
1

Constraint Satisfaction Problems

Chapter 6.1 – 6.4

Derived from slides by S. Russell and P. Norvig, A. Moore, and R. Khoury

Constraint Satisfaction Problems (CSPs)

• Standard search problem:
– state is a "black box“ – any data structure that supports successor

function, heuristic function, and goal test

• CSP:
– state is defined by variables Xi with values from domain Di

– goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

• Simple example of a formal representation language

• Allows useful general-purpose algorithms with more power
than standard search algorithms

Example: 8-Queens Example: 8-Queens
• Variables: 64 squares, number of queens

V = {S1,1, S1,2, …, S8,8, Number_of_queens}

• Values: Queen or no queen
Si,j  DS = {queen, empty}

Number_of_queens  DN = [0, 64]

• Constraints: Attacks, queen count
{Number_of_queens = 8,
 Si,j = queen  Si,j+n = empty,
 Si,j = queen  Si+n,j = empty,
 Si,j = queen  Si+n,j+n = empty}

• States: All board configurations
– 2.8x1014 complete states

– 1.8x1014 complete states with 8 queens

– 92 complete and consistent states

– 12 unique complete and consistent states

2

Example: Cryptarithmetic

• Variables: F, T, U, W, R, O, X1, X2 , X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• Constraints: Alldiff (F, T, U, W, R, O)

– O + O = R + 10 · X1

– X1 + W + W = U + 10 · X2

– X2 + T + T = O + 10 · X3

– X3 = F, T ≠ 0, F ≠ 0

Movie
Seating
Problem

Some Applications of CSPs

• Assignment problems
– e.g., who teaches what class

• Timetable problems
– e.g., which class is offered when and where?

• Scheduling problems
• VLSI or PCB layout problems
• Boolean satisfiability
• N-Queens
• Graph coloring
• Games: Minesweeper, Magic Squares, Sudoku, Crosswords
• Line-drawing labeling

• Notice that many real-world problems involve real-valued

variables

A Constraint Satisfaction Problem:
Graph Coloring

• Inside each circle marked V1 .. V6 we must assign: R, G or B

• No two adjacent circles may be assigned the same value

• Notice that two circles have already been given an assignment

V3

V6

V2

R

G

V1

V5

V4

3

Example: Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di = {red,green,blue}
• Constraints: adjacent regions must have different colors
 e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue),

(green,red), (green,blue), (blue,red), (blue,green)}

Example: Map-Coloring

Solutions are complete (i.e., all variables are assigned
values) and consistent (i.e., does not violate any
constraints) assignments, e.g., WA = red, NT = green, Q
= red, NSW = green, V = red, SA = blue, T = green

Constraint Graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are constraints

Varieties of CSPs

• Discrete variables
– finite domains:

• n variables, domain size d  O(dn) complete assignments

• e.g., Boolean CSPs, Boolean satisfiability

– infinite domains:
• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
– e.g., start/end times for Hubble Space Telescope

observations

– linear constraints solvable in polynomial time by linear
programming

4

Varieties of Constraints

• Unary constraints involve a single variable

– e.g., SA ≠ green

• Binary constraints involve pairs of variables

– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more variables

– e.g., cryptarithmetic column constraints

Local Search for CSPs

• Hill-climbing, simulated annealing, genetic
algorithms typically work with "complete" states,
i.e., all variables assigned

• To apply to CSPs:
– allow states with unsatisfied constraints
– operators reassign variable values

• Variable selection: randomly select any conflicted
variable

• Value selection by min-conflicts heuristic:
– choose value that violates the fewest constraints, i.e.,

hill-climb with f(n) = total number of violated constraints

Local Search
• Min-Conflicts Algorithm:

– Assign to each variable a random value

– While state not consistent

• Pick a variable (randomly or with a heuristic) that
has constraints violated

• Find values that minimize the total number of
violated constraints (over all variables)

• If there is only one such value

–Assign that value to the variable

• If there are several values

–Assign a random value from that set to the var

Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)
• Actions: move queen in column
• Goal test: no attacks
• Evaluation function: f(n) = total number of attacks

f = 5 f = 2 f = 0

5

Min-Conflicts Algorithm Min-Conflicts Algorithm

• Advantages

– Simple and Fast: Given random initial state, can solve n-
queens in almost constant time for arbitrary n with high
probability (e.g., n = 1,000,000 can be solved on average in
about 50 steps!)

• Disadvantages

– Only searches states that are reachable from the initial
state

• Might not search all state space

– Does not allow worse moves (but can move to neighbor
with same cost)

• Might get stuck in a local optimum

– Not complete

• Might not find a solution even if one exists

Standard Tree Search Formulation

States are defined by all the values assigned so far

• Initial state: the empty assignment { }
• Successor function: assign a value to an unassigned

variable
• Goal test: the current assignment is complete: all

variables assigned a value and all constraints
satisfied

• Find any solution, so cost is not important
• Every solution appears at depth n with n variables

  use depth-first search

DFS for CSPs

• Variable assignments are commutative}, i.e.,
 [WA=R then NT=G] same as [NT=G then WA=R]
• What happens if we do DFS with the order of

assignments as B tried first, then G, then R?
• Generate-and-test strategy: Generate candidate

solution, then test if it satisfies all the constraints
• This makes DFS look very stupid!
• Example:

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

V3

V6

V2

R
G

V1
V5

V4

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

6

Improved DFS:
Backtracking w/ Consistency Checking

• Don’t ever try a successor that causes inconsistency
with its neighbors, i.e., perform consistency
checking when node is generated

• Successor function assigns a value to an unassigned
variable that does not conflict with current
assignments

– Fail if no legal assignments (i.e., no successors)

• Backtracking search is the basic uninformed
algorithm for CSPs

• Can solve n-Queens for n ≈ 25

Backtracking w/ Consistency Checking

Start with empty state

while not all vars in state assigned a value do

Pick a variable (randomly or with heuristic)

if it has a value that does not violate any
constraints

then Assign that value

else

Go back to previous variable

Assign it another value

Backtracking Example

7

Australia Constraint Graph Backtracking Example

Backtracking Example Backtracking Example

8

Backtracking Search

• Depth-first search algorithm
– Goes down one variable at a time

– In a dead end, back up to last variable whose value
can be changed without violating any constraints,
and change it

– If you backed up to the root and tried all values,
then there are no solutions

• Algorithm is complete
– Will find a solution if one exists

– Will expand the entire (finite) search space if
necessary

• Depth-limited search with limit = n

Top-left
node is
hard to
label!

Improving Backtracking Efficiency

• General-purpose heuristics can give huge
gains in speed

– Which variable should be assigned next?

– In what order should its values be tried?

– Can we detect inevitable failure early?

9

Which Variable Next?
Most Constrained Variable

• Most constrained variable:

choose the variable with the fewest legal values

• Called minimum remaining values (MRV)
heuristic

• Tries to cut off search asap

Which Variable Next?
Most Constraining Variable

• Tie-breaker among most constrained
variables

• Most constraining variable:

– choose the variable with the most constraints
on remaining variables

• Called degree heuristic

• Tries to cut off search asap

Which Value Next?
Least Constraining Value

• Given a variable, choose the least constraining
value:
– i.e., the one that rules out the fewest values in the

remaining variables
– try to pick values best first

• Combining these heuristics makes 1000-Queens

feasible

Improvement: Forward Checking

• At start, for each variable, record the current set of all possible
legal values for it

• When you assign a value to a variable in the search, update the
set of legal values for all unassigned variables. Backtrack
immediately if you empty a variable’s set of possible values.

– What happens if we do DFS with the order of assignments as
B tried first, then G, then R?

– Example: http://www.cs.cmu.edu/~awm/animations/constraint/27f.html

V3

V6

V2

R

G

V1
V5

V4

http://www.cs.cmu.edu/~awm/animations/constraint/27f.html

10

Forward Checking Algorithm

• Idea:

– Keep track of remaining legal values for all unassigned
variables

– Terminate search when any variable has no legal values

Forward Checking

• Idea:

– Keep track of remaining legal values for all unassigned
variables

– Terminate search when any variable has no legal values

Forward Checking

• Idea:

– Keep track of remaining legal values for all unassigned
variables

– Terminate search when any variable has no legal values

Forward Checking

• Idea:

– Keep track of remaining legal values for all unassigned
variables

– Terminate search when any variable has no legal values

11

Constraint Propagation

• Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for
all failures:

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints
locally with its neighbors

Constraint Propagation

Main idea: When you delete a value from your
domain, check all variables connected to you. If any of
them change, delete all inconsistent values connected
to them, etc.

In the above example, nothing changes

Web Example:
http://www.cs.cmu.edu/~awm/animations/constraint/27p.html

V3

V6

V2

R

G

V1
V5

V4

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x at X there is some allowed y, i.e., there is at
least 1 value of Y that is consistent with x

X = SA
Y = NSW

http://www.cs.cmu.edu/~awm/animations/constraint/27p.html

12

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x at X there is some allowed y; if not, delete x

X = NSW
Y = SA

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x at X there is some allowed y; if not, delete x

• If X loses a value, all neighbors of X need to be rechecked

X = V
Y = NSW

Arc Consistency

• Simplest form of propagation makes each arc consistent
• X Y is consistent iff

for every value x at X there is some allowed y; if not, delete x

• If X loses a value, all neighbors of X need to be rechecked
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment

X = SA
Y = NT

Australia Constraint Graph

13

Bottom-
right node
must not
be red
because
node to
upper-left
must not
be black

Arc Consistency Algorithm “AC-3”
function AC-3(csp) // returns false if inconsistency is found and true otherwise

 // input: csp, a binary CSP with components (X, D, C)

 // local variables: queue, a queue of arcs; initially all arcs in csp

 while queue not empty do

 (Xi , Xj) = Remove-First(queue)

 if Revise(csp, Xi , Xj) then // make arc consistent

 if size of Di = 0 then return false

 foreach Xk in Xi.Neighbors – { Xj } do // propagate changes to neighbors

 add (Xk , Xi) to queue

 return true

function Revise(csp, Xi , Xj) // returns true iff we revise the domain of Xi

 revised = false

 foreach x in Di do

 if no value y in Dj allows (x, y) to satisfy the constraint betweeen Xi and Xj then

 {delete x from Di ; revised := true}

 return revised

Check if
Xi  Xj

consistent

Constraint Propagation

• In this example, constraint propagation solves the problem
without search … Not always that lucky!

• Constraint propagation can be done as a preprocessing step
(cheap)

• Or it can be performed dynamically during the search.
Expensive: when you backtrack, you must undo some of your
additional constraints.

V3

V6

V2

R

G

V1
V5

V4 Extra Arc

Combining Search with CSP

• Idea: Interleave search and CSP inference

• Perform DFS

– At each node assign a selected value to a selected
variable

– Run CSP to check if any inconsistencies arise as a
result of this assignment

14

Combining Backtracking Search with CSP

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
 return BACKTRACK({ }, csp)

function BACKTRACK(assignment , csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(csp)

 for each value in ORDER-DOMAIN-VALUES(var , assignment , csp)
do
 if value is consistent with assignment then
 add {var = value} to assignment
 inferences ← INFERENCE(csp, var, value)

 if inferences  failure then
 add inferences to assignment
 result ← BACKTRACK(assignment , csp)

 if result  failure then
 return result
 remove {var = value} and inferences from assignment
 return failure

Conflict-Directed Backjumping

• Suppose we color Australia in this order:
– WA = R

– NSW = R

– T = B

– NT = B

– Q = G

– SA = ?

• Deadend at SA
– No possible solution with WA = NSW

– Backtracking will try to change T on the way, even
though it has nothing to do with the problem, before
going to NSW

Slide credit: R. Khoury

Conflict-Directed Backjumping

• Backtracking goes back one level in the
search tree at a time
– Chronological backtracking

• Not rational in cases where the previous
step is not involved with the conflict

• Conflict-Directed Backjumping
– Go back to a variable involved in the conflict

– Skip several levels if needed to get there

– Non-chronological backtracking

Slide credit: R. Khoury

Conflict-Directed Backjumping

• Maintain a conflict set for each variable

– List of previously-assigned variables that are related
by constraints

conf(WA) = {}

conf(NSW) = {}

conf(T) = {}

conf(NT) = {WA}

conf(Q) = {NSW,NT}

conf(SA) = {WA,NSW,NT,Q}

 When we hit a deadend, backjump to the
most recent variable in the conflict set

Slide credit: R. Khoury

15

Conflict-Directed Backjumping

• Learn from a conflict by updating the
conflict set of the variable we jumped to

• Example: Conflict at Xj and backjump to Xi

– conf(Xi) = {X1, X2, X3}

– conf(Xj) = {X3, X4, X5, Xi}

• conf(Xi) = conf(Xi)  conf(Xj) – {Xi}

 = {X1, X2, X3, X4, X5}

• Xi absorbed the conflict set of Xj

Slide credit: R. Khoury

Conflict-Directed Backjumping

• SA’s domain empty  deadend
• SA backjumps to most recent var in conf(SA): Q

– Update conf(Q) = {WA, NSW, NT}
– Meaning: “There is no consistent solution from Q=G onwards,

given preceding assignments WA=R, NSW=R and NT=B”

conf(WA) = {}

conf(NSW) = {}

conf(T) = {}

conf(NT) = {WA}

conf(Q) = {NSW,NT}

conf(SA) = {WA,NSW,NT,Q}

conf(Q) = {WA,NSW,NT}

conf(NT) = {WA,NSW}

conf(NSW) = {WA}

Slide credit: R. Khoury

Conflict-Directed Backjumping

conf(WA) = {}

conf(NSW) = {}

conf(T) = {}

conf(NT) = {WA}

conf(Q) = {NSW,NT}

conf(SA) = {WA,NSW,NT,Q}

conf(Q) = {WA,NSW,NT}

conf(NT) = {WA,NSW}

conf(NSW) = {WA}

Slide credit: R. Khoury

 Q’s domain empty  deadend

 Q backjumps to NT (i.e., most recent var in conf(Q))
 Update conf(NT) = {WA, NSW}
 There is no consistent solution from NT=B onwards, given

preceding assignments WA=R and NSW=R

Conflict-Directed Backjumping

conf(WA) = {}

conf(NSW) = {}

conf(T) = {}

conf(NT) = {WA}

conf(Q) = {NSW,NT}

conf(SA) = {WA,NSW,NT,Q}

conf(Q) = {WA,NSW,NT}

conf(NT) = {WA,NSW}

conf(NSW) = {WA}

Slide credit: R. Khoury

 Try NT=G (which is consistent with WA=R, NSW=R)

 Retrying Q and SA fails again

 So, there is no consistent solution from NT=G onwards,
given preceding assignments WA=R and NSW=R

 NT’s domain now empty  deadend

16

Conflict-Directed Backjumping

conf(WA) = {}

conf(NSW) = {}

conf(T) = {}

conf(NT) = {WA}

conf(Q) = {NSW,NT}

conf(SA) = {WA,NSW,NT,Q}

conf(Q) = {WA,NSW,NT}

conf(NT) = {WA,NSW}

conf(NSW) = {WA}

Slide credit: R. Khoury

 NT backjumps to NSW
 Update conf(NSW) = {WA}

 Skips T, which is irrelevant in this conflict

 Discovers the relationship between NSW and WA, which
is not present in our constraints, so try NSW=G …

Constraint Learning

• When a contradiction occurs, remember the
minimum set of variables from the conflict set
that was responsible for the problem

• Save these “no-goods” as new constraints so
that they are never attempted again
somewhere else in search

• For example, {WA=R, NSW=R, NT=B}

The Waltz Algorithm
• One of the earliest examples of a computation posed as a CSP

• The Waltz algorithm is used for interpreting line drawings of solid
polyhedra

Look at all intersections.

What kind of intersection could this be? A

 concave intersection of three faces? Or

 an external convex intersection?

Adjacent intersections impose constraints on each other. Use CSP to

find a unique set of labelings. Important step to “understanding” the

image.

Waltz Algorithm on Simple Scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small movements of the eye.

Then each line on image is one of the following 3 types:

• Boundary line (edge of an object) (<) with right hand of arrow denoting “solid”
and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge ()

17

18 Legal Kinds of Junctions

Given a representation of the diagram, label each junction in one of the above ways.

The junctions must be labeled so that lines are labeled consistently at both ends.

Can you formulate this as a CSP? FUN FACT: Constraint Propagation always works
perfectly.

Junction
Dictionary

Waltz Examples Summary
• CSPs are a special kind of problem:

– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node

plus simple consistency checking

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

• Iterative min-conflicts is usually effective in practice

