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slide 1               

Bayesian Networks 
 

(aka Bayes Nets, Belief Nets) 
 

(one type of Graphical Model) 

[based on slides by Jerry Zhu and Andrew Moore]  

slide 3 

Full Joint Probability Distribution 

Making a joint distribution of N variables: 

1. List all combinations of values (if each variable 

has k values, there are kN combinations) 

2. Assign each combination a probability 

3. They should sum to 1 

Weather Temperature Prob. 

Sunny Hot 150/365 

Sunny Cold 50/365 

Cloudy Hot 40/365 

Cloudy Cold 60/365 

Rainy Hot 5/365 

Rainy Cold 60/365 

slide 4               

Using the Full Joint Distribution 

• Once you have the joint distribution, you can do 

anything, e.g. marginalization: 

P(E) = rows matching E P(row) 

• e.g., P(Sunny or Hot) = (150+50+40+5)/365 

Convince yourself this is the same as P(sunny) + P(hot) - P(sunny and hot) 

Weather Temperature Prob. 

Sunny Hot 150/365 

Sunny Cold 50/365 

Cloudy Hot 40/365 

Cloudy Cold 60/365 

Rainy Hot 5/365 

Rainy Cold 60/365 

slide 5               

Using the Joint Distribution 

• You can also do inference: 

           rows matching Q AND E P(row) 

P(Q | E) =   

        rows matching E P(row) 

Weather Temperature Prob. 

Sunny Hot 150/365 

Sunny Cold 50/365 

Cloudy Hot 40/365 

Cloudy Cold 60/365 

Rainy Hot 5/365 

Rainy Cold 60/365 

P(Hot | Rainy) 
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slide 6 

The Bad News 

• Joint distribution requires a lot of storage space 

 

• For N variables, each taking k values, the joint 

distribution has kN numbers (and kN – 1 degrees of 

freedom) 

 

• It would be nice to use fewer numbers … 

 

• Bayesian Networks to the rescue! 

 Provides a decomposed representation of the 

FJPD 

 Encodes a collection of conditional independence 

relations 
slide 14 

Introducing Bayesian Networks 

P(B) = 0.001 

P(E) = 0.002 

P(B | E) = P(B) 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

B E 

A 

P(B) = 0.001 P(E) = 0.002 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

One node per 

random variable 

Conditional 

probability 

table (CPT) 

DAG, arcs often direct causation,  

but don’t have to be! 

slide 15 

P(x1,…xN) = i P(xi | parents(xi)) 

• Example: P(~B, E, ~A) = P(~B) P(E) P(~A | ~B, E) 

 

Joint Probability from Bayes Net 

B E 

A 

P(B) = 0.001 P(E) = 0.002 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

One node per 

random variable 

Conditional 

probability 

table (CPT) 

DAG, arcs often direct causation,  

but don’t have to be! 

slide 16               

Join probability with Bayes Net 

B E 

A 

P(B) = 0.001 P(E) = 0.002 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

One node per 

random variable 

Conditional 

probability 

table (CPT) 

DAG, arcs often direct causation,  

but don’t have to be! 

P(x1,…xN) = i P(xi | parents(xi)) 

• Example: P(~B, E, ~A) = P(~B) P(E) P(~A | ~B, E) 

• Recall the chain rule:  

P(~B, E, ~A) = P(~B) P(E | ~B) P(~A | ~B, E) 

Our B.N. has this 

independence 

assumption 
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slide 17 

• Directed, acylic graphs (DAGs) 

• Nodes = random variables 

 CPT stored at each node quantifies conditional 

probability of node’s r.v. given all its parents 

• Arc from A to B means A “has a direct influence on” 

or “causes” B 

 Evidence for A increases likelihood of B 

(deductive influence from causes to effects) 

 Evidence for B increases likelihood of A 

(abductive influence from effects to causes) 

• Encodes conditional independence assumptions 

Bayesian Networks 

slide 18 

Example 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

 John and Mary do not communicate (they promised 

to call you whenever they hear the alarm) 

• What kind of independence do we have? 

• What does the Bayes Net look like? 

slide 19               

Example 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

 John and Mary do not communicate (they promised 

to call you whenever they hear the alarm) 

• What kind of independence do we have? 

• Conditional independence: P(J,M|A)=P(J|A)P(M|A) 

• What does the Bayes Net look like? 

A 

J M 

slide 20               

Examples 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

 John and Mary do not communicate (they promised 

to call you whenever they hear the alarm) 

• What kind of independence do we have? 

• Conditional independence P(J,M|A)=P(J|A)P(M|A) 

• What does the Bayes Net look like? 

A 

J M 

Our BN: P(A,J,M) = P(A) P(J|A) P(M|A) 

Chain rule: P(A,J,M) = P(A) P(J|A) P(M|A,J) 

 

Our B.N. assumes conditional independence, 

so   P(M|A,J) = P(M|A) 
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slide 21 

A Simple Bayesian Network 

Cancer Smoking  heav ylightnoS ,,

 m alignantbenignnoneC ,,P( S=no) 0.80 

P( S=light) 0.15 

P( S=heavy) 0.05 

no light heavy 
P(C=none|S=) 0.96 0.88 0.60 

P(C=benign|S=) 0.03 0.08 0.25 
P(C=malig|S=) 0.01 0.04 0.15 

slide 22 

A Simple Bayesian Network 

Cancer Smoking  heav ylightnoS ,,

 m alignantbenignnoneC ,,P( S=no) 0.80 

P( S=light) 0.15 

P( S=heavy) 0.05 

no light heavy 
P(C=none|S=) 0.96 0.88 0.60 

P(C=benign|S=) 0.03 0.08 0.25 
P(C=malig|S=) 0.01 0.04 0.15 

Not needed 

slide 23 

A Bayesian Network 

Allergy 

Sinus 

Headache 
Runny 

Nose 

Flu 

Evidence 

variables 

Diagnostic 

variables 

slide 24 

A Bayesian Network 

Smoking 

Gender Age 

Cancer 

Lung 

Tumor 

Serum 

Calcium 

Exposure 

to Toxics 
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slide 25 

Applications 

• Medical diagnosis systems 

• Manufacturing system diagnosis 

• Computer systems diagnosis 

• Network systems diagnosis 

• Helpdesk troubleshooting 

• Information retrieval 

• Customer modeling 

 

slide 26 

RICOH Fixit  

• Diagnostics and information retrieval 

slide 27 

FIXIT: Ricoh copy machine 

slide 28 

Online Troubleshooters 
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slide 29 

Pathfinder 

• Pathfinder is one of the first BN systems 

• It performs diagnosis of lymph-node 

diseases 

• It deals with over 60 diseases and 100 

symptoms and test results 

• 14,000 probabilities  

• Commercialized by Intellipath and 

Chapman Hall and applied to about 20 

tissue types 

slide 30               

Pathfinder 

Bayes  

Net 

448 nodes, 

906 arcs 

slide 31               slide 32               
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Conditional Independence in Bayes Nets 

 A node is conditionally independent of its       

non-descendents, given its parents 

 A node is conditionally independent of all other 

nodes, given its “Markov blanket” (i.e., parents, 

children, and children’s parents) 

slide 34 

Conditional Independence 

Smoking 

Gender Age 

Cancer 

Cancer is conditionally 

independent of Age 

and Gender given 

Smoking 

slide 35 

More Conditional Independence 

Cancer 

Lung 

Tumor 

Serum 

Calcium 

Serum Calcium is 

conditionally independent of 

Lung Tumor, given Cancer 

P(L | SC, C) = P(L | C) 

slide 36 

• 2 nodes are unconditionally independent if there’s no 

undirected path between them 

• If there’s an undirected path between 2 nodes, then 

whether or not they are independent or dependent 

depends on what other evidence is known 

Interpreting Bayesian Nets 

A 

C 

B A and B are independent 

given nothing else, but are 

dependent given C 
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Example with 5 Variables 

 B: there’s burglary in your house 

 E: there’s an earthquake 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

• B, E are independent 

• J is directly influenced by only A (i.e., J is 

conditionally independent of B, E, M, given A) 

• M is directly influenced by only A (i.e., M is 

conditionally independent of B, E, J, given A) 

 

slide 38 

Creating a Bayes Net 

• Step 1: add variables.  Choose the variables you 

want to include in the Bayes Net 

B: there’s burglary in your house 

E: there’s an earthquake 

A: your alarm sounds 

J: your neighbor John calls you 

M: your other neighbor Mary calls you 

B E 

A 

J M 

slide 39               

Creating a Bayes Net 

• Step 2: add directed edges   

• The graph must be acyclic   

• If node X is given parents Q1, …, Qm, you are 

promising that any variable that’s not a 

descendent of X is conditionally independent of X 

given Q1, …, Qm 

B: there’s burglary in your house 

E: there’s an earthquake 

A: your alarm sounds 

J: your neighbor John calls you 

M: your other neighbor Mary calls you 

B E 

A 

J M 

slide 40               

Creating a Bayes Net 

• Step 3: add CPT’s   

• Each table must list P(X | Parent values) for all 

combinations of parent values 

B: there’s burglary in your house 

E: there’s an earthquake 

A: your alarm sounds 

J: your neighbor John calls you 

M: your other neighbor Mary calls you 

B E 

A 

J M 

e.g. you must specify 

P(J|A) AND P(J|~A). 

They don’t have to 

sum to 1! 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 
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Creating a Bayes Net  

1. Choose a set of relevant variables 

2. Choose an ordering of them, call them x1, …, xN 

3. for i = 1 to N: 

1. Add node xi to the graph 

2. Set parents(xi) to be the minimal subset of 

{x1…xi-1},  such that xi is conditionally 

independent of all other members of {x1…xi-1} 

given parents(xi) 

3. Define the CPT’s for  

P(xi | assignments of parents(xi)) 

 
• Different ordering leads to different graph, in general 

• Best ordering when each var is considered after all vars that 

directly influence it slide 42 

Compactness of Bayes Nets 

• A Bayesian Network is a graph structure for 

representing conditional independence relations in a 

compact way 

• A Bayes net encodes a joint distribution, often with 

far less parameters (i.e., numbers) 

• A full joint table needs kN parameters (N variables, k 

values per variable) 

 grows exponentially with N 

• If the Bayes net is sparse, e.g., each node has at 

most M parents (M << N), only needs O(NkM) 

 grows linearly with N 

 can’t have too many parents, though 

 

slide 43 

Computing a Joint Entry from a Bayes Net 

How to compute an entry in the joint distribution? 

E.g., what is P(S, ~M, L, ~R, T)? 

 S M 

R 

L 

T 

P(S) = 0.3 
P(M) = 0.6 

P(RM) = 0.3 

P(R~M) = 0.6 

P(TL) = 0.3 

P(T~L) = 0.8 

P(LM,S) = 0.05 

P(LM,~S) = 0.1 

P(L~M,S) = 0.1 

P(L~M,~S) = 0.2 

slide 44 

Computing with Bayes Net 

P(T, ~R, L, ~M, S) = 

P(T  ~R, L, ~M, S) * P(~R, L, ~M, S) =  

P(T   L) *  P(~R, L, ~M, S) = 

P(T   L) *  P(~R  L, ~M, S) * P(L, ~M, S) = 

P(T   L) *  P(~R  ~M) * P(L, ~M, S) = 

P(T   L) *  P(~R  ~M) * P(L~M, S) * P(~M, S) = 

P(T   L) *  P(~R  ~M) * P(L~M, S) * P(~M | S) * P(S) = 

P(T   L) *  P(~R  ~M) * P(L~M, S) * P(~M) * P(S) 

S M 

R 

L 

T 

P(S) = 0.3 
P(M) = 0.6 

P(RM) = 0.3 

P(R~M) = 0.6 

P(TL) = 0.3 

P(T~L) = 0.8 

P(LM,S) = 0.05 

P(LM,~S) = 0.1 

P(L~M,S) = 0.1 

P(L~M,~S) = 0.2 

Apply the Chain Rule! 
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slide 45 

The General Case 

P(X1=x1 , X2=x2 ,…., Xn-1=xn-1 , Xn=xn) = 

P(Xn=xn , Xn-1=xn-1 , …., X2=x2 , X1=x1) = 

P(Xn=xn  Xn-1=xn-1 , …., X2=x2 , X1=x1) * P(Xn-1=xn-1 , …., X2=x2 , X1=x1) = 

P(Xn=xn  Xn-1=xn-1 , …., X2=x2 , X1=x1) * P(Xn-1=xn-1 …. X2=x2 , X1=x1) * 

 P(Xn-2=xn-2 ,…., X2=x2 , X1=x1) = 

        : 

 

= 

 

       

    















n

i

iii

n

i

iiii

XxXP

xXxXxXP

1

1

1111

Parents of sAssignment  

  ,  ,  
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Computing Joint Probabilities 

using a Bayesian Network 

How is any joint probability computed? 

 Sum the relevant joint probabilities: 

 Compute: P(a,b) 

 = P(a,b,c,d) + P(a,b,c,d) + P(a,b,c,d) + P(a,b,c,d) 

 

 Compute: P(c) 

 = P(a,b,c,d) + P(a,b,c,d) + P(a,b,c,d) + P(a,b,c,d) + 

   P(a,b,c,d) + P(a,b,c,d) + P(a,b,c,d) + 

P(a,b,c,d) 

• A BN can answer any query (i.e., probability) about the 

domain by summing the relevant joint probabilities 

A B 

C 

D 

slide 47 

Where are we Now? 

• We defined a Bayes net, using small number of 

parameters, to describe the joint probability 

• Any joint probability can be computed as 

P(x1,…, xN) = i P(xi | parents(xi)) 

• The above joint probability can be computed in time 

linear with the number of nodes, N 

• With this joint distribution, we can compute any 

conditional probability, P(Q | E), thus we can perform 

any inference 

• How? 

slide 48 

           joint matching Q AND E P(joint) 

P(Q | E) =   

              joint matching E P(joint) 

 

Inference by Enumeration 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

For example:  P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 

 

 

by def. of cond. prob. 
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slide 49               

Inference by enumeration 

           joint matching Q AND E P(joint) 

P(Q | E) =   

              joint matching E P(joint) 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E)=0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

For example:  P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 

 

 

Compute the joint (4 of them) 

P(B,J,~M,A,E) 

P(B,J,~M,A,~E) 

P(B,J,~M,~A,E) 

P(B,J,~M,~A,~E) 

Each is O(N) for sparse graph 
P(x1,…xN) =  i P(xi | parents(xi)) 

Sum them up 

slide 50               

Inference by enumeration 

           joint matching Q AND E P(joint) 

P(Q | E) =   

              joint matching E P(joint) 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

For example:  P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 

 

 

Compute the joint (8 of them) 

P(J,~M, B,A,E) 

P(J,~M, B,A,~E) 

P(J,~M, B,~A,E) 

P(J,~M, B,~A,~E) 

P(J,~M, ~B,A,E) 

P(J,~M, ~B,A,~E) 

P(J,~M, ~B,~A,E) 

P(J,~M, ~B,~A,~E) 

Each is O(N) for sparse graph 

 P(x1,…xN) =  i P(xi | parents(xi)) 

Sum them up 
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Inference by Enumeration 

           joint matching Q AND E P(joint) 

P(Q | E) =   

              joint matching E P(joint) 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

For example:  P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 

 

 

Sum up 4 joints 

Sum up 8 joints 

In general, if there 

are N variables, while 

evidence contains j 

variables, how many 

joints to sum up? 

slide 52 

Another Example 

Compute P(R  T, ~S) from the following Bayes Net 

 

S M 

R 

L 

T 

P(s) = 0.3 
P(M) = 0.6 

P(RM) = 0.3 

P(R~M) = 0.6 

P(TL) = 0.3 

P(T~L) = 0.8 

P(LM, S) = 0.05 

P(LM, ~S) = 0.1 

P(L~M, S) = 0.1 

P(L~M, ~S) = 0.2 
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slide 54 

Another Example 

                                         Compute P(R  T, ~S)? 

S M 

R 

L 

T 

P(s)=0.3 
P(M) = 0.6 

P(RM) = 0.3 

P(R~M) = 0.6 

P(TL)=0.3 

P(T~L)=0.8 

P(LM, S) = 0.05 

P(LM, ~S) = 0.1 

P(L~M, S) = 0.1 

P(L~M, ~S) = 0.2 

Step 1: Compute P(R, T, ~S) 

 

Step 2: Compute P(T, ~S) 

 

Step 3: Return 

 

P(R, T, ~S) 

------------------------------------- 

P(T, ~S) 
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Another Example 

                                        Compute P(R  T, ~S)? 

S M 

R 

L 

T 

P(s)=0.3 
P(M) = 0.6 

P(RM) = 0.3 

P(R~M) = 0.6 

P(TL)=0.3 

P(T~L)=0.8 

P(LM, S) = 0.05 

P(LM, ~S) = 0.1 

P(L~M, S) = 0.1 

P(L~M, ~S) = 0.2 

Step 1: Compute P(R, T, ~S) 

 

Step 2: Compute P(T, ~S) 

 

Step 3: Return 

 

P(R, T, ~S) 

------------------------------------- 

P(T, ~S) 

Sum of all the rows in the 

Joint that match R ^ T ^ ~S 

Sum of all the rows in the 

Joint that match T ^ ~S 

slide 56 

Another Example 

                                        Compute P(R  T, ~S)? 

S M 

R 

L 

T 

P(s)=0.3 
P(M)=0.6 

P(RM)=0.3 

P(R~M) = 0.6 

P(TL)=0.3 

P(T~L)=0.8 

P(LM^S) = 0.05 

P(LM^~S) = 0.1 

P(L~M^S) = 0.1 

P(L~M^~S) = 0.2 

Step 1: Compute P(R, T, ~S) 

 

Step 2: Compute P(~R, T, ~S) 

 

Step 3: Return 

 

P(R, T, ~S) 

------------------------------------- 

P(R, T, ~S) + P(~R, T, ~S) 

Sum of all the rows in the 

Joint that match R ^ T ^ ~S 

Sum of all the rows in the 

Joint that match ~R ^ T ^ ~S 

Each of these obtained by 

the “computing a joint 

probability entry” method of 

the earlier slides 

4 joint computes 

4 joint computes 

= P(T, ~S) 

slide 57 

• Inference through a Bayes Net can go both 

“forward” and “backward” through arcs 

 

• Causal (top-down) inference 

 Given a cause, infer its effects 

 E.g., P(T | S) 

 

• Diagnostic (bottom-up) inference 

 Given effects/symptoms, infer a cause 

 E.g., P(S | T) 



13 

slide 58 

The Good News 

We can do inference.  That is, we can compute 

any conditional probability: 

P( Some variable  Some other variable values ) 









2

 2 1

 matching entriesjoint 

 and matching entriesjoint 

2

21
21

)entryjoint (

)entryjoint (

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP

“Inference by Enumeration” Algorithm 

slide 63               

The Bad News 
• In general if there are N variables, while evidence contains 

j variables, and each variable has k values, how many 

joints to sum up?  k(N-j) 

• It is this summation that makes inference by 

enumeration inefficient 

• Computing conditional probabilities by enumerating all 

matching entries in the joint is expensive:  

Exponential in the number of variables 

• Some computation can be saved by carefully ordering the 

terms and re-using intermediate results (variable 

elimination) 

• A more complex algorithm called join tree (junction tree) 

can save even more computation 

• But, even so, exact inference with an arbitrary Bayes 

Net is NP-Complete 
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Parameter (CPT) Learning for BN 

• Where do you get these CPT numbers? 

 Ask domain experts, or 

 Learn from data 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 
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Parameter (CPT) Learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

How to learn this CPT? 
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Parameter (CPT) Learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(B) and #(~B) in dataset. 

P(B) = #(B) / [#(B) + #(~B)] 
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Parameter (CPT) Learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(E) and #(~E) in dataset. 

P(E) = #(E) / [#(E) + #(~E)] 
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Parameter (CPT) Learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=true and E=true. 

P(A|B,E) = #(A) / [#(A) + #(~A)] 
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P(B) = 0.001 

Parameter (CPT) Learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=true and E=false. 

P(A|B,~E) = #(A) / [#(A) + #(~A)] 



15 

slide 85               

Parameter (CPT) Learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=false and E=true. 

P(A|~B,E) = #(A) / [#(A) + #(~A)] 
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Parameter (CPT) Learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B) = 0.001 

P(A | B, E) = 0.95  

P(A | B, ~E) = 0.94 

P(A | ~B, E) = 0.29 

P(A | ~B, ~E) = 0.001 

P(E) = 0.002 

P(J|A) = 0.9 

P(J|~A) = 0.05 

P(M|A) = 0.7 

P(M|~A) = 0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=false and E=false. 

P(A|~B,~E) = #(A) / [#(A) + #(~A)] 

p 

p 

p 

p 
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Parameter (CPT) Learning for BN 

 ‘Unseen event’ problem 

 (~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=true and E=true. 

P(A|B,E) = #(A) / [#(A) + #(~A)] 

 

What if there’s no row with  

(B, E, ~A, *, *) in the dataset? 

 

Do you want to set 

P(A|B,E) = 1 

P(~A|B,E) = 0? 

 

Why or why not? 
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Parameter (CPT) Learning for BN 

 P(X=x | parents(X)) = (frequency of x given parents) 

is called the Maximum Likelihood (ML) estimate 

 

 ML estimate is vulnerable to ‘unseen event’ problem 

when dataset is small 

 flip a coin 3 times, all heads  one-sided coin? 

 

 Simplest solution:  ‘Add one’ smoothing   
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Smoothing CPT 

 ‘Add one’ smoothing:  add 1 to all counts 

 In the previous example, count #(A) and #(~A) in 

dataset where B=true and E=true 

 P(A|B,E) = [#(A)+1] / [#(A)+1 + #(~A)+1] 

 If #(A)=1, #(~A)=0:  

 without smoothing P(A|B,E) = 1, P(~A|B,E) = 0 

 with smoothing P(A|B,E) = 0.67, P(~A|B,E) = 0.33 

 If #(A)=100, #(~A)=0:  

 without smoothing P(A|B,E) = 1, P(~A|B,E) = 0 

 with smoothing P(A|B,E) = 0.99, P(~A|B,E) = 0.01 

 Smoothing bravely saves you when you don’t have 

enough data, and humbly hides away when you do 

 It’s a form of Maximum a posteriori (MAP) estimation 
slide 90 

Naïve Bayes Classifier 

•

Class variable Evidence variable 

slide 91 

• A special Bayes Net structure:  

 a ‘class’ variable Y at root, compute P(Y | X1, …, XN) 

 evidence nodes Xi (observed features) are all 

leaves 

 conditional independence between all evidence 

assumed.  Usually not valid, but often empirically 

OK 

 

 

 

 

 

BN Special Case:  Naïve Bayes 

Y 

X1 XN X2 

… 

slide 92 

 

 

 

 

 

 

• What’s stored in the CPTs? 

A Special BN:  Naïve Bayes Classifiers 

J 

C H Z 

J Person is Junior 

C Brought coat to class 

Z Lives in zipcode 53706 

H Saw “Hunger Games” more 

than once 
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A Special BN:  Naïve Bayes Classifiers 

J 

C H Z 

P(J) = 

P(C|J) = 

P(C|~J) = 

P(Z|J) = 

P(Z|~J) = 
P(H|J) = 

P(H|~J) = 

J Person is Junior 

C Brought coat to class 

Z Lives in zipcode 53706 

H Saw “Hunger Games” more 

than once 
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• A new person shows up in class wearing an “I live in 

Union South where I saw the Hunger Games every 

night” overcoat. 

• What’s the probability that the person is a Junior? 

A Special BN:  Naïve Bayes Classifiers 

J 

C H Z 

P(J) = 

P(C|J) = 

P(C|~J) = 

P(Z|J) = 

P(Z|~J) = 
P(H|J) = 

P(H|~J) = 

J Person is Junior 

C Brought coat to class 

Z Lives in zipcode 53706 

H Saw “Hunger Games” more 

than once 

slide 96 

Is the Person a Junior? 

• Input (evidence): C, Z, H 

• Output (query): J 

 

P(J|C,Z,H)   

= P(J,C,Z,H) / P(C,Z,H)   by def. of cond. prob. 

= P(J,C,Z,H) / [P(J,C,Z,H) + P(~J,C,Z,H)] by marginalization 

 where 

 

P(J,C,Z,H) = P(J)P(C|J)P(Z|J)P(H|J)  by chain rule and 

conditional independence associated with B.N. 

 

P(~J,C,Z,H) = P(~J)P(C|~J)P(Z|~J)P(H|~J) 
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Application:  Bayesian Networks 

for Breast Cancer Diagnosis 

Abnormal 

mammo 

Breast  

Cancer 

Elizabeth S. Burnside 

Department of Radiology 

University of Wisconsin Hospitals 
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Density 
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Ca++ Fine/ 

Linear 

Ca++ Eggshell 
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Ca++ Rod-like 

Skin Lesion 

Architectural 

Distortion 

Mass Shape 

Mass Density 

Breast 

Density 

LN 
Asymmetric 

Density 
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Results 

Radiologist 

.916  

 

Bayes Net 

.919 

 

Combined 

.948 

 

ROC curves

0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FPF

T
P

F

BN 

Radiologist 

Combined 
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What You Should Know 

• Inference with joint distribution 

• Problems of joint distribution 

• Bayes Net: representation (nodes, edges, CPT) and 

meaning 

• Compute joint probabilities from Bayes net 

• Inference by enumeration 

• Naïve Bayes 


