Bayes Networks

CS540 Bryan R Gibson University of Wisconsin-Madison

Slides adapted from those used by Prof. Jerry Zhu, CS540-1

Outline

- Joint Probability: great for inference, terrible to obtain and store
- Bayes Nets: build joint distributions in manageable chunks
 - using Independence and Conditional Independence
- Inference in Bayes Nets
 - naive algorithms can be terribly inefficient
 - more efficient algorithms can be found
- Parameter Learning in Bayes Nets

Creating a Joint Distribution

- ▶ Making a joint distribution of *N* variables
 - 1. List all combinations of values (if each variable has k values, k^N combinations)
 - 2. Assign each combination a probability
 - 3. Check that they sum to 1

Weather	Temp	Prob.		
sunny	hot	150/365		
sunny	cold	50/365		
cloudy	hot	40/365		
cloudy	cold	60/365		
rainy	hot	5/365		
rainy	cold	60/365		

365/365

Using a Joint Distribution

Once you have the joint distribution, you can do everything e.g. marginalization:

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

▶ Example: P(sunny or hot) = (150 + 50 + 40 + 5)/365 convince yourself this is the same as P(sunny) + P(hot) - P(sunny and hot)

Weather	Temp	Prob.	
sunny	hot	150 365	
sunny	cold	50 365	
cloudy	hot	40 365	
cloudy	cold	60/365	
rainy	hot	5 365	
rainy	cold	60/365	

Using a Joint Distribution (cont.)

You can also do inference:

$$P(Q \mid E) = \frac{\sum_{\mathsf{rows \; matching} \; Q \; \mathsf{AND} \; E} P(\mathsf{row})}{\sum_{\mathsf{rows \; matching} \; E} P(\mathsf{row})}$$

▶ Example: $P(\text{hot} \mid \text{rainy}) = 5/65$

Weather	Temp	Prob.	
sunny	hot	150/365	
sunny	cold	50/365	
cloudy	hot	40/365	
cloudy	cold	60/365	
rainy	hot	5 365	
rainy	cold	60 365	

The Bad News

- ▶ Joint distribution can take up a huge amount of space
- ▶ Remember: for N variables each taking k values, the joint distribution table has k^N numbers
- ▶ It would be good to be able to use fewer numbers . . .

Using fewer numbers

- ► Example: Suppose there are 2 events
 - ▶ B: there's a burglary in your house
 - E: there's an earthquake
- ▶ The joint distribution has 4 entries $P(B,E),\ P(B,\neg E),\ P(\neg B,E),P(\neg B,\neg E)$
- Do we have to come up with these 4 numbers?
- ► Can we 'derive' them just using P(B) and P(E) instead?
- ▶ What assumption do we need?

Independence

- ► Assume: "Whether there's a burglary doesn't depend on whether there's an earthquake"
- This is encoded as

$$P(B \mid E) = P(B)$$

- This is a strong statement!
- Equivalently:

$$P(E \mid B) = P(E)$$
$$P(B, E) = P(B)P(E)$$

- It requires domain knowledge outside of probability.
- It needed an understanding of causation

Independence (cont.)

With independence, we have

$$P(B, \neg E) = P(B)P(\neg E)$$

$$P(\neg B, E) = P(\neg B)P(E)$$

$$P(\neg B, \neg E) = P(\neg B)P(\neg E)$$

- ► Say P(B) = 0.001, P(E) = 0.002, $P(B \mid E) = P(B)$
- ► The joint probability table is:

Burglary	Earthquake	Prob
B	E	
В	$\neg E$	
$\neg B$	E	
$\neg B$	$\neg E$	

Now we can do anything, since we have the joint.

A More Interesting Example . . .

- ► Let:
 - ▶ B: there's a burglary in your house
 - ► E: there's an earthquake
 - ► A: your alarm goes off
- ▶ Your alarm is supposed to go off when there's a burglary . . .
- but sometimes it doesn't . . .
- ▶ and sometimes it is triggered by an earthquake.
- ▶ The knowledge we have so far:
 - $P(B) = 0.001, P(E) = 0.002, P(B \mid E) = P(B)$
 - Alarm is NOT independent of whether there's a burglary, nor is it independent of earthquake
- We already know the joint of B, E. All we need is:

$$P(A \mid \mathsf{Burglary} = b, \mathsf{Earthquake} = e)$$

for the 4 cases of $b = \{B, \neg B\}$, $e = \{E, \neg E\}$ to get full joint.

A More Interesting Example (cont.)

- ▶ B: there's a burglary in your house
- ► E: there's an earthquake
- A: your alarm goes off
- Your alarm is supposed to go off when there's a burglary but sometimes it doesn't and sometimes it is triggered by an earthquake.

$$\begin{array}{c|cccc} P(B){=}0.001 & P(A \mid B, E){=}0.95 \\ P(E){=}0.002 & P(A \mid B, \neg E){=}0.94 \\ P(B \mid E){=}P(B) & P(A \mid \neg B, E){=}0.29 \\ & P(A \mid \neg B, \neg E){=}0.001 \\ \end{array}$$

- ▶ These 6 numbers specify the joint, instead of 7
- Savings are larger with more variables!

Introducing Bayes Nets

$$P(B)$$
=0.001 $P(A \mid B, E)$ =0.95
 $P(E)$ =0.002 $P(A \mid B, \neg E)$ =0.94
 $P(B \mid E)$ = $P(B)$ $P(A \mid \neg B, E)$ =0.29
 $P(A \mid \neg B, \neg E)$ =0.001

$$P(B) = 0.001$$

$$A$$

$$E$$

$$P(E) = 0.002$$

$$P(A \mid B, E) = 0.95$$

$$P(A \mid B, \neg E) = 0.94$$

$$P(A \mid \neg B, E) = 0.29$$

$$P(A \mid \neg B, \neg E) = 0.001$$

Joint Probability with Bayes Nets

$$\begin{split} P(x_1,\dots,x_n) &= \prod_i P(x_i \mid \mathsf{parents}(x_i)) \\ \mathsf{Example:} \ P(\neg B,E,\neg A) &= P(\neg B) \textcolor{red}{P(E \mid \neg B)} P(\neg A \mid \neg B,E) \\ &= P(\neg B) \textcolor{red}{P(E)} P(\neg A \mid \neg B,E) \end{split}$$

More to the story ...

- ► A: your alarm sounds
- ▶ *J*: your neighbor John calls
- ▶ *M*: your neighbor Mary calls
- ► John and Mary don't communicate but they will both call if they hear the alarm
- What kind of independence do we have?

Conditional Independence:
$$P(J, M \mid A) = P(J \mid A)P(M \mid A)$$

▶ What does the Bayes Net look like?

Now An Example with 5 Variables

- ▶ B: there's a burglary in your house
- ▶ J: there's an earthquake
- ► A: your alarm sounds
- ▶ *J*: your neighbor John calls
- ▶ *M*: your neighbor Mary calls
- ightharpoonup B, E are independent
- ▶ J is only directly influenced by A J is conditionally independent of B, E, M given A
- ▶ M is only directly influenced by A M is conditionally independent of B, E, J given A

Creating a Bayes Net

► Step 1: add variables (one variable per node)

Creating a Bayes Net (cont.)

- Step 2: add directed edges
 - graph must be acyclic
 - if node X has parents $Q_1,\ldots Q_m$, you are promising that any variable that's not a descent of X is conditionally indpendent of X given Q_1,\ldots,Q_m

Creating a Bayes Net (cont.)

- Step 3: add CPTs
 - each CPT lists $P(X \mid Parents)$ for all comb. of parent values
 - e.g. you must specify $P(J \mid A)$ AND $P(J \mid \neg A)$,
 - ▶ they don't need to sum to 1!

Creating a Bayes Net: Summary

- 1. Choose a set of relevant variables
- 2. Choose an ordering of them, say x_1, \ldots, x_n
- 3. for i = 1 to n
 - 3.1 Add node x_i to the graph
 - 3.2 Set parents (x_i) to be the minimal subset of $\{x_1,\ldots,x_{i-1}\}$ s.t. x_i is cond. indep. of all other members of $\{x_1,\ldots,x_{i-1}\}$ given parents (x_i)
 - 3.3 Define the CPT's for $P(x_i \mid assignment of parents(x_i))$

Representing Conditional Independence

Case 1: Tail-to-Tail

- A,B in general not independent
- But A,B conditionally independent given C
- ▶ C is "tail-to-tail" node: if C is observed, it blocks path

Representing Conditional Independence (cont.)

Case 2: Head-to-Tail

- A,B in general not independent
- But A,B conditionally independent given C
- C is "head-to-tail" node: if C is observed, it blocks path

Representing Conditional Independence (cont.)

Case 3: Head-to-Head

- ► A,B in general independent
- But A,B NOT conditionally independent given C
- ► C is "head-to-head" node: if C is observed, it unblocks path, or, importantly, if any of C's decendents are observed

Representing Conditional Independence (cont.)

Representing Conditional Independence: Example

D-Separation

- ► For any groups of nodes *A*,*B* and *C*:
- ▶ A and B are independent given C if:
 - all (undirected) paths from any node in A to any node in B are blocked
- A path is blocked if it includes a node s.t. either:
 - The arrows on the path meet head-to-tail or tail-to-tail at the node, and the node is in C, or
 - $\,\blacktriangleright\,$ The arrows meet head-to-head at the node, and neither the node, nor any of its descendents, is in C

D-Separation: Examples

- ▶ The path from A to B is not blocked by either E or F
- ▶ But *A*,*B* conditionally dependent given *C*:

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

D-Separation: Examples (cont.)

- ▶ The path from A to B is blocked both at E and F
- ▶ But A,B conditionally independent given F:

$$P(A, B \mid F) = P(A \mid F)P(B \mid F)$$

Conditional Independence in Bayes Nets

- ▶ a node is cond. indep. of its non-descendents given its parents
- ▶ a node is cond. indep. of all other nodes given its Markov Blanket (parents, children, spouses)

Compactness of a Bayes Net

- Bayes Nets encode joint dists., often with far fewer parameters
- lacktriangle Recall, a full joint table needs k^N parameters
 - ightharpoonup N variables, k values per variable
 - lacktriangleright grows exponentially with N
- ▶ If the Bayes Net is sparse, e.g. each node has at most M parents (M << N), it only needs $O(Nk^M)$ parameters
 - ightharpoonup grows linearly with N
 - can't have too many parents though

Summary so far . . .

- We can define a Bayes Net, using a small number of parameters, to describe a joint probability.
- Any joint probability can be computed as:

$$P(x_1,\ldots,x_n) = \prod_i P(x_i \mid \mathsf{parents}(x_i))$$

- ► The above joint probability can be computed in time linear with number of nodes N
- ▶ With this distribution, we can compute any conditional probability $P(Q \mid E)$, thus we can perform inference.
- ► How?

$$P(Q \mid E) = \frac{\sum_{\text{joint matching } Q \text{ AND } E} P(\text{joint})}{\sum_{\text{joint matching } EP(\text{joint})}}$$

For Example: $P(B \mid J, \neg M)$

- 1. Compute $P(B, J, \neg M)$
- 2. Compute $P(J, \neg M)$
- 3. Return

$$\frac{P(B, J, \neg M)}{P(J, \neg M)}$$

Sum up:

P(B, J,
$$\neg M$$
, A, E)
P(B, J, $\neg M$, A, $\neg E$)
P(B, J, $\neg M$, $\neg A$, E)
P(B, J, $\neg M$, $\neg A$, $\neg E$)

 $_{Q \; \mathsf{AND} \; E} \, P(\mathsf{joint})$

 $\operatorname{ching} EP(\operatorname{\mathsf{joint}})$

Each one O(N) for sparse graph B = 0.001

P(E) = 0.002

For Example: $P(B \mid M, \neg M)$

- 1. Compute $P(B, J, \neg M)$
- 2. Compute $P(J, \neg M)$
- 3. Return

$$\frac{P(B,J,\neg M)}{P(J,\neg M)}$$

$$P(J \mid A) = 0.9$$

 $P(J \mid \neg A) = 0.05$
 $P(M \mid A) = 0.7$
 $P(M \mid \neg A) = 0.01$

$$P(Q \mid E) = \frac{\sum_{\text{joint matching } Q \text{ AND } E} P(\text{joint})}{\sum_{\text{joint matching } EP(\text{joint})}}$$
For Example: $P(B \mid J, \neg M)$

1. Compute $P(B, J, \neg M)$
2. Compute $P(J, \neg M)$
3. Return
$$\frac{P(J, \neg M, B, A, E)}{P(J, \neg M, B, \neg A, E)}$$

$$P(J, \neg M, B, \neg A, E)$$

$$P(J, \neg M, B, \neg A, E)$$

$$P(J, \neg M, \neg B, A, E)$$

$$P(J, \neg M, \neg B,$$

$$P(Q \mid E) = \frac{\sum_{\text{joint matching } Q \text{ AND } E} P(\text{joint})}{\sum_{\text{joint matching } EP(\text{joint})}}$$

For Example: $P(B \mid J, \neg M)$

- 1. Compute $P(B, J, \neg M)$
- 2. Compute $P(J, \neg M)$
- 3. Return

$$\frac{P(B,J,\neg M)}{P(J,\neg M)}$$

A) = 0.7

Inference by Enumeration (cont.)

- ▶ In general, if there are N variables while evidence contains j variables, how many joints do we need to sum up? $k^{(N-j)}$
- It is this summation that makes inference by enumeration inefficient
- Some computation can be saved by carefully ordering the terms and re-using intermediate results (variable elimination)
- ► A more complex algorithm called join tree or junction tree can save even more computation
- ► The bad news: Exact inference with an arbitrary Bayes Net is intractable

Approximate Inference by Sampling

- Inference can be done approximately by sampling
- General sampling approach:
 - Generate many, many samples (each sample a complete assignment of all variables)
 - 2. Count the fraction of samples matching query and evidence
 - 3. As the number of samples approaches ∞ , the fraction converges to the posterior $P(Q \mid E)$
- ▶ We'll see 3 sampling algorithms (there are more . . .)
 - 1. Simple sampling
 - 2. Likelihood weighting
 - 3. Gibbs sampler

Alg.1: Simple Sampling

- This Bayes Net defines a joint distribution
- Can we generate a set of samples that have the same underlying joint distribution?

Alg.1: Simple Sampling (cont.)

To generate one sample:

- 1. Sample B: x = rand(0,1). If (x < 0.001) B = true else B = false
- 2. Sample E: x = rand(0,1). If (x < 0.002) E = true else E = false
- 3. If $(B==true \ {\rm AND} \ E==true)$ sample $A \sim \{0.95,0.05\}$ elseif $(B==true \ {\rm AND} \ E==false)$ sample $A \sim \{0.94,0.06\}$ elseif $(B==false \ {\rm AND} \ E==true)$ sample $A \sim \{0.29,0.71\}$ else sample $A \sim \{0.001,0.999\}$
- 4. Similarly sample J
- 5. Similarly sample M

Repeat for more samples

Alg.1: Inference with Simple Sampling

Ex: infer B given E, M i.e. $P(B \mid E, M)$

- ► First we generate lots of samples
- ▶ Keep samples with E = true and M = true, toss out the others
- ▶ In the N of them that we keep, count the N_1 ones with B=true, i.e. those that fit our query
- ▶ Return the estimate: $P(B \mid E, M) \approx N_1/N$
- ▶ The more samples, the better the estimate
- You should be able to generalize this method to arbitrary BN
- Can you see a problem with simple sampling?

Alg.1: Inference with Simple Sampling (cont.)

- ▶ Since P(E) = 0.002, we expect only 1 sample out of every 500 to have E = true
- ▶ We'll throw away 499 samples, a huge waste
- This observation leads to ...

Alg.2: Likelihood Weighting

- Say we've generated B and we're about to generate E
- ▶ *E* is an evidence node, known to be true
- Using simple sampling, we will generate
 - E = true 0.2% of the time
 - ightharpoonup E = false 99.8% of the time
- ▶ Instead, let's always generate E=true, but weight the sample down by P(E)=0.002
- ▶ Initially the sample has weight w = 1, now it w = w * 0.002
- ► We're "virtually throwning away" samples

Alg.2: Likelihood Weighting (cont.)

- ▶ Continue and generate A, J as before
- When it's time to generate evidence M from $P(M \mid A)$, again always generate M = true, but weight the sample by $w = w * P(M \mid A)$
- ▶ If A = true and $P(M \mid A) = 0.7$, the final weight for this sample is w = 0.002*0.7
- **Proof.** Repeat and keep all samples, each with a weight: w_1, \ldots, w_n
- Return the estimate:

$$P(B \mid E, M) \approx \frac{\sum_{B=true} w_i}{\sum_{all} w_i}$$

Apply this weighting trick every time we generate a value for an evidence node

Alg.3: Gibbs Sampler

- the simplest method in the family of Markov Chain Monte Carlo (MCMC) methods
- Start from an arbitrary sample, with evidence nodes fixed to their true values,

e.g.
$$(B = true, E = true, A = false, J = false, M = true)$$

2. For each hidden node X, fixing all other nodes, resample its value from $P(X=x\mid \mathsf{Markov-blanket}(X))$,

e.g.:
$$B \sim P(B \mid E = true, A = false)$$

Update B with its new sampled value, move on to A, J

3. We now have one new sample. Repeat . . .

Alg.3: Gibbs Sampler (cont.)

- ▶ Keep all samples: $P(B \mid E, M)$ is the fraction with B = true
- ▶ In general:

$$P(X = x \mid \mathsf{Markov-blanket}(X)) \propto \\ P(X = x \mid \mathsf{parents}(X)) * \prod_{Y_i \in \mathsf{children}(X)} P(y_j \mid \mathsf{parents}(Y_j))$$

- ▶ Compute the above for $X = x_1, ..., x_k$, then normalize
- More tricks:
 - · 'burn-in': don't use the first n_b samples (e.g. $n_b = 1000$)
 - · after burn-in, only use one in every n_s samples (e.g. $n_s = 50$)

Parameter (CPT) Learning for BNs

- Where do you get these CPT values?
 - ► Ask domain experts, or
 - Learn from data


```
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, E, A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
```

(~B, ~E, ~A, J, ~M)

← Given this data. How do you learn this CPT?


```
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, E, A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
```



```
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, E, A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
```



```
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
( B, E, A, ~J, M)
(~B, ~E, ~A, ~J. ~M)
```

Count |A| and $|\neg A|$ in dataset where B = true. E = true. $P(A \mid B, E) = |A| / (|A| + |\neg A|)$ P(B) = 0.001P(E) = 0.002B, E = 0.95 $P(A \mid B, \neg E) = 0.94$ $P(A \mid \neg B, E) = 0.29$ $P(A \mid \neg B, \neg E) = 0.001$ $P(J \mid A) = 0.9$ $P(M \mid A) = 0.7$ $P(J \mid \neg A) = 0.05$ $P(M | \neg A) = 0.01$

```
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, E, A, \sim J, M)
(~B, ~E, ~A, ~J, ~M)
```

Count |A| and $|\neg A|$ in dataset where B = true. E = false. $P(A \mid B, \neg E) = |A| / (|A| + |\neg A|)$ P(B) = 0.001P(E) = 0.002 $P(A \mid B, E) = 0.95$ $P(A \mid B, \neg E) = 0.94$ $P(A \mid \neg B, E) = 0.29$ $P(A \mid \neg B, \neg E) = 0.001$ $P(J \mid A) = 0.9$ $P(M \mid A) = 0.7$ $P(J \mid \neg A) = 0.05$ $P(M \mid \neg A) = 0.01$

```
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, E, A, \sim J, M)
(~B, ~E, ~A, ~J, ~M)
```

Count |A| and $|\neg A|$ in dataset where B = false, E = true, $P(A \mid \neg B, E) = |A| / (|A| + |\neg A|)$ P(B) = 0.001P(E) = 0.002 $P(A \mid B, E) = 0.95$ $P(A \mid B, \neg E) = 0.94$ $P(A \mid \neg B, E) = 0.29$ $P(A \mid \neg B, \neg E) = 0.001$ $P(J \mid A) = 0.9$ $P(M \mid A) = 0.7$ $P(J \mid \neg A) = 0.05$ $P(M \mid \neg A) = 0.01$

```
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, \sim E, \overline{A}, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, \overline{A}, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, E, A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
```

Count |A| and $|\neg A|$ in dataset where B = false, E = false, $P(A \mid \neg B, \neg E) = |A| / (|A| + |\neg A|)$ P(B) = 0.001P(E) = 0.002 $P(A \mid B, E) = 0.95$ $P(A \mid B, \neg E) = 0.94$ $P(A \mid \neg B, E) = 0.29$ $P(A \mid \neg B, \neg E) = 0.001$ $P(J \mid A) = 0.9$ $P(M \mid A) = 0.7$ $P(J \mid \neg A) = 0.05$ $P(M \mid \neg A) = 0.01$

```
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, ~E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, J, ~M)
(~B, E, A, J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
(~B, ~E, ~A, ~J, ~M)
(B, E, A, ~J, M)
(~B, ~E, ~A, ~J, ~M)
. . .
```

- 'Unseen event' problem
- ► Going back to:

- ▶ What if there are no rows with $(B, E, \neg A, *, *)$ in the dataset?
- ▶ Do we want to set: $P(A \mid B, E) = 1$, $P(\neg A \mid B, E) = 0$?
- Why or why not?

Parameter (CPT) Learning for BNs: Smoothing

- ▶ $P(X = x \mid \mathsf{parents}(X)) = (\mathsf{frequency} \ \mathsf{of} \ x \ \mathsf{given} \ \mathsf{parents})$ is called the Maximum Likelihood Estimate (MLE)
- ► The MLE is vulnerable to the 'unseen event' problem when the dataset is small:
 - e.g. flip coin 3 times: all heads \rightarrow one-sided coin?
- 'Add one' smoothing: the simplest solution

Parameter (CPT) Learning for BNs: Smoothing (cont.)

- 'Add one' smoothing: add 1 to all counts
- ▶ e.g. Count |A|, $|\neg A|$ in dataset where B = true, E = true
 - $P(A \mid B, E) = (|A| + 1) / (|A| + 1 + |\neg A| + 1)$
 - If |A| = 1, $|\neg A| = 0$:
 - without smoothing: $P(A \mid B, E) = 1$, $P(\neg \mid B, E) = 0$
 - \blacktriangleright with smoothing: $P(A\mid B,E)=0.67\text{, }P(\neg\mid B,E)=0.33$
 - If |A| = 100, $|\neg A| = 0$:
 - without smoothing: $P(A \mid B, E) = 1$, $P(\neg \mid B, E) = 0$
 - with smoothing: $P(A \mid B, E) = 0.99$, $P(\neg \mid B, E) = 0.01$
- Smoothing saves you when you don't have enough data, and hides away when you do
- ▶ It's a form of Maximum a posteriori (MAP) estimate

J: Person is a junior

C: Brought coat to class

Z: Lives in 53706

A: Saw Avatar more than once

What do the CPTs look like?

- ▶ Suppose we have dataset of 30 people who attend a lecture.
- ▶ How can we use this to estimate the values in the CPTs?

- ► A new person shows up wearing a "I live right beside the Union Theater where I saw Avatar every night" jacket
- ▶ What's the probability that the person is a Junior?

- ▶ Input (Evidence, \mathbf{x}) : C, Z, A
- ▶ Output (Query,y) : J?

$$\begin{split} P(J \mid C, Z, A) &= P(J, C, Z, A) / P(C, Z, A) \\ &= \frac{P(J, C, Z, A)}{[P(J, C, Z, A) + P(\neg J, C, Z, A)]} \end{split}$$

$$P(J,C,Z,A) = P(J)P(C \mid J)P(Z \mid J)P(A \mid J)$$

$$P(\neg J,C,Z,A) = P(\neg J)P(C \mid \neg J)P(Z \mid \neg J)P(A \mid \neg J)$$

- ▶ Naïve Bayes Classifiers have a special structure:
 - ▶ a "class" node y at the root
 - evidence nodes x (observed features) as leaves
 - conditional independence between all evidence given class (strong assumption, usually wrong, but usually empirically ok)

And that's it for now: What you should know . . .

- Inference using joint distribution
- Problems with joint distribution
- Bayes Net: representation (nodes,edges,CPTs) and meaning
- How to compute joint probabilities from Bayes Net
- Inference by enumeration
- Inference by sampling
 - simple sampling, likelihood weighting, Gibbs
- CPT parameter learning from data
- Naïve Bayes