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Outline

I Joint Probability:
great for inference, terrible to obtain and store

I Bayes Nets: build joint distributions in manageable chunks
I using Independence and Conditional Independence

I Inference in Bayes Nets
I naive algorithms can be terribly inefficient
I more efficient algorithms can be found

I Parameter Learning in Bayes Nets
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Creating a Joint Distribution

I Making a joint distribution of N variables

1. List all combinations of values
(if each variable has k values, kN combinations)

2. Assign each combination a probability

3. Check that they sum to 1

Weather Temp Prob.

sunny hot 150/365

sunny cold 50/365

cloudy hot 40/365

cloudy cold 60/365

rainy hot 5/365

rainy cold 60/365

365/365
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Using a Joint Distribution

I Once you have the joint distribution, you can do everything
e.g. marginalization:

P (E) =
∑

rows matching E

P (row)

I Example: P (sunny or hot) = (150 + 50 + 40 + 5)/365
convince yourself this is the same as P (sunny) + P (hot)− P (sunny and hot)

Weather Temp Prob.

sunny hot 150/365

sunny cold 50/365

cloudy hot 40/365

cloudy cold 60/365

rainy hot 5/365

rainy cold 60/365
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Using a Joint Distribution (cont.)

I You can also do inference:

P (Q | E) =

∑
rows matching Q AND E P (row)∑

rows matching E P (row)

I Example: P (hot | rainy) = 5/65

Weather Temp Prob.

sunny hot 150/365

sunny cold 50/365

cloudy hot 40/365

cloudy cold 60/365

rainy hot 5/365

rainy cold 60/365
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The Bad News

I Joint distribution can take up a huge amount of space

I Remember: for N variables each taking k values,
the joint distribution table has kN numbers

I It would be good to be able to use fewer numbers . . .
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Using fewer numbers

I Example: Suppose there are 2 events
I B: there’s a burglary in your house
I E: there’s an earthquake

I The joint distribution has 4 entries
P (B,E), P (B,¬E), P (¬B,E), P (¬B,¬E)

I Do we have to come up with these 4 numbers?

I Can we ’derive’ them just using P(B) and P(E) instead?

I What assumption do we need?
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Independence

I Assume: “Whether there’s a burglary doesn’t depend on
whether there’s an earthquake”

I This is encoded as

P (B | E) = P (B)

I This is a strong statement!

I Equivalently:

P (E | B) = P (E)

P (B,E) = P (B)P (E)

I It requires domain knowledge outside of probability.

I It needed an understanding of causation
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Independence (cont.)

I With independence, we have

P (B,¬E) = P (B)P (¬E)

P (¬B,E) = P (¬B)P (E)

P (¬B,¬E) = P (¬B)P (¬E)

I Say P (B) = 0.001, P (E) = 0.002, P (B | E) = P (B)

I The joint probability table is:

Burglary Earthquake Prob

B E

B ¬E
¬B E

¬B ¬E

I Now we can do anything, since we have the joint.
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A More Interesting Example . . .

I Let:
I B: there’s a burglary in your house
I E: there’s an earthquake
I A: your alarm goes off

I Your alarm is supposed to go off when there’s a burglary . . .

I but sometimes it doesn’t . . .

I and sometimes it is triggered by an earthquake.
I The knowledge we have so far:

I P (B) = 0.001, P (E) = 0.002, P (B | E) = P (B)
I Alarm is NOT independent of whether there’s a burglary,

nor is it independent of earthquake

I We already know the joint of B,E. All we need is:

P (A | Burglary = b,Earthquake = e)

for the 4 cases of b = {B,¬B}, e = {E,¬E} to get full joint.
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A More Interesting Example (cont.)

I B: there’s a burglary in your house

I E: there’s an earthquake

I A: your alarm goes off

I Your alarm is supposed to go off when there’s a burglary
but sometimes it doesn’t
and sometimes it is triggered by an earthquake.

P (B)=0.001 P (A | B, E)=0.95
P (E)=0.002 P (A | B,¬E)=0.94

P (B | E)=P (B) P (A | ¬B, E)=0.29
P (A | ¬B,¬E)=0.001

I These 6 numbers specify the joint, instead of 7

I Savings are larger with more variables!
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Introducing Bayes Nets

P (B)=0.001 P (A | B, E)=0.95
P (E)=0.002 P (A | B,¬E)=0.94

P (B | E)=P (B) P (A | ¬B, E)=0.29
P (A | ¬B,¬E)=0.001

B E

A

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001
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Joint Probability with Bayes Nets

P (x1, . . . , xn) =
∏
i

P (xi | parents(xi))

Example: P (¬B,E,¬A) = P (¬B)P (E | ¬B)P (¬A | ¬B,E)

= P (¬B)P (E)P (¬A | ¬B,E)

B E

A

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001
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More to the story . . .

I A: your alarm sounds

I J : your neighbor John calls

I M : your neighbor Mary calls

I John and Mary don’t communicate but
they will both call if they hear the alarm

I What kind of independence do we have?

Conditional Independence: P (J,M | A) = P (J | A)P (M | A)

I What does the Bayes Net look like?

J M

A
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Now An Example with 5 Variables

I B: there’s a burglary in your house

I J : there’s an earthquake

I A: your alarm sounds

I J : your neighbor John calls

I M : your neighbor Mary calls

I B,E are independent

I J is only directly influenced by A
J is conditionally independent of B,E,M given A

I M is only directly influenced by A
M is conditionally independent of B,E, J given A
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Creating a Bayes Net

I Step 1: add variables (one variable per node)

B E

A

J M
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Creating a Bayes Net (cont.)

I Step 2: add directed edges
I graph must be acyclic
I if node X has parents Q1, . . . Qm, you are promising that any

variable that’s not a descent of X is conditionally indpendent
of X given Q1, . . . , Qm

B E

A

J M
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Creating a Bayes Net (cont.)

I Step 3: add CPTs
I each CPT lists P (X | Parents) for all comb. of parent values
I e.g. you must specify P (J | A) AND P (J | ¬A),
I they don’t need to sum to 1!

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01
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Creating a Bayes Net: Summary

1. Choose a set of relevant variables

2. Choose an ordering of them, say x1, . . . , xn
3. for i = 1 to n

3.1 Add node xi to the graph

3.2 Set parents(xi) to be the minimal subset of {x1, . . . , xi−1}
s.t. xi is cond. indep. of all other members of {x1, . . . , xi−1}
given parents(xi)

3.3 Define the CPT’s for P (xi | assignment of parents(xi))
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Representing Conditional Independence

I Case 1: Tail-to-Tail

C

A B

C

AB

I A,B in general not independent

I But A,B conditionally independent given C

I C is “tail-to-tail” node: if C is observed, it blocks path
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Representing Conditional Independence (cont.)

I Case 2: Head-to-Tail

A C B

A C B

I A,B in general not independent

I But A,B conditionally independent given C

I C is “head-to-tail” node: if C is observed, it blocks path
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Representing Conditional Independence (cont.)

I Case 3: Head-to-Head

A B

C

AB

C

I A,B in general independent

I But A,B NOT conditionally independent given C

I C is “head-to-head” node: if C is observed, it unblocks path,
or, importantly, if any of C’s decendents are observed
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Representing Conditional Independence (cont.)

Unblocked Blocked

Tail-to-Tail

C

AB

C

AB

Head-to-Tail A C B A C B

Head-to-Head

AB

C

AB

C
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Representing Conditional Independence: Example
Unblocked Blocked

Tail-to-Tail

A

MJ

A

MJ

P (M | J) 6= P (M) P (M | J,A) = P (M | A)

Head-to-Tail B A J B A J

P (J | B) 6= P (J) P (J | B,A) = P (J | A)

Head-to-Head

BE

A

BE

A

P (E | B,A) 6= P (E | A) P (E | B) = P (E)
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D-Separation

I For any groups of nodes A,B and C:
I A and B are independent given C if:

I all (undirected) paths from any node in A to any node in B
are blocked

I A path is blocked if it includes a node s.t. either:
I The arrows on the path meet head-to-tail or tail-to-tail at the

node, and the node is in C, or
I The arrows meet head-to-head at the node, and neither the

node, nor any of its descendents, is in C
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D-Separation: Examples

A F

E B

C

I The path from A to B is not blocked by either E or F

I But A,B conditionally dependent given C:

P (A,B | C) = P (A | C)P (B | C)
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D-Separation: Examples (cont.)

A F

E B

C

I The path from A to B is blocked both at E and F

I But A,B conditionally independent given F :

P (A,B | F ) = P (A | F )P (B | F )
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Conditional Independence in Bayes Nets

I a node is cond. indep. of its non-descendents given its parents

I a node is cond. indep. of all other nodes given its
Markov Blanket (parents, children, spouses)
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Compactness of a Bayes Net

I Bayes Nets encode joint dists., often with far fewer parameters

I Recall, a full joint table needs kN parameters
I N variables, k values per variable
I grows exponentially with N

I If the Bayes Net is sparse, e.g. each node has at most M
parents (M << N), it only needs O(NkM ) parameters

I grows linearly with N
I can’t have too many parents though
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Summary so far . . .

I We can define a Bayes Net, using a small number of
parameters, to describe a joint probability.

I Any joint probability can be computed as:

P (x1, . . . , xn) =
∏
i

P (xi | parents(xi))

I The above joint probability can be computed in time linear
with number of nodes N

I With this distribution, we can compute any conditional
probability P (Q | E), thus we can perform inference.

I How?
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Inference by Enumeration

P (Q | E) =

∑
joint matching Q AND E P (joint)∑

joint matching EP (joint)

For Example: P (B | J,¬M)

1. Compute P (B, J,¬M)

2. Compute P (J,¬M)

3. Return

P (B, J,¬M)

P (J,¬M)

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

Sum up:
P (B, J,¬M,A,E)
P (B, J,¬M,A,¬E)
P (B, J,¬M,¬A,E)
P (B, J,¬M,¬A,¬E)
Each one O(N) for sparse graph

Sum up:
P (J,¬M,B,A,E)
P (J,¬M,B,A,¬E)
P (J,¬M,B,¬A,E)
P (J,¬M,B,¬A,¬E)
P (J,¬M,¬B,A,E)
P (J,¬M,¬B,A,¬E)
P (J,¬M,¬B,¬A,E)
P (J,¬M,¬B,¬A,¬E)
Each one O(N) for sparse graph

In general,
if there are N variables while
evidence contains j variables,
how many joints to sum up?
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Inference by Enumeration (cont.)

I In general, if there are N variables while evidence contains j
variables, how many joints do we need to sum up? k(N−j)

I It is this summation that makes inference by enumeration
inefficient

I Some computation can be saved by carefully ordering the
terms and re-using intermediate results (variable elimination)

I A more complex algorithm called join tree or junction tree can
save even more computation

I The bad news:
Exact inference with an arbitrary Bayes Net is intractable
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Approximate Inference by Sampling

I Inference can be done approximately by sampling

I General sampling approach:

1. Generate many, many samples
(each sample a complete assignment of all variables)

2. Count the fraction of samples matching query and evidence

3. As the number of samples approaches ∞, the fraction
converges to the posterior P (Q | E)

I We’ll see 3 sampling algorithms (there are more . . . )

1. Simple sampling
2. Likelihood weighting
3. Gibbs sampler
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Alg.1: Simple Sampling

I This Bayes Net defines a joint distribution

I Can we generate a set of samples that have the same
underlying joint distribution?

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01
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Alg.1: Simple Sampling (cont.)
To generate one sample:

1. Sample B: x = rand(0,1). If (x < 0.001) B = true else B = false

2. Sample E: x = rand(0,1). If (x < 0.002) E = true else E = false

3. If (B == true AND E == true) sample A ∼ {0.95, 0.05}
elseif (B == true AND E == false) sample A ∼ {0.94, 0.06}
elseif (B == false AND E == true) sample A ∼ {0.29, 0.71}
else sample A ∼ {0.001, 0.999}

4. Similarly sample J

5. Similarly sample M

Repeat for more samples
B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01
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Alg.1: Inference with Simple Sampling

Ex: infer B given E,M i.e. P (B | E,M)

B E

A

J M

P (E) = 0.002

I First we generate lots of samples

I Keep samples with E = true and M = true, toss out the others

I In the N of them that we keep, count the N1 ones with
B = true, i.e. those that fit our query

I Return the estimate: P (B | E,M) ≈ N1/N

I The more samples, the better the estimate

I You should be able to generalize this method to arbitrary BN

I Can you see a problem with simple sampling?
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Alg.1: Inference with Simple Sampling (cont.)

I Since P (E) = 0.002,
we expect only 1 sample out of every 500 to have E = true

I We’ll throw away 499 samples, a huge waste

I This observation leads to . . .

B E

A

J M

P (E) = 0.002
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Alg.2: Likelihood Weighting

I Say we’ve generated B and we’re about to generate E

I E is an evidence node, known to be true
I Using simple sampling, we will generate

I E = true 0.2% of the time
I E = false 99.8% of the time

I Instead, let’s always generate E = true, but weight the
sample down by P (E) = 0.002

I Initially the sample has weight w = 1, now it w = w ∗ 0.002
I We’re “virtually throwning away” samples

B E

A

J M

P (E) = 0.002
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Alg.2: Likelihood Weighting (cont.)

I Continue and generate A, J as before

I When it’s time to generate evidence M from P (M | A),
again always generate M = true,
but weight the sample by w = w ∗ P (M | A)

I If A = true and P (M | A) = 0.7, the final weight for this
sample is w = 0.002 ∗ 0.7

I Repeat and keep all samples, each with a weight: w1, . . . , wn

I Return the estimate:

P (B | E,M) ≈
∑

B=truewi∑
all wi

Apply this weighting trick every time we

generate a value for an evidence node

B E

A

J M

P (E) = 0.002
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Alg.3: Gibbs Sampler

I the simplest method in the family of
Markov Chain Monte Carlo (MCMC) methods

1. Start from an arbitrary sample,
with evidence nodes fixed to their true values,

e.g. (B = true,E = true,A = false, J = false,M = true)

2. For each hidden node X, fixing all other nodes,
resample its value from P (X = x | Markov-blanket(X)),

e.g.: B ∼ P (B | E = true,A = false)

Update B with its new sampled value, move on to A, J

3. We now have one new sample. Repeat . . . B E

A

J M
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Alg.3: Gibbs Sampler (cont.)

I Keep all samples: P (B | E,M) is the fraction with B = true

I In general:

P (X = x | Markov-blanket(X)) ∝
P (X = x | parents(X)) ∗

∏
Yj∈children(X) P (yj | parents(Yj))

I Compute the above for X = x1, . . . , xk, then normalize

I More tricks:

· ‘burn-in’: don’t use the first nb samples (e.g. nb = 1000)

· after burn-in, only use one in every ns samples (e.g. ns = 50)

B E

A

J M

Where X = x
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Parameter (CPT) Learning for BNs

I Where do you get these CPT values?
I Ask domain experts, or
I Learn from data

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

← Given this data,
How do you learn this CPT?
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

Count |B| and |¬B| in dataset,

P (B) = |B| / (|B|+ |¬B|)
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

Count |E| and |¬E| in dataset,

P (E) = |E| / (|E|+ |¬E|)
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

Count |A| and |¬A| in dataset

where B = true, E = true,

P (A | B,E) = |A| / (|A|+ |¬A|)
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

Count |A| and |¬A| in dataset

where B = true, E = false,

P (A | B,¬E) = |A| / (|A|+ |¬A|)
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

Count |A| and |¬A| in dataset

where B = false, E = true,

P (A | ¬B,E) = |A| / (|A|+ |¬A|)
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

B E

A

J M

P (B) = 0.001 P (E) = 0.002

P (A | B, E) = 0.95
P (A | B,¬E) = 0.94
P (A | ¬B, E) = 0.29
P (A | ¬B,¬E) = 0.001

P (J | A) = 0.9
P (J | ¬A) = 0.05

P (M | A) = 0.7
P (M | ¬A) = 0.01

Count |A| and |¬A| in dataset

where B = false, E = false,

P (A | ¬B,¬E) = |A| / (|A|+ |¬A|)
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Parameter (CPT) Learning for BNs (cont.)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, ~E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, J, ~M)

(~B, E, A, J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

(~B, ~E, ~A, ~J, ~M)

( B, E, A, ~J, M)

(~B, ~E, ~A, ~J, ~M)

...

I ‘Unseen event’ problem

I Going back to:

Count |A| and |¬A| in dataset
where B = true, E = true,

P (A | B,E) = |A| / (|A|+ |¬A|)

I What if there are no rows with
(B,E,¬A, ∗, ∗) in the dataset?

I Do we want to set:
P (A | B,E) = 1,
P (¬A | B,E) = 0?

I Why or why not?
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Parameter (CPT) Learning for BNs: Smoothing

I P (X = x | parents(X)) = (frequency of x given parents)
is called the Maximum Likelihood Estimate (MLE)

I The MLE is vulnerable to the ‘unseen event’ problem
when the dataset is small:

e.g. flip coin 3 times: all heads → one-sided coin?

I ‘Add one’ smoothing: the simplest solution
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Parameter (CPT) Learning for BNs: Smoothing (cont.)

I ‘Add one’ smoothing: add 1 to all counts

I e.g. Count |A|, |¬A| in dataset where B = true, E = true
I P (A | B,E) = (|A|+1) / (|A|+1 + |¬A|+1)
I If |A| = 1, |¬A| = 0:

I without smoothing: P (A | B,E) = 1, P (¬ | B,E) = 0
I with smoothing: P (A | B,E) = 0.67, P (¬ | B,E) = 0.33

I If |A| = 100, |¬A| = 0:
I without smoothing: P (A | B,E) = 1, P (¬ | B,E) = 0
I with smoothing: P (A | B,E) = 0.99, P (¬ | B,E) = 0.01

I Smoothing saves you when you don’t have enough data, and
hides away when you do

I It’s a form of Maximum a posteriori (MAP) estimate
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A Special Bayes Net: Näıve Bayes Classifier

J

C Z A

J: Person is a junior

C: Brought coat to class

Z: Lives in 53706

A: Saw Avatar more than once

I What do the CPTs look like?
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A Special Bayes Net: Näıve Bayes Classifier (cont.)

J

C Z A

P (J) =

P (C | J) =

P (C | ¬J) =
P (Z | J) =

P (Z | ¬J) =
P (A | J) =

P (A | ¬J) =

J: junior

C: coat

Z: 53706

A: Avatar

I Suppose we have dataset of 30 people who attend a lecture.

I How can we use this to estimate the values in the CPTs?
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A Special Bayes Net: Näıve Bayes Classifier (cont.)

J

C Z A

P (J) =

P (C | J) =

P (C | ¬J) =
P (Z | J) =

P (Z | ¬J) =
P (A | J) =

P (A | ¬J) =

|juniors|/|people|

|juniors who saw A > 1|/|juniors|
|non-juniors who saw A > 1|/|non-juniors|

J: junior

C: coat

Z: 53706

A: Avatar
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A Special Bayes Net: Näıve Bayes Classifier (cont.)

J

C Z A

P (J) =

P (C | J) =

P (C | ¬J) =
P (Z | J) =

P (Z | ¬J) =
P (A | J) =

P (A | ¬J) =

J: junior

C: coat

Z: 53706

A: Avatar

I A new person shows up wearing a “I live right beside the
Union Theater where I saw Avatar every night” jacket

I What’s the probability that the person is a Junior?
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A Special Bayes Net: Näıve Bayes Classifier (cont.)

J

C Z A

P (J) =

P (C | J) =

P (C | ¬J) =
P (Z | J) =

P (Z | ¬J) =
P (A | J) =

P (A | ¬J) =

J: junior

C: coat

Z: 53706

A: Avatar

I Input (Evidence,x) : C,Z,A

I Output (Query,y) : J?

P (J | C,Z,A) = P (J,C, Z,A)/P (C,Z,A)

=
P (J,C, Z,A)

[P (J,C, Z,A) + P (¬J,C, Z,A)]

P (J,C, Z,A) = P (J)P (C | J)P (Z | J)P (A | J)
P (¬J,C, Z,A) = P (¬J)P (C | ¬J)P (Z | ¬J)P (A | ¬J)
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A Special Bayes Net: Näıve Bayes Classifier (cont.)

y

x1 x2 . . . xd

I Näıve Bayes Classifiers have a special structure:
I a “class” node y at the root

I evidence nodes x (observed features) as leaves

I conditional independence between all evidence given class
(strong assumption, usually wrong, but usually empirically ok)
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And that’s it for now: What you should know . . .

I Inference using joint distribution

I Problems with joint distribution

I Bayes Net: representation (nodes,edges,CPTs) and meaning

I How to compute joint probabilities from Bayes Net

I Inference by enumeration

I Inference by sampling
- simple sampling, likelihood weighting, Gibbs

I CPT parameter learning from data

I Näıve Bayes
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