Search in continuous space: Gradient, Newton-Raphson, convexity

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Optimization

• 100m fence, want to maximize area

Optimization

100m fence, want to maximize area

Continuous space

- Find state $x=(x_1, x_2, \dots, x_m) \in \mathbb{R}^m$ that minimizes f(x)
- The (partial) derivative $\frac{\partial f}{\partial x_i}$
- The gradient is the vector

The gradient points to "higher ground" in f

Gradient

Where gradient vanishes...

• Find state $x=(x_1, x_2, \dots, x_m) \in \mathbb{R}^m$ that minimizes f(x)

(= find x where the gradient disappears)

 Then you have to check whether it is a minimum or maximum, or saddle point

Gradient descent

- Often can't solve $\nabla f = 0$ in closed form
- But we can compute ∇f at any point
- Heuristic: move along the gradient in a small step

- α is the "step size"
 - Too small: very slow
 - Too large: overshoot
 - Ideas?
- Analogous to hill climbing, finds local optimum.

Gradient descent without a gradient

- Sometimes can't compute ∇f
- e.g. f(x) is returned by some black-box.
- Simulate the gradient at *x* (empirical gradient)

$$x = (x_1, x_2, \dots, x_m)$$

$$x' = (x_1 + \varepsilon, x_2, \dots, x_m)$$

$$\frac{\partial f}{\partial x_1} \approx \frac{f(x') - f(x)}{\varepsilon}$$

Similarly
for $x_2 \dots x_m$

Simple Newton-Raphson in 1-D

- A smart way to choose step size α
- Find roots g(x)=0
- To find min or max of f(x), work on g(x)=f'(x)
- Assume near linearity of g()
 - $g(x) \approx g(x_0) + (x x_0) g'(x_0)$ (1st order Taylor)
 - $g(x) \approx g(x_0) + (x x_0) g'(x)$ (assumed near linear)
 - $x_0 \approx x g(x) / g'(x)$
 - Make it iterative: $x \leftarrow x_0$
- Can overshoot; Finds local optimum.

- In 1-D: f''(x) > 0 for all x. Example: $f(x) = x^2$
- In high-D: the Hessian at all x is positive semi-definite
- Even gradient descent will find the global minimum*

* with small α

slide 11

Convexity

- A concave function has a global maximum
 - An upside-down convex function

- Much research
- Spend time to formulate your problem as a convex function!