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continuous space: 
Gradient, Newton-Raphson, convexity 
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Optimization 

• 100m fence, want to maximize area 

building 
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Optimization 
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Continuous space 

• Find state x=(x1, x2, …, xm)  Rm that minimizes f(x) 

 

• The (partial) derivative 

 

• The gradient is the vector 

 

 

 

• The gradient points to “higher ground” in f 
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Gradient 
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Where gradient vanishes... 

• Find state x=(x1, x2, …, xm)  Rm that minimizes f(x) 

 

 f = 0 

 
(= find x where the gradient disappears) 

• Then you have to check whether it is a minimum or 

maximum, or saddle point 
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f = 0 

Maximum 

Minimum 

Saddle point 

If you know: 

check semi-

definiteness of 

the Hessian 

If you don’t: 

check blah-

blah of the 

blah 
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Gradient descent 

• Often can’t solve f = 0 in closed form 

• But we can compute f at any point 

• Heuristic: move along the gradient in a small step 

 

 

  is the “step size” 

• Too small: very slow 

• Too large: overshoot 

• Ideas? 

• Analogous to hill climbing, finds local optimum. 
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Gradient descent without a gradient 

• Sometimes can’t compute f 

• e.g. f(x) is returned by some black-box.  

• Simulate the gradient at x (empirical gradient) 
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Similarly 

for x2 … xm 



slide 10 

Simple Newton-Raphson in 1-D 
• A smart way to choose step size 

• Find roots g(x)=0 

• To find min or max of f(x), work on g(x)=f ’(x) 

• Assume near linearity of g() 

 g(x)  g(x0) + (x-x0) g’(x0)   (1
st order Taylor) 

 g(x)  g(x0) + (x-x0) g’(x)   (assumed near linear) 

 x0  x - g(x) / g’(x)  

 Make it iterative: x  x0 

• Can overshoot;  Finds local optimum. 
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Convexity 

• How nice it would be 

• It’s so if f() is convex. 

  

 

 

 

 

 

 In 1-D: f ’’(x)>0 for all x.  Example: f(x)=x2 

 In high-D: the Hessian at all x is positive semi-definite 

 Even gradient descent will find the global minimum* 

if there is one and only 

one minimum. 

* with small 
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Convexity 

• A concave function has a global maximum 

 An upside-down convex function 

 

 

 

 

 

• Much research  

• Spend time to formulate your problem as a convex function! 

 

How to remember: 

concave is like a 

cave  


