Constraint Satisfaction Problems

Chapter 6.1 -6.4

Derived from slides by S. Russell and P. Norvig, A. Moore, and R. Khoury

Constraint Satisfaction Problems (CSPs)

* Standard search problem:

— state is a "black box“ — any data structure that supports successor
function, heuristic function, and goal test

* CSP:
— state is defined by variables X; with values from domain D;

— goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

* Simple example of a formal representation language

* Allows useful general-purpose algorithms with more power
than standard search algorithms

Example: 8-Queens

Example: 8-Queens

* Variables: 64 squares, number of queens
V={S; 4,52 - Sgg Number_of_queens}

* Values: Queen or no queen
S,; € Ds= {queen, empty}
Number_of_queens € Dy = [0, 64]

* Constraints: Attacks, queen count

{Number_of_queens =38,
Si;=queen = §;;,, = empty,
Si'j =queen = Simlj =empty,
S,;=queen =S, ... =empty}

» States: All board configurations

— 2.8x10% complete states

— 1.8x10%* complete states with 8 queens

— 92 complete and consistent states

— 12 unique complete and consistent states




Example: Cryptarithmetic
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* Variables: £ T, U, W, R, O, X, X,, X,
* Domains: {0,1,2,3,4,5,6,7,8,9}
* Constraints: Alldiff (F, T, U, W, R, O)
—0+0=R+10-X,
- X;+W+W=U+10"X,
—X,+T+T=0+10"X;
—X,=F, T#0,F#0
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Some Applications of CSPs

* Assignment problems
— e.g., who teaches what class
* Timetable problems
— e.g., which class is offered when and where?
Scheduling problems
VLS| or PCB layout problems
Boolean satisfiability
N-Queens
Graph coloring
Games: Minesweeper, Magic Squares, Sudoku, Crosswords
Line-drawing labeling

* Notice that many real-world problems involve real-valued
variables

A Constraint Satisfaction Problem:
Graph Coloring

+ Inside each circle marked V; .. V; we must assign: R, G or B
* No two adjacent circles may be assigned the same value

* Notice that two circles have already been given an assignment




Example: Map-Coloring

Northern
Territory

Western

Queensland
Australia

South
Australia

New South Wales

Tasmania

Variables: WA, NT, Q, NSW, V, SA, T
Domains: D, = {red,green,blue}
Constraints: adjacent regions must have different colors

e.g., WA # NT, or (WA,NT) in {(red,green), (red,blue),
(green,red), (green,blue), (blue,red), (blue,green)}

Example: Map-Coloring

Northern
Territory

New South Wales

L

Tasmania

Solutions are complete (i.e., all variables are assigned
values) and consistent (i.e., does not violate any
constraints) assignments, e.g., WA =red, NT = green, Q
=red, NSW = green, V =red, SA = blue, T = green

Constraint Graph

Binary CSP: each constraint relates two variables

Constraint graph: nodes are variables, arcs are constraints
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Varieties of CSPs

* Discrete variables

— finite domains:
* nvariables, domain size d 2 O(d") complete assignments
* e.g., Boolean CSPs, Boolean satisfiability

— infinite domains:
* integers, strings, etc.
* e.g., job scheduling, variables are start/end days for each job
* need a constraint language, e.g., StartJob, + 5 < StartJob,

* Continuous variables

— e.g., start/end times for Hubble Space Telescope
observations

— linear constraints solvable in polynomial time by linear
programming




Varieties of Constraints

* Unary constraints involve a single variable
—e.g., SA # green

* Binary constraints involve pairs of variables
—e.g., SAzWA

* Higher-order constraints involve 3 or more variables

—e.g., cryptarithmetic column constraints

Local Search for CSPs

Hill-climbing, simulated annealing, genetic
algorithms typically work with "complete" states,
i.e., all variables assigned

To apply to CSPs:

— allow states with unsatisfied constraints

— operators reassign variable values

Variable selection: randomly select any conflicted
variable

Value selection by min-conflicts heuristic:

— choose value that violates the fewest constraints, i.e.,
hill-climb with f(n) = total number of violated constraints

Local Search

* Min-Conflicts Algorithm:
— Assign to each variable a random value
— While state not consistent

* Pick a variable (randomly or with a heuristic) that
has constraints violated

* Find values that minimize the total number of
violated constraints (over all variables)

* If there is only one such value
—Assign that value to the variable
* If there are several values
—Assign a random value from that set to the var

Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Actions: move queen in column

Goal test: no attacks

Evaluation function: f(n) = total number of attacks




Min-Conflicts Algorithm
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Min-Conflicts Algorithm

* Advantages

— Simple and Fast: Given random initial state, can solve n-
gueens in almost constant time for arbitrary n with high
probability (e.g., n = 1,000,000 can be solved on average in
about 50 steps!)

* Disadvantages

— Only searches states that are reachable from the initial
state

* Might not search all state space

— Does not allow worse moves (but can move to neighbor
with same cost)

* Might get stuck in a local optimum
— Not complete
* Might not find a solution even if one exists

Standard Tree Search Formulation

States are defined by all the values assigned so far

* Initial state: the empty assignment {}

* Successor function: assign a value to an unassigned
variable
* Goal test: the current assignment is complete: all

variables assigned a value and all constraints
satisfied

* Find any solution, so cost is not important

¢ Every solution appears at depth n with n variables
- use depth-first search

 Variable assignments are commutative}, i.e.,
[ WA=R then NT=G ] same as [ NT=G then WA=R ]

®* What happens if we do DFS with the order of
assignments as B tried first, then G, then R?

®* Generate-and-test strategy: Generate candidate
solution, then test if it satisfies all the constraints

® This makes DFS look very stupid!

® Example:
http://www.cs.cmu.edu/~awm/animations/constraint/9d.html



http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

= Auton's Graphics =
The TEPTH FIRST SEARCH algorithn on a 3-color
areph-caloring prablen uith 9 nades.

Tries BLUE then RED then BLACK,

Depth First search iterates aver all possible colorings
until it finds one with no constraints, It's frustrating
to watch it fill in the values the first time and go

to full depth of 9 in the ssarch tree withaut checking
For constraint viclations along the waul

1t takes 5108 steps until it succesds, X
Ve don't show the whole thing

See Constraint Satisfaction Lecture notes at
httpsdduwu, cs, o, edus” aun/tutorials/constraint  htnl

findrew W.. Hoore
bbb/ A, G, e, edu/ " aum

Improved DFS:

Backtracking w/ Consistency Checking

Don’t ever try a successor that causes inconsistency
with its neighbors, i.e., perform consistency
checking when node is generated

Successor function assigns a value to an unassigned
variable that does not conflict with current
assignments

— Fail if no legal assignments (i.e., no successors)

Backtracking search is the basic uninformed
algorithm for CSPs

Can solve n-Queens for n = 25

Backtracking w/ Consistency Checking

Start with empty state
while not all vars in state assigned a value do
Pick a variable (randomly or with heuristic)

if it has a value that does not violate any
constraints

then Assign that value

else
Go back to previous variable
Assign it another value

Backtracking Example
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Australia Constraint Graph
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Backtracking Search

* Depth-first search algorithm
— Goes down one variable at a time

—In a dead end, back up to last variable whose value
can be changed without violating any constraints,
and change it

— If you backed up to the root and tried all values,
then there are no solutions

* Algorithm is complete
— Will find a solution if one exists

— Will expand the entire (finite) search space if
necessary

* Depth-limited search with limit =n

=] Autan's Graphics

The BACKTRACKING algorithn on & 3-colar
graph-coloring problen with 9 nodes.

Tries BLUE then RED then BLACK,

This prunes parts of the depth First search
2 300N as it notices & violation, Beats the
heck out of TFS, though it still backtracks
a little bit.,

It takes 15 steps until it succeeds, k

See Constraint Satisfaction Lecture notes at
http:dfwuw, cs. cmu, edusaun/ tutorials/constraint. html

findreu W, Hoore
htbps /A, o5, e, edu/aum

= Auton's Graphics =
The BACKTRAGKING algorithn on & 3-color
araph-coloring problen with 27 nodes.

Tries BLUE then RED then BLACK,

This prunes parts of the depth First search
s soon as it notices a violation. But notice Top-left
hou early decisions mean that no matter what

it tries, for a long tine nothing will uork node is
up in the top left node. hard to

I
It takes E5448 steps until it succeeds, X label!

See Constraint Satisfaction Lecture notes at
http:d i, cs oo, edud aun/tutorials/constraint  html

fndrew W Hoare
https /s, o, edu/ aum

Improving Backtracking Efficiency

* General-purpose heuristics can give huge
gains in speed
— Which variable should be assigned next?
— In what order should its values be tried?
— Can we detect inevitable failure early?




Which Variable Next?
Most Constrained Variable

Most constrained variable:
choose the variable with the fewest legal values

SSEA ShA SSE S

Called minimum remaining values (MRV)
heuristic

Tries to cut off search asap

Which Variable Next?

Most Constraining Variable

* Tie-breaker among most constrained
variables

* Most constraining variable:

— choose the variable with the most constraints
on remaining variables

* Called degree heuristic
* Tries to cut off search asap

ROy CRg— RS

Which Value Next?
Least Constraining Value

Given a variable, choose the least constraining
value:

— i.e., the one that rules out the fewest values in the

remaining variables
‘ % Allows 1 value for SA

— try to pick values best first
‘ % Allows D values for SA

Hy— 49

Combining these heuristics makes 1000-Queens
feasible

Improvement: Forward Checking
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At start, for each variable, record the current set of all possible
legal values for it

When you assign a value to a variable in the search, update the
set of legal values for all unassigned variables. Backtrack
immediately if you empty a variable’s set of possible values.
— What happens if we do DFS with the order of assignments as
B tried first, then G, then R?
— Example: http://www.cs.cmu.edu/~awm/animations/constraint/27f.html



http://www.cs.cmu.edu/~awm/animations/constraint/27f.html

Forward Checking Algorithm

* |dea:

— Keep track of remaining legal values for all unassigned
variables

— Terminate search when any variable has no legal values

RO

WA NT Q NSW v SA T
OO LI L I

Forward Checking

Idea:

— Keep track of remaining legal values for all unassigned
variables

— Terminate search when any variable has no legal values
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Forward Checking

Idea:

— Keep track of remaining legal values for all unassigned
variables

— Terminate search when any variable has no legal values
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Forward Checking

Idea:

— Keep track of remaining legal values for all unassigned
variables

— Terminate search when any variable has no legal values

Bl SSEa Sl o
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[u] Auton's Graphics

The FORUARD CHECKING algorithm on a 3-color
graphcoloring prablem uith 27 nodes.

Tries BLUE then RED then BLACK,

Little dots denote the availability lists
for the rodes,

Notice that unlike backtracking search, Foruard
Checking realizes as soon as it triss sstting

the node at (rousbotton+l,col=rightnost-1] to
Black that it's not going to be abls to R}
satisfy the top-left node,

See Constraint Satisfaction Lecture notes at
httpid A, s, cnu, edus aun/ tutorial s/constraint html

Andrew U Hoore
https/uum, s, omu, edusaum

Constraint Propagation

* Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for

all failures:
SSEN SSh S~

WA NT Q NSW v SA T
(M EErEErE BT E[EEE[EEN]

* NT and SA cannot both be blue!

* Constraint propagation repeatedly enforces constraints
locally with its neighbors

Constraint Propagation

“.
Main idea: When you delete a value from your
domain, check all variables connected to you. If any of
them change, delete all inconsistent values connected
to them, etc.

In the above example, nothing changes

Web Example:
http://www.cs.cmu.edu/~awm/animations/constraint/27p.html

Arc Consistency

* Simplest form of propagation makes each arc consistent
* X ->Yis consistent iff

for every value x at X there is some allowed y, i.e., there is at
least 1 value of Y that is consistent with x

SR SSE S

wa NT Q NSW v sA T
[/ o | H] I 11 E[EEE]

~¢—

X=SA
Y= NSW
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http://www.cs.cmu.edu/~awm/animations/constraint/27p.html

Arc Consistency

* Simplest form of propagation makes each arc consistent

* X =2Yis consistent iff
for every value x at X there is some allowed y; if not, delete x

SR SSE S .

Y=S5A
WA NT Q NSW v SA T

~

Arc Consistency

* Simplest form of propagation makes each arc consistent

e X =2Yis consistent iff
for every value x at X there is some allowed y; if not, delete x

SR S Se

’
~

* If Xloses a value, all neighbors of X need to be rechecked

Arc Consistency

Simplest form of propagation makes each arc consistent

X Vs consistent iff
for every value x at X there is some allowed y; if not, delete x

S SR Se

(w] S[FEEE E=EE] WEamE] Y=NT
\e/

* If X loses a value, all neighbors of X need to be rechecked
* Arc consistency detects failure earlier than forward checking
* Can be run as a preprocessor or after each assignment

Australia Constraint Graph
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[m} Auton's Graphics =

The CONSTRAINT PROPAGATION algorithm on a 3-color
araph-colaring problem with 27 nodes,

Tries BLUE then RED then BLACK.

Little dots denote the availability lists

For the nades, Bottom-
Hotice that unlike foruard checking search, Constraint right node
Propagation realizes very early on (on its third step) must not
that (rousbottamL,colarightnost-L1) st not begblack be red

and so (rowsbottom,col=d) must not be red. It do € rei

better than Foruard checking and HUCH better tha because
backtracking!

acktrack ing node to
See Constraint Satisfaction Lecture notes at upper-left
REER: W, £3.emu, sy aunstor 3L/ constraint htnl must not
Andreu W, Hoors be black

https A, o5, onu, sdusaun

Arc Consistency Algorithm “AC-3”

function AC-3(csp) // returns false if inconsistency is found and true otherwise
// input: csp, a binary CSP with components (X, D, C)
// localvariables: queue, a queue of arcs; initially all arcs in csp
while queue not empty do
(X;, X;) = Remove-First(queue)

if Revise(csp, X;, X; ) then // make arc consistent
if size of D; = 0 then return false
foreach X, in X..Neighbors — { X; } do // propagate changes to neighbors

add (X, , X;) to queue
return true

function Revise(csp, X;, X; ) // returns true iff we revise the domain of X; Check if
X%

revised = false i
consistent

foreach x in D, do
if no value y in D; allows (x, y) to satisfy the constraint betweeen X; and X; then
{delete x from D; ; revised := true}
return revised

Constraint Propagation

e Extra Arc

* In this example, constraint propagation solves the problem
without search ... Not always that lucky!

* Constraint propagation can be done as a preprocessing step
(cheap)

* Or it can be performed dynamically during the search.
Expensive: when you backtrack, you must undo some of your
additional constraints.

Combining Search with CSP

* |dea: Interleave search and CSP inference

e Perform DFS

— At each node assign a selected value to a selected
variable

— Run CSP to check if any inconsistencies arise as a
result of this assignment

13



Combining Backtracking Search with CSP

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment , csp) returns a solution, or failure
if assignmentis complete then return assignment
var < SELECT-UNASSIGNED-VARIABLE(csp)
for each va/ue in ORDER-DOMAIN-VALUES(var , assignment, csp)
do
if valueis consistent with assignment then
add {var = value} to assignment
inferences < INFERENCE(csp, var, value)
if inferences # failure then
add inferences to assignment
result < BACKTRACK(assignment , csp)
if result = failure then
return result
remove {var = value} and inferences from assignment
return 7ailure

Conflict-Directed Backjumping

¢ Suppose we color Australia in this order:
— WA=R 2t
— NSW =R
—-T=B
— NT=B
-Q=G
—SA="?

* Deadend at SA
— No possible solution with WA = NSW

— Backtracking will try to change T on the way, even
though it has nothing to do with the problem, before
going to NSW

3

Slide credit: R. Khoury

Conflict-Directed Backjumping

* Backtracking goes back one level in the
search tree at a time
— Chronological backtracking
* Not rational in cases where the previous
step is not involved with the conflict
* Conflict-Directed Backjumping
— Go back to a variable involved in the conflict
— Skip several levels if needed to get there
— Non-chronological backtracking

Slide credit: R. Khoury

Conflict-Directed Backjumping

* Maintain a conflict set for each variable
— List of previously-assigned variables that are related
by constraints
conf(WA) = {}
conf(NSW) = {}
conf(T) = {}
conf(NT) = {WA}
conf(Q) = {NSW,NT?}
conf(SA) = {WA NSW,NT,Q}
= When we hit a deadend, backjump to the

most recent variable in the conflict set
Slide credit: R. Khoury
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Conflict-Directed Backjumping

* Learn from a conflict by updating the
conflict set of the variable we jumped to

Example: Conflict at X; and backjump to X;
— conf(X;) = {X;, X;, X5}
- conf()(j) = {Xsl Xy Xs, Xi}
conf(X;) = conf(X;) L conf(X)) — {X}
= {Xy, Xy, X3, Xy, Xs}
X; absorbed the conflict set of X;

Slide credit: R. Khoury

Conflict-Directed Backjumping

conf(WA) = {}

conf(NSW) = {WA}

conf(NT) = {WA,NSW}

conf(Q) = {WA,NSW,NT}

* SA’s domain empty = deadend

* SA backjumps to most recent var in conf(SA): Q
— Update conf(Q) = {WA, NSW, NT}
— Meaning: “There is no consistent solution from Q=G onwards,
given preceding assignments WA=R, NSW=R and NT=B”

Slide credit: R. Khoury

Conflict-Directed Backjumping

conf(WA) = {}

conf(NSW) = {WA}

conf(NT) = {WA,NSW?}

conf(Q) = {WA,NSW,NT?}

= Q’s domain empty = deadend

m Q backjumps to NT (i.e., most recent var in conf(Q))

= Update conf(NT) = {WA, NSW}
= There is no consistent solution from NT=B onwards, given
preceding assignments WA=R and NSW=R

Slide credit: R. Khoury

Conflict-Directed Backjumping

conf(WA) = {}

conf(NSW) = {WA}

conf(NT) = {WA,NSW}

conf(Q) = {WA,NSW,NT?}

m Try NT=G (which is consistent with WA=R, NSW=R)
= Retrying Q and SA fails again
= So, there is no consistent solution from NT=G onwards,
given preceding assignments WA=R and NSW=R
= NT’s domain now empty = deadend
Slide credit: R. Khoury
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Conflict-Directed Backjumping

conf(WA) = {}

conf(NSW) = {WA}

conf(NT) = {WA,NSW?}

conf(Q) = {WA,NSW,NT}

= NT backjumps to NSW
= Update conf(NSW) = {WA}
= Skips T, which is irrelevant in this conflict

= Discovers the relationship between NSW and WA, which

is not present in our constraints, so try NSW=G ...

Slide credit: R. Khoury

Constraint Learning

* When a contradiction occurs, remember the
minimum set of variables from the conflict set
that was responsible for the problem

* Save these “no-goods” as new constraints so
that they are never attempted again
somewhere else in search

* For example, {WA=R, NSW=R, NT=B}

The Waltz Algorithm

¢ One of the earliest examples of a computation posed as a CSP

¢ The Waltz algorithm is used for interpreting line drawings of solid
polyhedra

Look at all intersections.

What kind of intersection could this be? A
concave intersection of three faces? Or
an external convex intersection?
Adjacent intersections impose constraints on each other. Use CSP to

find a unique set of labelings. Important step to “understanding” the
image.

Waltz Algorithm on Simple Scenes

Assume all objects:

¢ Have no shadows or cracks
e Three-faced vertices
¢ “General position”: no junctions change with small movements of the eye.

Then each line on image is one of the following 3 types:

¢ Boundary line (edge of an object) (<) with right hand of arrow denoting “solid”

and left hand denoting “space”
¢ Interior convex edge (+)
¢ Interior concave edge (—)

16



Given a representation of the diagram, label each junction in one of the above ways.

18 Legal Kinds of Junctions

A A r
VAV S VE

Y Y
IR
ORGRG

The junctions must be labeled so that lines are labeled consistently at both ends.
Can you formulate this as a CSP? FUN FACT: Constraint Propagation always works

perfectly.

®E A e Junction
N_4 kK x_~ Dictionary

A RAL
Rl
R

Waltz Examples

Summary

CSPs are a special kind of problem:
— states defined by values of a fixed set of variables
— goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
plus simple consistency checking

Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

Iterative min-conflicts is usually effective in practice
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