CS367 Announcements Tuesday, June 25, 2013

• H2 released

Last Time

- Exceptions
- Complexity

Today

• Complexity (cont.)

Analyzing Algorithm Efficiency

complexity =

If problem size doubles and the # of operations:

Comparing 1, $\log(N)$, N, $N \log(N)$, N^2

Example: Giving a Toast

Number Guessing Game

Person 1 picks a number between 1 and N

Repeat until number is guessed:

Person 2 guesses a number

Person 1 answers "correct", "too high", or "too low"

problem size =

count :

Consider the following algorithms person 2 could use to decide the sequence of numbers to give as guesses. What is the complexity of each algorithm below?

Algorithm 1:

- $\bullet \ \ {\sf Guess} \ \ {\sf number} = 1$
- Repeat until correct:
 - If guess is incorrect, increment guess by 1

Algorithm 2:

- Guess number = N/2
- Set step = N/4
- Repeat until correct:
 - If guess is too large, next guess = guess step
 - If guess is too small, next guess = guess + step
 - step = step/2

Complexity Analysis of Number Guessing Game

Scaling the Problem Size

N	$N\log(N)$	N2	2N	N!
2	2.0	2	4	2
4	8.0	16	16	24
6	15.5	36	64	720
8	24.0	64	256	
10	33.2	100	1024	
15	58.6	225		
20	86.4	400		
100	664.4	10,000		
1000	9965.8	1,000,000		

Big-O Notation

constant time \rightarrow

linear time \rightarrow

quadratic time \rightarrow

Formal definition: