differences. Accurate disk simulators are readily avail-
able [11], and our initial experiments reveal that they can
simulate a modern drive in real-time. Thus, by comparing
real performance to simulated performance, GALE can
detect when something in the system has gone awry.

Action Instantiation:  After monitoring the system,
GALE may choose to migrate or replicate data to bet-
ter match the current “climate” of the system, which is
done in two steps. The first step is a cost/benefit analysis:
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Figure 2: Access Size Impact. The figure depicts the
impact of access size on the performance difference be-
tween a Seagate Hawk and a more modern IBM 97X
drive. The graph plots the ratio of performance between
the two disks under random reads, varying the size of re-
quests along the x-axis.

GALE must compare the costs of migration or replication
versus their benefit for current workloads, taking care to
ignore any short-term changes in the system. The second-
step is the actual migration or replication.

Migration is useful for moving data off of a disk
that is behaving in unexpected ways (as determined via
simulation-comparison) and may soon fail and for reorga-
nizing oft-read data to better match access patterns [20] or
to utilize more disks for higher bandwidth.

Replication is important for giving STORM additional
flexibility when accessing data. By replicating a given
block, STORM can adaptively choose the best site from
which to read, based on the current climate. For writes, we
plan on exploring both active and lazy updating of repli-
cas; the former has the disadvantage that it leaves little
opportunity for adaptation while that latter has the disad-
vantage that replicas contain stale data.

We are also investigating the use of multi-access repli-
cation schemes, which are useful when the performance
differential across two drives varies by workload. Figure 2
illustrates this performance differential for two drives,
a Seagate Hawk and an IBM 9ZX. For small requests,
the IBM drive is only 1.5x faster, due to the smaller
edge it has in seek time and rotational delay. The larger
the request, the more transfer rate dominates, and thus
the larger the performance difference between the two
drives. Thus, if GALE detects that both small/random and
large/sequential accesses are important to overall perfor-
mance, GALE creates two replicas, one whose data layout
is optimized for small requests and one for large transfers.
The challenge here is to simultaneously utilize the multi-
access replicas for data availability.



Migration and replication both consume serious re-
sources in the system and must be scheduled carefully.
Idle time has been used successfully in other systems [15,
30], and we hope to use such times for GALE activities.

Hint Generation: GALE also provides hints that
SToRM and Clouds can access to improve their decisions.
Some examples of different hints that GALE can pass are:
data placement hints (i.e., the disks that a new file should
be allocated upon), ratio adjustment hints (i.e., the initial
performance levels to expect from a set of disks), fault-
masking hints (i.e., data blocks that would benefit from
fault masking via caching, as described in the next sec-
tion), and mirror-matching hints (i.e., the set of disks that
should be used for mirrors). GALE may also return con-
fidence indications per hint, allowing SToRM and Clouds
to decide whether to use it or not.

2.3 Clouds

Clouds is a flexible and adaptive caching layer in WiND.
It is flexible because clients of storage are not forced to
use it — it can be used for all accesses, for a limited subset
of files, or notat all. It is adaptive because all Clouds algo-
rithms fundamentally take the varying cost of block access
into account — not only can different blocks have different
replacement costs, but those costs can change over time.
Clouds is divided into two distinct components: client-
side Clouds and server-side Clouds. We now explore both
client Clouds and server Clouds.

Client Clouds: Clients of the network-attached storage
system may cache blocks from a number of drives in
the system. Clouds enhances existing operating-system
buffer managers by enabling caching algorithms to take
the variable cost of block access into account. Algorithms
such as LRU do not take cost into account — they assume
that all blocks are equally costly to fetch — and thus do not
work well in a variable-cost environment.

Early theoretical work by Belady [6] established an off-
line optimal cache-replacement algorithm — simply re-
place the block that will be referenced furthest in the
future. However, no off-line generalization for caches
with variable replacement costs is known, though there
are good heuristics [31]. Thus, most recent work on Web
Cache caching strategies focuses on extending or modify-
ing LRU to work with different costs of replacement [9].

With Clouds, we will extend such approaches to func-
tion in our local-area environment, where access costs
are much different than the wide-area and change more
rapidly. An interesting challenge is to track replacement
cost with low overhead. For example, it may be too expen-
sive to track the cost of accessing each block; therefore,
the caching algorithm may have to inform RAIN of a set
of candidate blocks, and RAIN will return the costs for
those. We will explore trade-offs in managing this infor-

mation versus the performance of the algorithms. We will
also apply variable-cost caching to non-LRU algorithms;
recent work has shown that more sophisticated algorithms
can behave like LRU when data fits in cache, while avoid-
ing thrashing with larger data sets [28].

Our initial simulation results of client-side cost-aware
caching algorithms are promising. When a single disk
is performing poorly — perhaps stuttering before abso-
lute failure, or perhaps just an older, slower disk — and
three other disks perform at the expected level, traditional
caching algorithms are adversely affected, because LRU
does not account for the cost of accessing the slower disk.
However, with a cost-aware cooperative approach, some
of the performance differences can be masked.

Server Clouds: On the server-side, Clouds uses
cooperative-caching algorithms [2] to manage the caches
of the disks.? This enables a new ability: the disk caches
can cooperate to cache blocks from “slow” disks, and thus
hide the variable cost of disk access from clients, which
we call performance-fault masking.

For example, assume that a single disk is running much
slower than the rest, and that an application is sequen-
tially accessing a particular data set across that disk and
others. In this case, the server-side caches can cooperate
and cache blocks from the slow disk, whose slowness can
thus be “masked” from higher levels of the system, creat-
ing the illusion of a uniform set of disks.

Masking can occur for both reads and writes, and, as
in STORM, writes are somewhat easier to handle. The
server caches can cooperate to buffer data that is destined
for a slow disk, and thus hide its slowness from clients.
Of course, if a large amount of data is written to that disk
as compared to the total amount of buffer space available,
the technique will not be successful. Masking reads be-
have analogously — server-side caches favor blocks coop-
eratively from slower disks, and thus potentially hide their
latency. However, the blocks must first be in the caches!
Thus, this technique is more effective for repeated reads,
or when prefetching is employed to fill the caches with
blocks from the slow disk(s).

Finally, we note the interaction between Clouds and
SToRM. The server-side caches may cooperate to “hide”
some of the variable behavior of disks from clients. Thus,
there needs to be an interface between Clouds and STORM
such that SToRM is informed of the intention of Clouds
and does not take action itself.

2Because we believe clients should be autonomous (i.e., they should
not have to trust all other clients), we do not plan to explore client-side
cooperative algorithms.



3 Corelnfrastructure

We have identified two pieces of infrastructure that are
necessary to build an effective WiND system. The first
is RAIN, a thin software layer responsible for efficiently
gathering and dispersing information throughout the sys-
tem. The second is NeST, a single-site flexible storage
manager.

3.1 RAIN

The goal of RAIN (Rapid Access to InformatioN) is to
distribute the current "climate’ of the system — how re-
mote components are behaving — and thus enable effective
and simplified implementations of SToRM, GALE, and
Clouds. The information layer presents itself to higher-
level layers via specialized Information Programming In-
terfaces, or IPIs. These interfaces insulate the algorithms
used by the adaptive components from the details of how
information is gathered, stored, and propagated.

The challenge of RAIN is to deliver accurate and low-
cost information about current performance. One of
the axes that we will investigate is whether information
should be gathered explicitly or implicitly. We recognize
that explicitly querying remote disks may not always be
the most appropriate approach. First, there may not be
an interface for obtaining the desired information. Sec-
ond, accessing an explicit interface may be too costly —
sending an explicit request consumes shared network re-
sources that may be needed for data transfers and induces
additional work on the remote disk. Finally, the explicit
query could fail, forcing the requester to handle many dif-
ferent failure cases.

Therefore, we will investigate implicit sources of infor-
mation, in which RAIN infers the desired characteristic
by observing operations that already exist in the system.
For example, by observing the time required for the most
recent read from a particular disk or the number of out-
standing requests to a disk, remote-disk performance can
be inferred with little overhead. The central advantage of
implicit methods is that they provide information for free
— no additional communication is required, only the abil-
ity to deduce remote behavior from a local observation.
However, there are disadvantages to these methods: the
inferences that must be made are often subtle, and the in-
formation flow is restricted to the path of the data flow.

Because IPIs hide the method of gathering information,
RAIN is free to switch methods at run-time to find that
which are most effective (e.g., explicit or implicit). A
switch of methods depends on three variables: the fre-
quency of climate changes (how chaotic and dynamic is
the system?), the accuracy of the method (how good is
the information obtained?), and the overhead it induces
(how much of total system resources is spent?). Thus, we

plan to evaluate the impact of the information-gathering
style on higher layers of the system.

3.2 NeST

Another key piece of infrastructure is NeST(Network
Storage Technology), our single-site storage manager, so
named as its original intent was to provide storage for
Condor [19]. NeST is a highly flexible and configurable
1/0 appliance, and therefore certainly will see application
outside of the WiND environment. The main axes of flexi-
bility that NeST provides are: the client protocol for com-
munication (a WiND-specific protocol, HTTP, NFS, and
a simple NeST native tongue); the concurrency architec-
ture (threads, processes, or events); a range of locking
and consistency semantics; and a flexible infrastructure
for caching. By configuring NeST, one can deploy a spe-
cialized, highly-tuned I/O server that is well-suited for the
current environment.

We are also investigating the interface NeST should
provide to support adaptation. Our starting point is the
object-level interface put forth by the National Storage In-
dustry Consortium (NSIC), which is derived directly from
the CMU NASD project. However, we have observed that
this interface limits client-side algorithms; thus, we will
develop alternatives that are more “adaptation friendly”
and subsequently implement them within NeST.

4 Status

The WIND system is currently being developed on a clus-
ter of 36 Intel-based machines, each running the Linux
operating system, and connected together via both 100
Mbit/s and Gigabit Ethernet. Each PC contains five 9.1GB
IBM Ultrastar 9LZX disks, and can be used as a network-
attached storage device or client.

A basic prototype of SToRM is currently being devel-
oped, along with its RAIN IPI and many information-
gathering alternatives. The client-side software plugs into
Linux as a loadable kernel module, which talks to NeST
via a homegrown WiND protocol. NeST is also up and
running, and recent experiments show that it delivers full
bandwidth to clients with both process and thread models
— event-based NeST does not work well on Linux ma-
chines due to the limitations of the sel ect () interface.

For GALE, we have studied Ganger’s simulator [11],
and found that its performance is suitable; events are sim-
ulated at a rate much faster than real-time. However, our
initial results indicate that the simulator is not accurate on
a per-request granularity, and therefore more sophisticated
approaches may be required.

Finally, to better understand the caching algorithms of
Clouds, we have developed a detailed simulation of our



environment, which allows us to easily explore many al-
gorithmic alternatives. After we understand the algorith-
mic trade-offs, we will proceed to an implementation in
our prototype environment.

5 Reated Work

The basic architecture of our storage system has been
strongly influenced by the network-attached secure disk
(NASD) project at Carnegie-Mellon [13]. For exam-
ple, the NASD project introduced the drive object model
that we use as a starting point. However, the focus of
CMU NASD is support for traditional file systems and
strong security, whereas we are concentrating on adaptiv-
ity, and hoping to leverage the security infrastructure that
the CMU group develops.

The Petal storage cluster is also closely related [18].
Petal is assembled from a cluster of commaodity PCs, each
with a number of disks attached. Petal exports a large
“virtual disk” to clients over a high-speed network. Petal’s
elegance and simplicity arises from careful separation of
storage system functionality from the file system. Petal
does contain a limited form of run-time adaptation, in
that a client reading from a mirror picks the mirror with
the shortest queue length. In WiND, we do not enforce
a strong separation between the storage system and file
systems; by exposing each disk to client-side file system
software, adaptation across disks is made possible.

The IP Station from USC-ISI also explores network-
attached peripheral devices [22]. In particular, they ad-
vocate the use of stock IP protocols for communication,
rather than custom-tailored fast networking layers. This
approach has two advantages, in providing easy compati-
bility among communicating devices and allowing the use
of off-the-shelf, well-tested software. In WiND, we are
using TCP/IP for those very reasons.

Several projects have taken network-attached storage
a step further, running user code of some form on the
drives [1, 23]. These “Active Disks” approaches lose
the advantages of separation and specialization, but in
network-limited environments can provide performance
advantages. We believe that our adaptive techniques are
applicable in this environment.

The Berkeley I-Store project discusses the concept of
an “introspective” system built from intelligent disks [7].
In WiND, GALE is the component that provides a novel
form of system introspection via on-line simulation. More
recently, in [8], the authors propose a new set of bench-
marks to evaluate system availability, which we hope to
apply in our evaluation of WiND.

Robust performance has long been the goal of storage
systems. For example, chained declustering balances load
in a mirrored storage system under failure [17]. By care-

fully allocating data across the disks, read traffic avoids
hot-spots typical in mirrored systems under failure. We
seek to generalize this concept by adapting to all unex-
pected behavior of disks, not just absolute failure.

An excellent example of an adaptive system is the Au-
toRAID storage array [30]. AutoRAID presents a stan-
dard RAID interface to clients, but adaptively migrates
data between two RAID levels: “hot” data is placed in
mirrored storage for improved performance, and “cold”
data is moved into RAID-5 storage to increase effective
capacity. Such a “performance versus capacity” optimiza-
tion could be placed into the GALE framework.

Adaptivity has also been explored within the context of
parallel file systems [27]. In that study, the authors ex-
plore the use of fuzzy logic to adaptively select the proper
stripe size for a storage system. Such approaches may also
be applicable within WiND.

Long-term adaptation has shown promise in single-disk
log-structured file systems [20]. With this approach, file
layout is reorganized off-line to improve the read perfor-
mance of LFS. Similar techniques could be employed by
GALE, although GALE must generalize the task of reor-
ganization to operate across multiple disks.

Finally, the issue of heterogeneous RAID strategies has
been studied in the multimedia literature with regards to
video servers [12]. These studies all assume static per-
formance differences among the components, not the dy-
namic environment that we expect to develop.

6 Summary

Complexity is growing beyond the point of manageabil-
ity in storage systems. Comprised of largely autonomous,
complicated, individual components, and connected by
complex networking hardware and protocols, storage sys-
tems of the future will exhibit many of the same properties
— and hence, the same problems — of larger scale, wide-
area systems. Thus, software programming environments
for these platforms must provide mechanisms that facili-
tate robust global behavior in spite of chaotic and dynamic
component behavior. Without adaptive mechanisms, stor-
age will become increasingly difficult to manage, and re-
quire a high amount of human involvement.

Towards this end, in WiND, we are developing three
pieces of adaptive software: SToRM, which provides re-
active, run-time data access and layout, GALE, which
performs system monitoring and off-line adaptation, and
Clouds, which provides flexible caching. The underpin-
nings of the three layers of adaptation is the development
of a rigorous information architecture called RAIN, and a
flexible, general storage manager known as NeST. We be-
lieve that the successful development of these components
will reduce the burden of storage administration.
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