Bayesian Networks

(aka Bayes Nets, Belief Nets)

(one type of Graphical Model)

[based on slides by Jerry Zhu and Andrew Moore]

Using the Full Joint Distribution

 Once you have the joint distribution, you can do anything, e.g. marginalization:

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

• e.g., P(Sunny or Hot) = (150+50+40+5)/365

Convince yourself this is the same as P(sunny) + P(hot) - P(sunny) and hot)

Weather	Temperature	Prob.	
Sunny	Hot	150/365	
Sunny	Cold	50/365	
Cloudy	Hot	40/365	
Cloudy	Cold	60/365	
Rainy	Hot	5/365	
Rainy	Cold	60/365	

Full Joint Probability Distribution

Making a joint distribution of N variables:

- List all combinations of values (if each variable has k values, there are k^N combinations)
- 2. Assign each combination a probability
- 3. They should sum to 1

Weather	Temperature	Prob.
Sunny	Hot	150/365
Sunny	Cold	50/365
Cloudy	Hot	40/365
Cloudy	Cold	60/365
Rainy	Hot	5/365
Rainy	Cold	60/365

Using the Joint Distribution

You can also do inference:

$$P(Q \mid E) = \frac{\sum_{\text{rows matching Q AND E}} P(\text{row})}{P(Q \mid E)}$$

 $\Sigma_{\text{rows matching E}} P(\text{row})$

P(Hot | Rainy)

Weather	Temperature	Prob.
Sunny	Hot	150/365
Sunny	Cold	50/365
Cloudy	Hot	40/365
Cloudy	Cold	60/365
Rainy	Hot	5/365
Rainy	Cold	60/365

The Bad News

- Joint distribution requires a lot of storage space
- For N variables, each taking k values, the joint distribution has k^N numbers (and k^N – 1 degrees of freedom)
- It would be nice to use fewer numbers ...
- Bayesian Networks to the rescue!
 - Provides a decomposed representation of the FJPD
 - Encodes a collection of conditional independence relations

Bayesian Networks

- Directed, acylic graphs (DAGs)
- Nodes = random variables
 - CPT stored at each node quantifies conditional probability of node's r.v. given all its parents
- Arc from A to B means A "has a direct influence on" or "causes" B
 - Evidence for A increases likelihood of B (deductive influence from causes to effects)
 - Evidence for B increases likelihood of A (abductive influence from effects to causes)
- Encodes conditional independence assumptions

Example

- A: your alarm sounds
- J: your neighbor John calls you
- M: your other neighbor Mary calls you
- John and Mary do not communicate (they promised to call you whenever they hear the alarm)
- What kind of independence do we have?
- What does the Bayes Net look like?

Example

- A: your alarm sounds
- J: your neighbor John calls you
- M: your other neighbor Mary calls you
- John and Mary do not communicate (they promised to call you whenever they hear the alarm)
- What kind of independence do we have?
 - Conditional independence: P(J,M|A)=P(J|A)P(M|A)
- What does the Bayes Net look like?

Our BN: P(A,J,M) = P(A) P(J|A) P(M|A)Chain rule: P(A,J,M) = P(A) P(J|A) P(M|A,J)Our B.N. assumes conditional independence, so P(M|A,J) = P(M|A)omised

• What kin endence do we have?

pendence P(J,M|A) = P(J|A) P(M|A)• What does the box Net look like?

Applications

- Medical diagnosis systems
- Manufacturing system diagnosis
- Computer systems diagnosis
- Network systems diagnosis
- Helpdesk troubleshooting
- Information retrieval
- Customer modeling

Pathfinder

- Pathfinder is one of the first BN systems
- It performs diagnosis of lymph-node diseases
- It deals with over 60 diseases and 100 symptoms and test results
- 14,000 probabilities
- Commercialized by Intellipath and Chapman Hall and applied to about 20 tissue types

Interpreting Bayesian Nets

- 2 nodes are unconditionally independent if there's no undirected path between them
- If there's an undirected path between 2 nodes, then whether or not they are independent or dependent depends on what other evidence is known

A and B are independent given nothing else, but are dependent given C

Example with 5 Variables

- B: there's burglary in your house
- E: there's an earthquake
- A: your alarm sounds
- J: your neighbor John calls you
- M: your other neighbor Mary calls you
- B, E are independent
- J is directly influenced by only A (i.e., J is conditionally independent of B, E, M, given A)
- M is directly influenced by only A (i.e., M is conditionally independent of B, E, J, given A)

Creating a Bayes Net

- Step 2: add directed edges
 - The graph must be acyclic
 - If node X is given parents $Q_1, ..., Q_m$, you are promising that any variable that's not a descendent of X is conditionally independent of X given Q₁, ..., Q_m

- B: there's burglary in your house
- E: there's an earthquake
- A: your alarm sounds
- J: your neighbor John calls you
- M: your other neighbor Mary calls you

Creating a Bayes Net

Step 1: add variables. Choose the variables you want to include in the Bayes Net

В

E

B: there's burglary in your house

E: there's an earthquake

A: your alarm sounds

J: your neighbor John calls you

M: your other neighbor Mary calls you

Creating a Bayes Net

Step 3: add CPT's

P(J|A) = 0.9

 $P(J|\sim A) = 0.05$

• Each table must list P(X | Parent values) for all combinations of parent values

P(M|A) = 0.7

 $P(M|\sim A) = 0.01$

P(J|A) AND $P(J|\sim A)$. They don't have to P(B) = 0.001В Ε P(E) = 0.002P(A | B, E) = 0.95 $P(A \mid B, \sim E) = 0.94$ Α $P(A \mid \sim B, E) = 0.29$ $P(A \mid \sim B, \sim E) = 0.001$

e.g. you must specify

sum to 1!

B: there's burglary in your house E: there's an earthquake

A: your alarm sounds

J: your neighbor John calls you

M: your other neighbor Mary calls you

Creating a Bayes Net

- 1. Choose a set of relevant variables
- 2. Choose an ordering of them, call them $x_1, ..., x_N$
- 3. for i = 1 to N:
 - 1. Add node x_i to the graph
 - Set parents(x_i) to be the minimal subset of {x₁...x_{i-1}}, such that x_i is conditionally independent of all other members of {x₁...x_{i-1}} given parents(x_i)
 - Define the CPT's for P(x_i | assignments of parents(x_i))
 - · Different ordering leads to different graph, in general
 - Best ordering when each var is considered after all vars that directly influence it

Computing a Joint Entry from a Bayes Net

How to compute an entry in the joint distribution? E.g., what is P(S, ~M, L, ~R, T)?

Compactness of Bayes Nets

- A Bayesian Network is a graph structure for representing conditional independence relations in a compact way
- A Bayes net encodes a joint distribution, often with far less parameters (i.e., numbers)
- A full joint table needs k^N parameters (N variables, k values per variable)
 - grows exponentially with N
- If the Bayes net is sparse, e.g., each node has at most M parents (M << N), only needs O(Nk^M)
 - grows linearly with N
 - can't have too many parents, though

The General Case

$$\begin{split} &P(X_{1}=x_{1}, X_{2}=x_{2},..., X_{n-1}=x_{n-1}, X_{n}=x_{n}) = \\ &P(X_{n}=x_{n}, X_{n-1}=x_{n-1}, ..., X_{2}=x_{2}, X_{1}=x_{1}) = \\ &P(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, ..., X_{2}=x_{2}, X_{1}=x_{1}) * P(X_{n-1}=x_{n-1}, ..., X_{2}=x_{2}, X_{1}=x_{1}) = \\ &P(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, ..., X_{2}=x_{2}, X_{1}=x_{1}) * P(X_{n-1}=x_{n-1} \mid ..., X_{2}=x_{2}, X_{1}=x_{1}) * \\ &P(X_{n-2}=x_{n-2}, ..., X_{2}=x_{2}, X_{1}=x_{1}) = \\ &\vdots \\ &= \prod_{i=1}^{n} P((X_{i}=x_{i}) \mid ((X_{i-1}=x_{i-1}), ..., (X_{1}=x_{1}))) \\ &= \\ &\prod_{i=1}^{n} P((X_{i}=x_{i}) \mid Assignments of Parents(X_{i})) \end{split}$$

Where are we Now?

- We defined a Bayes net, using small number of parameters, to describe the joint probability
- Any joint probability can be computed as

$$P(x_1,...,x_N) = \prod_i P(x_i \mid parents(x_i))$$

- The above joint probability can be computed in time linear with the number of nodes, N
- With this joint distribution, we can compute any conditional probability, P(Q | E), thus we can perform any inference
- How?

Computing Joint Probabilities using a Bayesian Network (A)

How is any joint probability computed?

Sum the relevant joint probabilities:

Compute: P(a,b)

 $= P(a,b,c,d) + P(a,b,c,\neg d) + P(a,b,\neg c,d) + P(a,b,\neg c,\neg d)$

Compute: P(c)

 $= P(a,b,c,d) + P(a,\neg b,c,d) + P(\neg a,b,c,d) + P(\neg a,\neg b,c,d) + P(a,b,c,\neg d) + P(a,\neg b,c,\neg d) + P(\neg a,b,c,\neg d) + P(\neg a,b,c,\neg d) + P(\neg a,b,c,\neg d)$

 A BN can answer any query (i.e., probability) about the domain by summing the relevant joint probabilities

- Inference through a Bayes Net can go both "forward" and "backward" through arcs
- Causal (top-down) inference
 - Given a cause, infer its effects
 - E.g., *P*(T | S)
- Diagnostic (bottom-up) inference
 - Given effects/symptoms, infer a cause
 - E.g., *P*(S | T)

The Good News

We can do inference. That is, we can compute any conditional probability:

P(Some variable | Some other variable values)

$$P(E_1 \mid E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{jointentries matching } E_1 \text{ and } E_2}}{\sum_{\text{jointentries matching } E_2}} P(\text{joint entry})$$

"Inference by Enumeration" Algorithm

Parameter (CPT) Learning for BN

- Where do you get these CPT numbers?
 - Ask domain experts, or
 - Learn from data

The Bad News

- In general if there are N variables, while evidence contains j variables, and each variable has k values, how many joints to sum up? ((N-j))
- It is this summation that makes inference by enumeration inefficient
 - Computing conditional probabilities by enumerating all matching entries in the joint is expensive:

Exponential in the number of variables

- Some computation can be saved by carefully ordering the terms and re-using intermediate results (variable elimination)
- A more complex algorithm called join tree (junction tree) can save even more computation
- But, even so, exact inference with an arbitrary Bayes
 Net is NP-Complete

Parameter (CPT) Learning for BN

Learn from a data set like this:

(~B, ~E, ~A, J, ~M) (~B, ~E, ~A, ~J, ~M) (~B, ~E, ~A, ~J, ~M) (~B, ~E, ~A, J, ~M) (~B, ~E, ~A, ~J, ~M) (B. ~E. A. J. M) (~B, ~E, ~A, ~J, ~M) (~B, ~E, ~A, ~J, M) (~B. ~E. ~A. ~J. ~M) (~B, ~E, ~A,~J, ~M) (~B, ~E, ~A,~J, ~M) (~B, ~E, ~A, J, ~M) (~B, E, A, J, M) (~B, ~E, ~A, ~J, ~M) (~B. ~E. ~A. ~J. M) (~B, ~E, ~A, ~J, ~M) (~B, ~E, ~A, ~J, ~M) (B, E, A, ~J, M) (~B, ~E, ~A, ~J, ~M)

Parameter (CPT) Learning for BN

Learn from a data set like this:

```
(~B, ~E, ~A, J, ~M)
                                     Count #(A) and #(~A) in dataset
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
                                     where B=false and E=true.
(~B, ~E, ~A, J, ~M)
                                     P(A|\sim B,E) = \#(A) / [\#(A) + \#(\sim A)]
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
                                          P(B) = 0.001
                                                            В
                                                                                 Ε
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A,~J, ~M)
                                                                                    P(E) = 0.002
                                       P(A \mid B, E) = 0.95
(~B, ~E, ~A,~J, ~M)
                                       P(A \mid B, f(E)) = 0.94
(~B, ~E, ~A, J, ~M)
                                                                      Α
(~B, E A, J, M)
(~B, ~E, ~A, ~J, ~M)
                                       P(A \mid \sim B, E) = 0.29
                                      P(A \mid \sim B, \sim E) = 0.001
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
                                                                                M
(~B, ~E, ~A, ~J, ~M)
(B, E, A, ~J, M)
                                              P(J|A) = 0.9
                                                                          P(M|A) = 0.7
(~B, ~E, ~A, ~J, ~M)
                                              P(J|\sim A) = 0.05
                                                                         P(M|\sim A) = 0.01
```

Parameter (CPT) Learning for BN

'Unseen event' problem

(-B, -E, -A, J, -M) (-B, -E, -A, -J, -M) (-B, -E, -A, -J, -M) (-B, -E, -A, J, -M) (-B, -E, -A, -J, -M) (B, -E, A, J, M)	Count #(A) and #(\sim A) in dataset where B=true and E=true. $P(A B,E) = \#(A) / [\#(A) + \#(\sim A)]$
(-B, -E, -A, -J, -M) (-B, -E, -A, -J, -M) (-B, -E, -A, -J, -M) (-B, -E, -A, -J, -M) (-B, -E, -A, -J, -M)	What if there's no row with (B, E, ~A, *, *) in the dataset?
(-B, -E, -A, J, -M) (-B, E, A, J, M) (-B, E, A, J, M) (-B, -E, -A, -J, -M) (-B, -E, -A, -J, -M) (-B, -E, -A, -J, -M)	Do you want to set $P(A B,E) = 1$ $P(\sim A B,E) = 0$?
(B, E, A, -J, M) (-B, -E, -A, -J, -M)	Why or why not?

Parameter (CPT) Learning for BN

Learn from a data set like this:

Parameter (CPT) Learning for BN

- P(X=x | parents(X)) = (frequency of x given parents) is called the Maximum Likelihood (ML) estimate
- ML estimate is vulnerable to 'unseen event' problem when dataset is small
 - flip a coin 3 times, all heads → one-sided coin?
- Simplest solution: 'Add one' smoothing

Smoothing CPT

- 'Add one' smoothing: add 1 to all counts
- In the previous example, count #(A) and #(~A) in dataset where B=true and E=true
 - $P(A|B,E) = [\#(A)+1] / [\#(A)+1 + \#(\sim A)+1]$
 - If #(A)=1, #(~A)=0:
 - without smoothing P(A|B,E) = 1, $P(\sim A|B,E) = 0$
 - with smoothing P(A|B,E) = 0.67, $P(\sim A|B,E) = 0.33$
 - If #(A)=100, #(~A)=0:
 - without smoothing P(A|B,E) = 1, $P(\sim A|B,E) = 0$
 - with smoothing P(A|B,E) = 0.99, $P(\sim A|B,E) = 0.01$
- Smoothing bravely saves you when you don't have enough data, and humbly hides away when you do
- It's a form of Maximum a posteriori (MAP) estimation

BN Special Case: Naïve Bayes

- A special Bayes Net structure:
 - a 'class' variable Y at root, compute P(Y | X₁, ..., X_N)
 - evidence nodes X_i (observed features) are all leaves
 - conditional independence between all evidence assumed. Usually not valid, but often empirically OK

Naïve Bayes Classifier

- Find $v = \underset{\text{argmax}_{v}P(Y = v)}{\text{for } \prod_{i=1}^{n}P(X_{i} = u_{i}|Y = v)}$ Class variable

 Evidence variable
- Assumes all evidence variables are conditionally independent of each other given the class variable
- Robust since it gives the right answer as long as the correct class is more likely than all others

A Special BN: Naïve Bayes Classifiers

• What's stored in the CPTs?

A Special BN: Naïve Bayes Classifiers

Is the Person a Junior?

- Input (evidence): C, Z, H
- Output (query): J

P(J|C,Z,H)

- = P(J,C,Z,H) / P(C,Z,H) by def. of cond. prob.
- = $P(J,C,Z,H) / [P(J,C,Z,H) + P(\sim J,C,Z,H)]$ by marginalization where

P(J,C,Z,H) = P(J)P(C|J)P(Z|J)P(H|J) by chain rule and conditional independence associated with B.N.

$$P(\sim J,C,Z,H) = P(\sim J)P(C|\sim J)P(Z|\sim J)P(H|\sim J)$$

A Special BN: Naïve Bayes Classifiers

- A new person shows up in class wearing an "I live in Union South where I saw the Hunger Games every night" overcoat.
- What's the probability that the person is a Junior?

Application: Bayesian Networks for Breast Cancer Diagnosis

Breast Cancer Abnormal mammo

Elizabeth S. Burnside Department of Radiology University of Wisconsin Hospitals

What You Should Know

- Inference with joint distribution
- Problems of joint distribution
- Bayes Net: representation (nodes, edges, CPT) and meaning
- Compute joint probabilities from Bayes net
- Inference by enumeration
- Naïve Bayes

