
CS367 Announcements
Tues, July 30th, 2013

• P3 due Wed July, 31st 11:59pm

Last Time

• Hashing

Today

• Hashing (cont.)

1



Recall Hashing

Goal: O(1) lookup, insert and delete ops

Idea: store items in array and compute index from key-hash function

Concerns

• table size

• hash function

• collisions

Properties of a good hash function

• quick/easy to compute

• spreads data evenly across the hashtable

• minimizes collisions

• uses all of the unique part of key (that distinguish different data values)

Typically, a hash function has 2 steps:

1. convert search key to an integer hash code

2. compress hash code into a hash index that’s valid for the hashtable

2



Collision Handling using Open Addressing

Linear Probing

Quadratic Probing

3



Collision Handling using Open Addressing (cont.)

Double Hashing

4



Collision Handling using Buckets

5



Java API Support for Hashing

hashCode method

• method of Object class

• returns an int

• default hash code is BAD - computed from object’s memory address

Guidelines for overriding hashCode:

6



Java API Support for Hashing (cont.)

Hashtable<K,V> class

• in java.util package

• implements Map<K,V> interface

• constructors allow you to set

– initial capacity (default = 11)

– load factor (default = 0.75)

HashMap<K,V> class

• in java.util package

• essentially the same as Hashtable (except Hashtable is synchronized)

7



TreeMap vs. HashMap

8


