Bayesian Networks

(aka Bayes Nets, Belief Nets)

(one type of Graphical Model)

[based on slides by Jerry Zhu and Andrew Moore]

Full Joint Probability Distribution

Making a joint distribution of N variables:

1. List all combinations of values (if each variable
has k values, there are kN combinations)

2. Assign each combination a probability
3. They should sumto 1

Weather Temperature Prob.
Sunny Hot 150/365
Sunny Cold 50/365
Cloudy Hot 40/365
Cloudy Cold 60/365
Rainy Hot 5/365
Rainy Cold 60/365

Using the Full Joint Distribution
¢ Once you have the joint distribution, you can do
anything, e.g. marginalization:
P(E) = Zrows matching E P(I‘OW)
¢ e.g., P(Sunny or Hot) = (150+50+40+5)/365

Convince yourself this is the same as P(sunny) + P(hot) - P(sunny and hot)

Weather Temperature Prob.
- Sunny Hot 150/365
< Sunny Cold 50/365
<] Cloudy Hot 40/365
Cloudy Cold 60/365

| Rainy Hot 5/365
Rainy Cold 60/365

v UV

Using the Joint Distribution
®  You can also do inference:

z“rows matching Q AND E P(I’OW)

PQIE)=

z:row's matching E P(row) P(Hot | Rainy)

Weather Temperature Prob.

Sunny Hot 150/365

Sunny Cold 50/365

Cloudy Hot 40/365

Cloudy Cold 60/365
_— Reiny_ Hot 5/365 ‘>

S—Rainy Cold 60/365




The Bad News

¢ Joint distribution requires a lot of storage space

¢ For N variables, each taking k values, the joint
distribution has kN numbers (and kN— 1 degrees of
freedom)

® It would be nice to use fewer numbers ...

° Bayesian Networks to the rescue!
= Provides a decomposed representation of the
FJPD
= Encodes a collection of conditional independence
relations

Introducing Bayesian Networks

P(B)=0.001 P(A|B,E)=0.95
P(E)=0.002 P(A|B, ~E)=0.94
P(B|E)=P(B) P(A|~B,E)=0.29

P(A|~B, ~E) = 0.001
DAG, arcs often direct causation,
but don’t have to be!

P(E) = 0.002

One node per
random variable

N

P(A|B, E)=0.95 @

P(A| B, ~E) = 0.94 -
P(A|~B,E)=0.29 Cond|t|(_)na|
P(A|~B, ~E) = 0.001 probability

table (CPT)

Joint Probability from Bayes Net

P(xy,...%y) = L1, P(x; | parents(x))
° Example: P(~B, E, ~A) = P(~B) P(E) P(~A | ~B, E)

DAG, arcs often direct causation,
but don’t have to be!

P(E) = 0.002

One node per
random variable

NS

Our B.N. has this
independence
assumption
° EX ; P
¢ Recall the chain rule:
P(~B, E, ~A) = P(-B) P(E | ~B) P(~A| ~B, E)

with Bayes Net

| parents(x,))
=P(~B) P(E) P(~A| ~B, E)

DAG, arcs often direct causation,
but don’t have to be!

AN

P(E) = 0.002
/

One node per
random variable

P(A|B, E)=0.95
P(A|B, ~E) = 0.94
P(A|~B,E)=0.29

P(A| ~B, ~E) = 0.001

()

Conditional
probability
table (CPT)

P(A|B, E)=0.95
P(A| B, ~E) = 0.94
P(A|~B,E)=0.29 =

P(A| ~B, ~E) = 0.001

Conditional
probability
table (CPT)




Bayesian Networks

¢ Directed, acylic graphs (DAGS)
® Nodes = random variables

= CPT stored at each node quantifies conditional
probability of node’s r.v. given all its parents

¢ Arc from A to B means A “has a direct influence on”
or “causes” B

= Evidence for A increases likelihood of B
(deductive influence from causes to effects)

= Evidence for B increases likelihood of A
(abductive influence from effects to causes)

® Encodes conditional independence assumptions

Example

= A: your alarm sounds
= J: your neighbor John calls you
= M: your other neighbor Mary calls you

= John and Mary do not communicate (they promised
to call you whenever they hear the alarm)

¢ What kind of independence do we have?
® What does the Bayes Net look like?

Example

= A: your alarm sounds
= J: your neighbor John calls you
= M: your other neighbor Mary calls you

John and Mary do not communicate (they promised
to call you whenever they hear the alarm)

® What kind of independence do we have?
¢ Conditional independence: P(J,M|A)=P(J|A)P(M|A)
® What does the Bayes Net look like?

o
o

Our BN: P(A,J,M) = P(A) P(J|A) P(M|A)
Chain rule: P(A,J,M) = P(A) P(J|A) P(M|A,J)

Our B.N. assumes conditional independence,

so P(M|AJ) = P(M|A) omised

endence do we have?
pendence P(J,M|A)=P(J|A)P(M|A)
s Net look like?

o
o

¢ Conditio
® What does the




A Simple Bayesian Network

S € {no, light, heavy} —>

P(S=no)

0.80

P(S=light)

0.15

P(S=heavy)

0.05

C < {none,benign, malignant}

no

light

heavy

P(C=none|S=) |0.96

0.88

0.60

P(C=benign|S=) |0.03

0.08

0.25

P(C=malig|S=) |0.01

0.04

0.15

A Simple Bayesian Network

S € {no, light, heavy} —>

P(S=no)  |0.80 C < {none,benign, malignant}
P(S=light) |0.15

W7 P~V —

1 AN
Pl{o=Ireavy) U0

no |light |heavy
P(C=none|S=) |0.96 |0.88 |0.60
P(C=benign|S=) |0.03 |0.08 |0.25

Ol

oy ITBNP-SEEN PP B PP
reTiangie—) U.Ul [U.US V.10

Not needed

A Bayesian Network

Diagnostic

variables
Evidence
variables

A Bayesian Network




Applications RICOH Fixit

¢ Diagnostics and information retrieval

Medical diagnosis systems

¢ Manufacturing system diagnosis
¢ Computer systems diagnosis 1
® Network systems diagnosis /¥
Helpdesk troubleshooting
Information retrieval
¢ Customer modeling

No dial tone at phone jack

Online Troubleshooters

[ Microsoft Technical Support Troubleshooters - Microsoft Intemet Explorer
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Micrasoft now offers advanced inference engine technology to help you easily troubleshoot
problems with Microsoft products. These Troubleshooling Wizards are the electronic version
of our best engingers. Try them and seel

Troubleshonting wizards

Choose a Troubleshooting Wizard from the list below, then click Mext.

© Access: Comversion Troubleshooter

© Access: Help exporting to Active Server Pages and viewing them in your web browser
© DirectX: Help with common issues when you run applications with Direct

© Excel: PivotTable Troubleshooter

© Excel: Warkbook Troubleshooter

€ Excel: Video Troubleshoater

€ Exchange: Directory Synchronization Traubleshooter

© Exchange: Internet Mail Connector Troubleshooter

© Games: Help with problems when you install or start your Games

© Games: Help with games display problems

© Games: Help with sound problems when yau min your games

€ Games: Help with common issues when you run your games
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Pathfinder

¢ Pathfinder is one of the first BN systems

¢ It performs diagnosis of lymph-node
diseases

® It deals with over 60 diseases and 100
symptoms and test results

® 14,000 probabilities

¢ Commercialized by Intellipath and
Chapman Hall and applied to about 20
tissue types

448 nodes,
906 arcs

(o Example: Car insurance |

( Example: Car diagnosis ]

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters




Conditional Independence in Bayes Nets
= A nodeis conditionally independent of its
non-descendents, given its parents

= Anode is conditionally independent of all other
nodes, given its “Markov blanket” (i.e., parents,
children, and children’s parents) \

Conditional Independence

@ @ Cancer is conditionally
independent of Age
and Gender given

@ Smoking
(Garcer

More Conditional Independence

@ Serum Calcium is
conditionally independent of
Lung Tumor, given Cancer
% P(L|SC,C)=P(L|C)

Interpreting Bayesian Nets

2 nodes are unconditionally independent if there’s no
undirected path between them

If there’s an undirected path between 2 nodes, then
whether or not they are independent or dependent
depends on what other evidence is known

o e A and B are independent

given nothing else, but are

e dependent given C




Example with 5 Variables

= B: there’s burglary in your house
= E: there’s an earthquake
= A: your alarm sounds
= J: your neighbor John calls you
= M: your other neighbor Mary calls you
® B, E are independent
¢ Jis directly influenced by only A (i.e., J is
conditionally independent of B, E, M, given A)
® Mis directly influenced by only A (i.e., M is
conditionally independent of B, E, J, given A)

Creating a Bayes Net

¢ Step 1: add variables. Choose the variables you
want to include in the Bayes Net

& ©
@
OO

B: there’s burglary in your house
E: there’s an earthquake
A: your alarm sounds

J: your neighbor John calls you

M: your other neighbor Mary calls you

Creating a Bayes Net

¢ Step 2: add directed edges
¢ The graph must be acyclic

° If node X is given parents Qg, ..., Q.,, you are
promising that any variable that’'s not a
descendent of X is conditionally independent of X

give, ey Qny @
\ 7

Creating a Bayes Net

¢ Step 3:add CPT’s

¢ Each table must list P(X | Parent values) for all
combinations of parent values e.g. you must specify

P(J|A) AND P(J|~A).

[P(e)= 0001 | @ They don’t have to
sum to 1!

\ / P(E) = 0.002
P(A| B, E) = 0.95

P(A| B, ~E) = 0.94
P(A| ~B, E) = 0.29

B: there’s burglary in your house
/ E: there’s an earthquake

A: your alarm sounds

J: your neighbor John calls you

M: your other neighbor Mary calls you

P(A| ~B, ~E) = 0.001 /
@ B: there’s burglary in your house

E: there's an earthquake
‘ P(IA) = 0.9 ‘ P(M|A) 07 ‘

A: your alarm sounds
P(J|~A) = 0.05 P(M|~A) 0.01

J: your neighbor John calls you

M: your other neighbor Mary calls you




Creating a Bayes Net

1. Choose a set of relevant variables
2. Choose an ordering of them, call them xg, ..., Xy
3.fori=1toN:

1. Add node x; to the graph

2. Set parents(x;) to be the minimal subset of
{X;...X.1}, such that x; is conditionally
independent of all other members of {x;...X;,}
given parents(x;)

3. Define the CPT’s for
P(x; | assignments of parents(x;))

+ Different ordering leads to different graph, in general
» Best ordering when each var is considered after all vars that
directly influence it

Compactness of Bayes Nets

® A Bayesian Network is a graph structure for
representing conditional independence relations in a
compact way

¢ A Bayes net encodes a joint distribution, often with
far less parameters (i.e., numbers)

¢ A full joint table needs kN parameters (N variables, k
values per variable)

= grows exponentially with N

¢ If the Bayes net is sparse, e.g., each node has at
most M parents (M << N), only needs O(NkM)

= grows linearly with N
= can’'t have too many parents, though

Computing a Joint Entry from a Bayes Net

How to compute an entry in the joint distribution?
E.g., what is P(S, ~M, L, ~R, T)?

[P0 }() B frm=ee]

P(L|M,S) = 0.05 . P(R |:M) =0.6

P(LIM~S)=01 |- @ D=
P(L|-M,~5) = 0.2 @ (EDE0S

Computing with Bayes Net

CERRO! OREED
PR } M)=0.3

P(L[M,S)=0.05 . PRI-M)=06

P(LIM~S)=01 | .-~ @ PTI0=03 @

P(L|~M,S)=0.1 B(TI~L)= 05

P(L|~M~S)=0.2 2

Apply the Chain Rule!

P(T,~R,L,~M, S) =
P(T | ~R, L, ~M, S) * P(~R, L, ~M, S) =

P(T| L)* P(-R, L, ~M, S) =

P(T| L)* P(~R | L, ~M, S) * P(L, ~M, S) =

P(T| L)* P~R | ~M) *P(L, ~M, S) =

P(T| L)* P~R | ~M) * P(L|~M, S) * P(-M, S) =

P(T| L)* P(~R | ~M) * P(L|~M, S) * P(~M | S) * P(S) =
P(T| L)* P(~R | ~M) * P(L| ~M, S) * P(~M) * P(S)




The General Case Computing Joint Probabilities

PX=Xy s Xg=Xp o XX 1 Xg™Xe) = using a Bayesian Network Q\ /@
P(Xn=Xn s X4 =Xt s - Xo=Xo s Xy=Xg) = . .. -

PX=Xy | X=Xy s oo Xo=Xo s XyZXg) * Py Ty s +eos Xp=Xp s Xy=Xy) = How is any joint probability computed?

PO | X1 X o Koo, XaX) * Py Xy | XomXg s Xq200) * Sum the relevant joint probabilities:

P(Xn2™Xn2 1o Xg™Xg , Xy=Xg) =

Compute: P(a,b)
=P(a,b,c,d) + P(a,b,c,—d) + P(a,b,—c,d) + P(a,b,—c,—d)

n

= H P((Xi = Xi)‘ (Xia=%1) oy (X, = Xi)))

) Compute: P(c)
_ =P(a,b,c,d) + P(a,—b,c,d) + P(—a,b,c,d) + P(-a,—b,c,d) +
N P(a,b,c,—d) + P(a,—b,c,—d) + P(—a,b,c,—d) +
P((X, = )| Assignments of Parents(X)) P(—a,—b,c,—d)
=1 - ABN can answer any query (i.e., probability) about the

domain by summing the relevant joint probabilities

Where are we Now? Inference by Enumeration

z“joint matching Q AND E P(jOint)

° We defined a Bayes net, using small number of PQQIE)= by det. of cond. preb
parameters, to describe the joint probability El_oim matehing £ P(0INY)
¢ Any joint probability can be computed as : P(E) = 0.002
P(Xy,., Xy) = L1 P(x; | parents(x,)) For example: PE 1, =\ G @
® The above joint probability can be computed in time 1. Compute P(B,J,~M) \ /
linear with the number of nodes, N @
* With this joint distribution, we can compute any 2. Compute P(J, ~M)

conditional probability, P(Q | E), thus we can perform

any inference 3. Return P(B,J,~M)/P(J,~M) @ \G/D

How?
P(J|A) =0.9 P(M|A) = 0.7
‘ P(J|~A) = 0.05 ‘ ‘ P(M|~A) = 0.01 ‘




Inference .
Compute the joint (4 of them)

P(B,J,~M,A,E)
P(B,J,~M,A,~E)
P(B,J,~M,~A,E)

P(B,J,~M,~A,~E)

Zjoint matching Q|

PQIE)=

Each is O(N) for sparse graph
P(Xy,...xy) = IT; P(x | parents(x))
Sum them up

P(A|B, E)=0.95 \ /
P(A| B, -E) = 0.94 @
2. Compute P(J, ~M) P(A| B, E) =0.29 /

For example: P(B|J, ~

1. Compute P(B,J,~M)

P(A| ~B, ~E) = 0.001

3. Return P(B,J,~M)/P(J,~M) @

PIA) = 0.9
P(J~A) = 0.05

P(MIA) = 0.7
P(M|~A) = 0.01

Inference b -
Compute the joint (8 of them)

2joint matching Q| P@J,~M, B,AE)
PQIE)=— P(J,~M, B,A,~E)
P@J,~M, B,~AE)

Zjointmatchir P(J,-.M, B,~A,~E) ]

P

P@,~M, ~B,A,E)
P(,~M, ~B,A,~E)
P(3,~M, ~B,~A,E)
P@,~M, ~B,~A,~E)

Each is O(N) for sparse graph
P(xy,...xy) = IT; P(x; | parents(x))
Sum them up

For example: P(B | J, ~M)

1. Compute P(B,J,~M)

2. Compute P(J, ~M)

3. Return P(B,J,~M)/P(J)

/‘

Inference by Enumeration

Zjointmatching QAND P(iOint) -
PQI|E)= —L Sum up 4 joints J

z“joint matching E Sum up 8 joints

=0.002]

For example: P(B | J, ~ 2\ :
In general, if there [
1. Compute P(B,J,~M) are N variables, while
evidence contains j
variables, how many
joints to sum up?
R0

P(IA) = 0.9 P(MIA) = 0.7
P(J~A) = 0.05 P(M|~A) = 0.01

2. Compute P(J, ~M) ~

3. Return P(B,J,~M)/P(J,~M)

Another Example

Compute P(R | T, ~S) from the following Bayes Net

P(M)=0.6
1@ @

P(R|M)=03
P(R|~M)=0.6
P(L|M,S)=0.05
P(L|M,~S)=0.1
P(L|~M,S)=0.1 P(T|D)=03
P(L|~M,~S)=0.2 P(T|-L)=08




Another Example

Step 1: Compute P(R, T, ~S)
Step 2: Compute P(T, ~S)
Step 3: Return

P(R, T, ~S)

P(T, ~S)

P(L[M, S)=0.05 B
P(L|M,~8)=01 | .~
P(L|~M,S)=0.1
P(L|~M,~8) =02

Compute PR | T, ~S)?

Another Example

Step 1: Compute P(R, T,~S) —=—" Sum of all the rows in the

T Joint that match R* T A ~S
Step 2: Compute P(T, ~S)
. ~
Step 3: Return =~ Sum of all the rows in the
PR, T, ~S) Joint that match T * ~S
P(T, ~S)

P(R |/~/M) =06

P(L[M, S) =005 B
P(L|M,~8)=01 |~
P(L|~M,S)=0.1
P(L|~M,~8)=02

Compute P(R | T, ~S)?

Another Example

Step 1: Compute P(R, T,~S) —=—" Sum of all the rows in the
T Joint that match R~ T A ~S

Step 2: Compute P(~R, T, ~S)

4 joint computes

~

Siep e < Sum of all the rows in the
P(R, T, ~S) Joint that matchcR " T~ ~S

4 joint t
PR, T, ~S) + P(-R, T, ~S) joint computes

Each of these obtained by
the “computing a joint

“U probability entry” method of
the earlier slides

PRI-M)=06

P(L[M"S) = 0.05
P(L|MA~S)=0.1
P(L|~Mrs)= 0.1
P(L|~Mr~S)=0.2

Compute P(R | T, ~S)?

¢ Inference through a Bayes Net can go both
“forward” and “backward” through arcs

¢ Causal (top-down) inference
= Given a cause, infer its effects
"Eg.,PT]|S)

¢ Diagnostic (bottom-up) inference
= Given effects/symptoms, infer a cause
"Eg,PS|T)




The Good News

We can do inference. That is, we can compute
any conditional probability:

P( Some variable \ Some other variable values )

> P(joint entry)
P(E | E ) — P(E1 AN Ez) _ Jointentries matching E; and E,
P(E,) > P(joint entry)

jointentries matching E,

“Inference by Enumeration” Algorithm

The Bad News

® In general if there are N variables, while evidence contains
j variables, and each variable has k values, how many
joints to sum up? kN

® Itis this summation that makes inference by
enumeration inefficient

® Computing conditional probabilities by enumerating all
matching entries in the joint is expensive:
Exponential in the number of variables
¢ Some computation can be saved by carefully ordering the
terms and re-using intermediate results (variable
elimination)
¢ A more complex algorithm called join tree (junction tree)
can save even more computation
® But, even so, exact inference with an arbitrary Bayes
Net is NP-Complete ";

Parameter (CPT) Learning for BN

® Where do you get these CPT numbers?
= Ask domain experts, or
= Learn from data

FEy=owt] ()
\ / Tr=ouz]
P(A|B, E)=0.95

P(A|B, ~E) = 0.94
P(A|~B, E)=0.29

P(A| ~B, ~E) = 0.001 / N\

P(IA) = 0.9 P(M|A) =07
P(J|~A) = 0.05 P(M|~A) =0. 01

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M) .

(~B, ~E, ~A, ~J, ~M) How to learn this CPT?

(~B, ~E, ~A J, ~M)

(~B, ~E, ~A, ~J, ~M)

(B,~E, A, 3, M)

BE AW Fo-oml(5) (&)
(~B, ~E, ~A, ~J, ~M)

B, ~E, ~A~J, ~M P(E) = 0.002
E ~B, ~E, ~A~J, M; P(A| B, E) =0.95 \ / I:
(~B, ~E, ~A, J, ~M) P(A| B, ~E) =0.94
(~B,E, A, J, M) P(A|~B, E) =0.29
(~B, ~E, ~A, ~J, ~M) P(A| ~B, ~E) = 0.001
(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M) @
(B, E, A, ~J, M)

(~B,

Parameter (CPT) Learning for BN

= |earn from a data set like this:

~E, ~A, ~J, ~M) P(JJA) = 0.9 P(M|A) =07
P(J|~A) = 0.05 P(M|~A) = 0. 01




Parameter (CPT) Learning for BN

= Learn from a data set like this:

cafe 5 Count #(B) and #(~B) in dataset.
(~B,|E, ~A, ~J, ~M) - 5

(-B.[-E A, 3, M) P(B) = #(B) / [#(B) + #(~B)]
(~B,|E, ~A, ~J, ~M)

(B, ~E. A, J, M)

(~B,|E, ~A, ~J, ~M)

(-B, £, <A, ~J, M) [P®)=0001] e @

(~B,|FE, ~A, ~J, ~M)

(~B,[E, ~A~J, ~M) P(A|B, E) =0.95
(~B,}E, ~A, 3, ~M) P(A| B, ~E) =0.94
(~B,E. A, 3, M) P(A|~B, E) =0.29
(~B,[E, ~A, ~J, ~M) P(A| ~B, ~E) = 0.001
(~B,|[E, ~A, ~J, M)

(~B, |FE, ~A, ~J, ~M)

(~B, [E, ~A, ~J, ~M) @
(8,8 A ~J, M)

(B, LE,A J, M)

(~B,[FE, ~A,~J, ~M) \ / P(E) = 0.002

EALI M) P(A|~B, E) = 0.20

-8,lE. ~A, -3, ~M) P(MIA) = 0.7
P(I~A) = 0.05 P(MI~A) = 0.01

Parameter (CPT) Learning for BN

Learn from a data set like this:

[ i‘JTEA,\),l) Count #(E) and #(~E) in dataset.
, FA, ~J, ~M = ~
A P(E) = #(E) / [4(E) + #(~E)]

FA, ~J, ~M)

A, =, ~M) Z

Fa (8) @
A, ~J, ~M)

A~ ~M) \ P(E) = 0.002,

kA~ -m) P(A| B, E)=0.95
A 3, ~m) P(A| B, ~E) =0.94

A = M) P(A| ~B, ~E) = 0.001
LA, ~J, M)

A, ~J, ~M)

LA, ~J, ~M)

M)
A =3, ~wy ‘ P@IA) = 0.9 ‘ P(M|A) 0.7 ‘

P(J|~A) = 0.05 P(M|~A) =0.01

Parameter (CPT) Learning for BN

= Learn from a data set like this:
(~B, ~E, ~A, J, ~M)

(~B. ~E. ~A. ~J, M) Count #(A) and #(~A) in dataset
E:g: :E' :ﬁ' EJLJ;A) where B=true and E=true.

(B, ~E, ~A, ~J, M) P(A[B,E) 7 #(A) / [#(A) + #(=A)]
(B,~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)
(-8 -E. A 3. M) ®
(~B, ~E, ~A, ~J, ~M)

(=B, ~E. ~A~J, ~M) — \ / P(E) = 0.002

(=B, ~E, ~A~J, ~M) P(A|B, E)=0.95
(~B, ~E, ~A, J, ~M) P(A| B, ~E) =0.94

(~B, E, A, J, M) P(A|~B, E) =0.29

(~B, ~E, ~A, ~J, ~M) P(A| ~B, ~E) = 0.001

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M) @

(~B, ~EA, ~J, ~M)

®EJA [ m

(~B, TE-A, ~J, ~M) P(MIA) = 0.7
- PU-A) = 0.05 P(MI~A) = 0.01

Parameter (CPT) Learning for BN

= |earn from a data set like this:
~E, ~A, J, ~M)

L<E ~A ~J, ~M) Count #(A) and #(~A) in dataset

,:E, ://:, EJLKA'\)A) where B=true and E=false.

e T P(AIB,~E) = #(A) / F#(A) + #(~A)]
J, M)

L ~E A, ~J, ~M) -
) @
~E, ~A, ~J, ~M)

L~E, ~A~J, ~M P(E) = 0.002
LE A, _M; P(A|BJE)=0.95 \ /

~E, ~A, J, ~M) P(A| B, ~E) = 0.94
JE, A J, M) P(A|~B, E) =0.29
L ~E, ~A, ~J, ~M) P(A| ~B, ~E) = 0.001
,~E, ~A, ~J, M)
\~E, ~A, ~J, ~M)
. ~E, ~A, ~J, ~M)
B,E, A ~J, M)
~B, ~E, ~A, ~J, ~M) PWIA) = 0.9 P(M|A) 07
P@J|~A) = 0.05 F’(M|~A) =0. Ol




Parameter (CPT) Learning for BN Parameter (CPT) Learning for BN
= Learn from a data set like this: = Learn from a data set like this:
AR Count #(A) and #(~A) in dataset R Al A Count #(A) and #(~A) in dataset
E:g- :E- :2- EJLKA'\)A) where B=false and E=true. E:g, :E ::, MJL;/I’\)A) where B=false and E=false.
(~B. ~E. ~A, ~3, ~M) P(A[~B,E) = #(A) I [#(A) + #(~A)] (-8, ~El=a_13, ~M) P(A|~B,~E) = #(A) | [#(A) + #(~A)]
(B,~E, A J, M) (B, ~E, A, J, M)
e A (&) gy ©
(~B, ~E, ~A, ~J, ~M) (~B, ~EJ~A, |3, ~M)
~B, ~E, ~A~J, ~ P(E) = 0.002 ~B, ~E|~A43, - P(E) = 0.002
R e 7o \ /oo AR e o \ a
CB g™ PA| 4 £ =079 (8 ELAD W Pl 4,5 =079
~B,E|A|3, M ~B,E)=0. ~B, E,A_J, | ~B,E)=0.
E~B, ~A, ﬂ)]y -M) P(A| ~B, ~E) = 0.001 / E-B, “E[A, 3] -M) P(A| ~B, ~E) = 0.001 /
(~B, ~E, ~A, ~J, M) (~B, ~EJ~A, [, M)
CEAI ) oAb (]
B,iE,A:~J,YMY BEA~JM
E~B, ~E, ~A, ~3, -M) P(IA) = 0.9 P(MIA) = 0.7 E -B, ~E,|~r |-3 ~M) P(IA) = 0.9 P(M|A) 0.7
- P(J|~A) = 0.05 P(M|~A) = 0.01 o P(J|~A) = 0.05 P(M|~A) 0.01
Parameter (CPT) Learning for BN Parameter (CPT) Learning for BN
= ‘Unseen event’ problem
(<B, ~E, ~A, J, ~M) ) = P(X=x| parents(X)) = (frequency of x given parents)
(B, ~E, ~A, ~J, ~M) Count #(A) and #(~A) in dataset is called the Maximum Likelihood (ML) estimate
E‘E: "Ev "ﬁv 51 ;A'\)") where B=true and E=true.
B ~E A ~). ~ P(AIB,E) = #(A) | [#(A) + #(~A
EB,BLE,EA, j‘Mf' " (AIB.E) = #A) [T#(A) + #(-A)] = ML estimate is vulnerable to ‘unseen event’ problem
fi ~E’ ~ﬁ‘ ﬂ' [,l“)") What if there’s no row with when dataset is small
(B, ~E, ~A. ~J. M) (B, E, ~A, *, *) in the dataset? = flip a coin 3 times, all heads - one-sided coin?
(~B, ~E, ~A,~J, ~M)
(~B, ~E, ~A,~J, ~M)
eam™ Do you want to set = Simplest solution: ‘Add one’ smoothing
(~B. ~E, ~A, ~J, ~M) P(AIB,E)=1
(-8, ~E, ~A, -3, M) P(~A|B,E) = 0?
(~B, ~E, ~A, ~J, ~M)
(=B, ~EA, ~J, ~M)
@, EfA |3, M) Why or why not?
(~B, ~E;~A, ~J, ~M)




Smoothing CPT

= ‘Add one’ smoothing: add 1 to all counts

= In the previous example, count #(A) and #(~A) in
dataset where B=true and E=true

= P(A|B,E) = [#(A)+1] / [#(A)+1 + #(~A)+1]
= If #(A)=1, #(~A)=0:
= without smoothing P(A|B,E) = 1, P(~A|B,E) =0
= with smoothing P(A|B,E) = 0.67, P(~A|B,E) = 0.33
= If #(A)=100, #(~A)=0:
= without smoothing P(A|B,E) = 1, P(~A|B,E) =0
= with smoothing P(A|B,E) = 0.99, P(~A|B,E) = 0.01
= Smoothing bravely saves you when you don’t have
enough data, and humbly hides away when you do
= |t's a form of Maximum a posteriori (MAP) estimation

Naive Bayes Classifier

¢ Findv=
argmax,P(Y = v) [[[2; P(X; = w|Y =v)

Class variable Evidence variable

* Assumes all evidence variables are
conditionally independent of each other given
the class variable

* Robust since it gives the right answer as long as
the correct class is more likely than all others

BN Special Case: Naive Bayes

¢ A special Bayes Net structure:
= a ‘class’ variable Y at root, compute P(Y | Xy, ..., Xy)

= evidence nodes X; (observed features) are all
leaves

= conditional independence between all evidence
assumed. Usually not valid, but often empirically

5 @
@/

A Special BN: Naive Bayes Classifiers

J Person is Junior
C | Brought coat to class
/ Z | Livesin zipcode 53706
@ H | Saw “Hunger Games” more
than once

® What's stored in the CPTs?




A Special BN: Naive Bayes Classifiers

Person is Junior

Brought coat to class

—

Lives in zipcode 53706

I|N|O|“

Saw “Hunger Games” more
than once

A Special BN: Naive Bayes Classifiers

Person is Junior

Brought coat to class

—

Lives in zipcode 53706

I|N|O|«

Saw “Hunger Games” more
than once

PCP)= | |P(Z|9)= ||P(H]J)=
P(C|~J) = || P(Z]~J) = | P(H|~J) =

P(CR) = | P(Z)= |P(H|J) =
P(C|~J) =|[PZI~d) = | PHI~J) =

¢ Anew person shows up in class wearing an “l live in
Union South where | saw the Hunger Games every
night” overcoat.

¢ What's the probability that the person is a Junior?

Is the Person a Junior?

¢ Input (evidence): C, Z, H
¢ OQutput (query): J

P(JIC.,ZH)

=P@,C,ZH)/ P(C,Z,H) by def. of cond. prob.

=P@,C,ZH)/[PJ,C,ZH)+ P(~J,C,Z,H)] by marginalization
where

P(J,C,Z,H) = P(J)P(C|I)P(Z|I)P(H|J) by chain rule and
conditional independence associated with B.N.

P(~J,C,Z,H) = P(~J)P(C|~J)P(Z|~J)P(H|~J)

Application: Bayesian Networks
for Breast Cancer Diagnosis

Breast Abnormal
—
Cancer mammo

Elizabeth S. Burnside
Department of Radiology
University of Wisconsin Hospitals




Results

Foceme Radiologist
916
: Bayes Net
: BN
Skin Lesio | Radiologist 919
| Combined
:
L N Combined
Architectura Asymmetric o 948
Distortion Density FeF

What You Should Know

Inference with joint distribution
Problems of joint distribution

Bayes Net: representation (nodes, edges, CPT) and
meaning

Compute joint probabilities from Bayes net
Inference by enumeration
Naive Bayes




