Search in continuous space:
 Gradient, Newton-Raphson, convexity

Xiaojin Zhu
jerryzhu@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

Optimization

- 100m fence, want to maximize area

Optimization

- 100m fence, want to maximize area

building

area

$\frac{\partial(D)}{\partial}=4 x+100$

Continuous space

- Find state $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathrm{R}^{m}$ that minimizes $f(x)$
- The (partial) derivative $\frac{\partial f}{\partial x_{i}}$
- The gradient is the vector

- The gradient points to "higher ground" in f

Gradient

Where gradient vanishes...

Find state $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathrm{R}^{m}$ that minimizes $f(x)$

$$
\nabla \nabla f=0
$$

(= find x where the gradient disappears)

- Then you have to check whether it is a minimum or maximum, or saddle point

Gradient descent

- Often can't solve $\nabla f=0$ in closed form
- But we can compute ∇f at any point
- Heuristic: move along the gradient in a small step

- α is the "step size"
- Too small: very slow
- Too large: overshoot
- Ideas?
- Analogous to hill climbing, finds local optimum.

Gradient descent without a gradient

- Sometimes can't compute ∇f
- e.g. $f(x)$ is returned by some black-box.
- Simulate the gradient at x (empirical gradient)

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, \ldots x_{m}\right) \\
& x^{\prime}=\left(x_{1}+\varepsilon, x_{2}, \ldots x_{m}\right) \\
& \frac{\partial f}{\partial x_{1}} \approx \frac{f\left(x^{\prime}\right)-f(x)}{\varepsilon} \quad \begin{array}{r}
\text { Similarly } \\
\text { for } x_{2} \ldots x_{\mathrm{m}}
\end{array}
\end{aligned}
$$

Simple Newton-Raphson in 1-D

- A smart way to choose step size α
- Find roots $g(x)=0$
- To find min or max of $f(x)$, work on $g(x)=f^{\prime}(x)$
- Assume near linearity of $g()$
- $g(x) \approx g\left(x_{0}\right)+\left(x-x_{0}\right) g^{\prime}\left(x_{0}\right) \quad\left(1^{\text {st }}\right.$ order Taylor $)$
- $g(x) \approx g\left(x_{0}\right)+\left(x-x_{0}\right) g^{\prime}(x) \quad$ (assumed near linear)
- $x_{0} \approx x-g(x) / g^{\prime}(x)$
- Make it iterative: $x \leftarrow x_{0}$
- Can overshoot; Finds local optimum.

Convexity

- How nice it would be .oo if there is one and only
- It's so if $f()$ is convex.

- In 1-D: $f^{\prime \prime}(x)>0$ for all x. Example: $f(x)=x^{2}$
- In high-D: the Hessian at all x is positive semi-definite
- Even gradient descent will find the global minimum*
* with small α

Convexity

- A concave function has a global maximum
- An upside-down convex function

- Much research

- Spend time to formulate your problem as a convex function!

