CS367 Announcements

Wed, July 17th, 2013

- P2 due Today, Wed 11:59pm
- H5 due Mon 6pm

Last Time

- Finish Recursion
- Intro to Search
- Intro to Trees

Today

- Trees (Cont.)

Tree Terminology

1. What is the root?
2. How man leaves are there?
3. What is the height of the tree?
4. What is the depth of J ?
5. How many children does G have (degree of G)?
6. How many decendents does B have?
7. What are the ancestors of D ?
8. What is the length of the path from B to D ?
9. What are the subtrees of B ?

General Tree Implementation

Tree nodes:

```
class Treenode<T> {
        private T data;
        private ListADT<Treenode<T>> children;
```

Tree:

```
class Tree<T> {
    private Treenode<T> root;
    private int size;
    public Tree() {
        root = null;
        size = 0;
    }
```


Determining Height of a General Tree

public int height() \{

Binary Tree Implementation

Tree nodes:

```
class BinaryTreenode<T> {
    private T data;
    private BinaryTreenode<T> leftChild;
    private BinaryTreenode<T> rightChild;
    public BinaryTreenode(T item) {
        data = item;
        leftChild = null;
        rightChild = null;
    }
    ...
```

Tree:

```
public class BinaryTree<T> {
    private BinaryTreenode<T> root;
    private int size;
    public BinaryTree() {
        root = null;
        size = 0;
    }
```


Tree Traversals

Goal: visit every node in the tree exactly once

- Level-order
- Pre-order
- Post-order
- In-order

Tree Traversals Practice

1. List nodes using a pre-order traversal:

2. List nodes using a post-order traversal:

3. List nodes using an in-order traversal:

