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Constraint Satisfaction Problems 

Chapter 6.1 – 6.4 

Derived from slides by S. Russell and P. Norvig, A. Moore, and R. Khoury 

Constraint Satisfaction Problems (CSPs) 

• Standard search problem: 
– state is a "black box“ – any data structure that supports successor 

function, heuristic function, and goal test 

 

• CSP: 
– state is defined by variables Xi with values from domain Di 

– goal test is a set of constraints specifying allowable combinations of 
values for subsets of variables 

 

• Simple example of a formal representation language 

 

• Allows useful general-purpose algorithms with more power 
than standard search algorithms 

Example:  8-Queens Example:  8-Queens 
• Variables: 64 squares, number of queens 

V = {S1,1, S1,2, …, S8,8, Number_of_queens} 

• Values: Queen or no queen 
Si,j  DS = {queen, empty} 

Number_of_queens  DN = [0, 64] 

• Constraints: Attacks, queen count 
{Number_of_queens = 8, 
      Si,j = queen  Si,j+n = empty, 
 Si,j = queen  Si+n,j = empty, 
 Si,j = queen  Si+n,j+n = empty} 

• States: All board configurations 
– 2.8x1014 complete states 

– 1.8x1014 complete states with 8 queens 

– 92 complete and consistent states 

– 12 unique complete and consistent states 



2 

Example:  Cryptarithmetic 

• Variables:  F, T, U, W, R, O, X1, X2 , X3 

• Domains:  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

• Constraints:  Alldiff (F, T, U, W, R, O) 

– O + O = R + 10 · X1 

– X1 + W + W = U + 10 · X2 

– X2 + T + T = O + 10 · X3 

– X3 = F, T ≠ 0, F ≠ 0 

Movie 
Seating 
Problem 

Some Applications of CSPs 

• Assignment problems 
– e.g., who teaches what class 

• Timetable problems 
– e.g., which class is offered when and where? 

• Scheduling problems 
• VLSI or PCB layout problems 
• Boolean satisfiability 
• N-Queens 
• Graph coloring 
• Games:  Minesweeper, Magic Squares, Sudoku, Crosswords 
• Line-drawing labeling 
 
• Notice that many real-world problems involve real-valued 

variables 

A Constraint Satisfaction Problem: 
Graph Coloring 

•  Inside each circle marked V1 .. V6 we must assign: R, G or B 

•  No two adjacent circles may be assigned the same value 

•  Notice that two circles have already been given an assignment 

V3 

V6 

V2 

R 

G 

V1 

V5 

V4 
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Example:  Map-Coloring 

• Variables:  WA, NT, Q, NSW, V, SA, T  
• Domains:  Di = {red,green,blue} 
• Constraints:  adjacent regions must have different colors 
 e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), 

(green,red), (green,blue), (blue,red), (blue,green)} 

Example:  Map-Coloring 

Solutions are complete (i.e., all variables are assigned 
values) and consistent (i.e., does not violate any 
constraints) assignments, e.g., WA = red, NT = green, Q 
= red, NSW = green, V = red, SA = blue, T = green 

Constraint Graph 

• Binary CSP: each constraint relates two variables 

 

• Constraint graph: nodes are variables, arcs are constraints 

Varieties of CSPs 

• Discrete variables 
– finite domains: 

• n variables, domain size d  O(dn) complete assignments 

• e.g., Boolean CSPs, Boolean satisfiability 

– infinite domains: 
• integers, strings, etc. 

• e.g., job scheduling, variables are start/end days for each job 

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3 

 

• Continuous variables 
– e.g., start/end times for Hubble Space Telescope 

observations 

– linear constraints solvable in polynomial time by linear 
programming 
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Varieties of Constraints 

• Unary constraints involve a single variable  

– e.g., SA ≠ green 

 

• Binary constraints involve pairs of variables 

– e.g., SA ≠ WA 

 

• Higher-order constraints involve 3 or more variables 

– e.g., cryptarithmetic  column  constraints 

Local Search for CSPs 

• Hill-climbing, simulated annealing, genetic 
algorithms typically work with "complete" states, 
i.e., all variables assigned 

• To apply to CSPs: 
– allow states with unsatisfied constraints 
– operators reassign variable values 

• Variable selection:  randomly select any conflicted 
variable 

• Value selection by min-conflicts heuristic: 
– choose value that violates the fewest constraints, i.e., 

hill-climb with f(n) = total number of violated constraints 

Local Search 
• Min-Conflicts Algorithm: 

– Assign to each variable a random value 

– While state not consistent 

• Pick a variable (randomly or with a heuristic) that 
has constraints violated 

• Find values that minimize the total number of 
violated constraints (over all variables) 

• If there is only one such value 

–Assign that value to the variable 

• If there are several values  

–Assign a random value from that set to the var 

Example:  4-Queens 

• States:  4 queens in 4 columns (44 = 256 states) 
• Actions:  move queen in column 
• Goal test:  no attacks 
• Evaluation function:  f(n) = total number of attacks 

 
 
 
 
 
 

 
f = 5 f = 2 f = 0 
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Min-Conflicts Algorithm Min-Conflicts Algorithm 

• Advantages 

– Simple and Fast:  Given random initial state, can solve n-
queens in almost constant time for arbitrary n with high 
probability (e.g., n = 1,000,000 can be solved on average in 
about 50 steps!) 

• Disadvantages 

– Only searches states that are reachable from the initial 
state 

• Might not search all state space 

– Does not allow worse moves (but can move to neighbor 
with same cost) 

• Might get stuck in a local optimum 

– Not complete  

• Might not find a solution even if one exists 

Standard Tree Search Formulation 

States are defined by all the values assigned so far 
 
• Initial state:  the empty assignment { } 
• Successor function: assign a value to an unassigned 

variable 
• Goal test:  the current assignment is complete:  all 

variables assigned a value and all constraints 
satisfied 
 

• Find any solution, so cost is not important 
• Every solution appears at depth n with n variables 

  use depth-first search 

DFS for CSPs 

• Variable assignments are commutative}, i.e., 
 [ WA=R then NT=G ] same as [ NT=G then WA=R ] 
• What happens if we do DFS with the order of 

assignments as B tried first, then G, then R? 
• Generate-and-test strategy: Generate candidate 

solution, then test if it satisfies all the constraints 
• This makes DFS look very stupid! 
• Example: 

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html  

V3 

V6 

V2 

R 
G 

V1 
V5 

V4 

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html
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Improved DFS: 
Backtracking w/ Consistency Checking 

• Don’t ever try a successor that causes inconsistency 
with its neighbors, i.e., perform consistency 
checking when node is generated 

• Successor function assigns a value to an unassigned 
variable that does not conflict with current 
assignments 

– Fail if no legal assignments (i.e., no successors) 

• Backtracking search is the basic uninformed 
algorithm for CSPs 

• Can solve n-Queens for n ≈ 25 

Backtracking w/ Consistency Checking 

Start with empty state 

while not all vars in state assigned a value do 

Pick a variable (randomly or with heuristic) 

if it has a value that does not violate any 
constraints 

then Assign that value 

else 

Go back to previous variable 

Assign it another value 

Backtracking Example 



7 

Australia Constraint Graph Backtracking Example 

Backtracking Example Backtracking Example 
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Backtracking Search 

• Depth-first search algorithm 
– Goes down one variable at a time 

– In a dead end, back up to last variable whose value 
can be changed without violating any constraints, 
and change it 

– If you backed up to the root and tried all values, 
then there are no solutions 

• Algorithm is complete 
– Will find a solution if one exists 

– Will expand the entire (finite) search space if 
necessary 

• Depth-limited search with limit = n 

Top-left 
node is 
hard to 
label! 

Improving Backtracking Efficiency 

• General-purpose heuristics can give huge 
gains in speed 

– Which variable should be assigned next? 

– In what order should its values be tried? 

– Can we detect inevitable failure early? 
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Which Variable Next? 
Most Constrained Variable 

• Most constrained variable: 

choose the variable with the fewest legal values 

 

 

 

• Called minimum remaining values (MRV) 
heuristic 

• Tries to cut off search asap 

Which Variable Next? 
Most Constraining Variable 

• Tie-breaker among most constrained 
variables 

• Most constraining variable: 

– choose the variable with the most constraints 
on remaining variables 

• Called degree heuristic 

• Tries to cut off search asap 

Which Value Next? 
Least Constraining Value 

• Given a variable, choose the least constraining 
value: 
– i.e., the one that rules out the fewest values in the 

remaining variables 
– try to pick values best first 

 
 
 

 
• Combining these heuristics makes 1000-Queens 

feasible 

Improvement:  Forward Checking 

• At start, for each variable, record the current set of all possible 
legal values for it 

• When you assign a value to a variable in the search, update the 
set of legal values for all unassigned variables.  Backtrack 
immediately if you empty a variable’s set of possible values. 

– What happens if we do DFS with the order of assignments as 
B tried first, then G, then R? 

– Example: http://www.cs.cmu.edu/~awm/animations/constraint/27f.html 

V3 

V6 

V2 

R 

G 

V1 
V5 

V4 

http://www.cs.cmu.edu/~awm/animations/constraint/27f.html


10 

Forward Checking Algorithm 

• Idea:  

– Keep track of remaining legal values for all unassigned 
variables 

– Terminate search when any variable has no legal values 

Forward Checking 

• Idea:  

– Keep track of remaining legal values for all unassigned 
variables 

– Terminate search when any variable has no legal values 

Forward Checking 

• Idea:  

– Keep track of remaining legal values for all unassigned 
variables 

– Terminate search when any variable has no legal values 

Forward Checking 

• Idea:  

– Keep track of remaining legal values for all unassigned 
variables 

– Terminate search when any variable has no legal values 
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Constraint Propagation 

• Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection for 
all failures: 

 

 

 

 

 

 

• NT and SA cannot both be blue! 

• Constraint propagation repeatedly enforces constraints 
locally with its neighbors 

Constraint Propagation 

Main idea:  When you delete a value from your 
domain, check all variables connected to you.  If any of 
them change, delete all inconsistent values connected 
to them, etc. 

In the above example, nothing changes 

Web Example: 
http://www.cs.cmu.edu/~awm/animations/constraint/27p.html 

V3 

V6 

V2 

R 

G 

V1 
V5 

V4 

Arc Consistency 

• Simplest form of propagation makes each arc consistent 

• X Y is consistent iff 

for every value x at X there is some allowed y, i.e., there is at 
least 1 value of Y that is consistent with x 

 

X = SA 
Y = NSW 

http://www.cs.cmu.edu/~awm/animations/constraint/27p.html
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Arc Consistency 

• Simplest form of propagation makes each arc consistent 

• X Y is consistent iff 

for every value x at X there is some allowed y;  if not, delete x 

 

X = NSW 
Y = SA 

Arc Consistency 

• Simplest form of propagation makes each arc consistent 

• X Y is consistent iff 

for every value x at X there is some allowed y;  if not, delete x 

 

 

 

 

 

 

 

 

• If X loses a value, all neighbors of X need to be rechecked 

X = V 
Y = NSW 

Arc Consistency 

• Simplest form of propagation makes each arc consistent 
• X Y is consistent iff 

for every value x at X there is some allowed y;  if not, delete x  
 
 
 
 
 
 
 
 
 
 

• If X loses a value, all neighbors of X need to be rechecked 
• Arc consistency detects failure earlier than forward checking 
• Can be run as a preprocessor or after each assignment 
 
 

X = SA 
Y = NT 

Australia Constraint Graph 
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Bottom-
right node 
must not 
be red 
because 
node to 
upper-left 
must not 
be black 

Arc Consistency Algorithm  “AC-3” 
function AC-3(csp)           // returns false if inconsistency is found and true otherwise 

    //     input:  csp, a binary CSP with components (X, D, C) 

    //     local variables:  queue, a queue of arcs; initially all arcs in csp 

    while queue not empty do 

        (Xi , Xj ) = Remove-First(queue) 

        if Revise(csp, Xi , Xj ) then  // make arc consistent 

            if size of Di = 0 then return false 

            foreach Xk in Xi.Neighbors – { Xj } do // propagate changes to neighbors 

                add (Xk , Xi ) to queue 

    return true 

 

function Revise(csp, Xi , Xj )       // returns true iff we revise the domain of Xi 

    revised = false 

    foreach x in Di do 

        if no value y in Dj allows (x, y) to satisfy the constraint betweeen Xi and Xj then 

            {delete x from Di ; revised := true} 

    return revised 

Check if 
Xi  Xj 

consistent 

Constraint Propagation 

• In this example, constraint propagation solves the problem 
without search … Not always that lucky! 

• Constraint propagation can be done as a preprocessing step  
(cheap) 

• Or it can be performed dynamically during the search.  
Expensive: when you backtrack, you must undo some of your 
additional constraints. 

V3 

V6 

V2 

R 

G 

V1 
V5 

V4 Extra Arc 

Combining Search with CSP 

• Idea:  Interleave search and CSP inference 

 

• Perform DFS 

– At each node assign a selected value to a selected 
variable 

– Run CSP to check if any inconsistencies arise as a 
result of this assignment 
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Combining Backtracking Search with CSP 

function BACKTRACKING-SEARCH(csp) returns a solution, or failure 
  return BACKTRACK({ }, csp) 
 
function BACKTRACK(assignment , csp) returns a solution, or failure 
  if assignment is complete then return assignment 
  var  ← SELECT-UNASSIGNED-VARIABLE(csp) 

  for each value in ORDER-DOMAIN-VALUES(var , assignment , csp) 
do 
    if value is consistent with assignment  then 
      add {var  = value} to assignment 
      inferences  ← INFERENCE(csp, var, value) 

      if inferences  failure  then 
        add inferences to assignment 
        result  ← BACKTRACK(assignment , csp) 

        if result  failure then 
          return result 
    remove {var = value} and inferences  from assignment 
  return failure 

Conflict-Directed Backjumping 

• Suppose we color Australia in this order: 
– WA = R 

– NSW = R 

– T = B 

– NT = B 

– Q = G 

– SA = ? 

• Deadend at SA 
– No possible solution with WA = NSW 

– Backtracking will try to change T on the way, even 
though it has nothing to do with the problem, before 
going to NSW 

Slide credit: R. Khoury 

Conflict-Directed Backjumping 

• Backtracking goes back one level in the 
search tree at a time 
– Chronological backtracking 

• Not rational in cases where the previous 
step is not involved with the conflict 

• Conflict-Directed Backjumping 
– Go back to a variable involved in the conflict 

– Skip several levels if needed to get there 

– Non-chronological backtracking 

Slide credit: R. Khoury 

Conflict-Directed Backjumping 

• Maintain a conflict set for each variable 

– List of previously-assigned variables that are related 
by constraints 

conf(WA) = {} 

conf(NSW) = {} 

conf(T) = {} 

conf(NT) = {WA} 

conf(Q) = {NSW,NT} 

conf(SA) = {WA,NSW,NT,Q} 

 When we hit a deadend, backjump to the 
most recent variable in the conflict set 

Slide credit: R. Khoury 
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Conflict-Directed Backjumping 

• Learn from a conflict by updating the 
conflict set of the variable we jumped to 

• Example:  Conflict at Xj  and backjump to Xi 

– conf(Xi) = {X1, X2, X3} 

– conf(Xj) = {X3, X4, X5, Xi} 

• conf(Xi) = conf(Xi)  conf(Xj) – {Xi}  

                  = {X1, X2, X3, X4, X5}  

• Xi absorbed the conflict set of Xj 

Slide credit: R. Khoury 

Conflict-Directed Backjumping 

• SA’s domain empty  deadend 
• SA backjumps to most recent var in conf(SA):  Q 

– Update  conf(Q) = {WA, NSW, NT} 
– Meaning: “There is no consistent solution from Q=G onwards, 

given preceding assignments WA=R, NSW=R and NT=B” 

conf(WA) = {} 

conf(NSW) = {} 

conf(T) = {} 

conf(NT) = {WA} 

conf(Q) = {NSW,NT} 

conf(SA) = {WA,NSW,NT,Q} 

conf(Q) = {WA,NSW,NT} 

conf(NT) = {WA,NSW} 

conf(NSW) = {WA} 

Slide credit: R. Khoury 

Conflict-Directed Backjumping 

conf(WA) = {} 

conf(NSW) = {} 

conf(T) = {} 

conf(NT) = {WA} 

conf(Q) = {NSW,NT} 

conf(SA) = {WA,NSW,NT,Q} 

conf(Q) = {WA,NSW,NT} 

conf(NT) = {WA,NSW} 

conf(NSW) = {WA} 

Slide credit: R. Khoury 

 Q’s domain empty  deadend 

 Q backjumps to NT (i.e., most recent var in conf(Q)) 
 Update  conf(NT) = {WA, NSW} 
 There is no consistent solution from NT=B onwards, given 

preceding assignments WA=R and NSW=R 

Conflict-Directed Backjumping 

conf(WA) = {} 

conf(NSW) = {} 

conf(T) = {} 

conf(NT) = {WA} 

conf(Q) = {NSW,NT} 

conf(SA) = {WA,NSW,NT,Q} 

conf(Q) = {WA,NSW,NT} 

conf(NT) = {WA,NSW} 

conf(NSW) = {WA} 

Slide credit: R. Khoury 

 Try NT=G (which is consistent with WA=R, NSW=R) 

 Retrying Q and SA fails again 

 So, there is no consistent solution from NT=G onwards, 
given preceding assignments WA=R and NSW=R 

 NT’s domain now empty  deadend 
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Conflict-Directed Backjumping 

conf(WA) = {} 

conf(NSW) = {} 

conf(T) = {} 

conf(NT) = {WA} 

conf(Q) = {NSW,NT} 

conf(SA) = {WA,NSW,NT,Q} 

conf(Q) = {WA,NSW,NT} 

conf(NT) = {WA,NSW} 

conf(NSW) = {WA} 

Slide credit: R. Khoury 

 NT backjumps to NSW 
 Update conf(NSW) = {WA}  

 Skips T, which is irrelevant in this conflict 

 Discovers the relationship between NSW and WA, which 
is not present in our constraints, so try NSW=G … 

Constraint Learning 

• When a contradiction occurs, remember the 
minimum set of variables from the conflict set 
that was responsible for the problem 

• Save these “no-goods” as new constraints so 
that they are never attempted again 
somewhere else in search 

• For example, {WA=R, NSW=R, NT=B} 

The Waltz Algorithm 
• One of the earliest examples of a computation posed as a CSP 

• The Waltz algorithm is used for interpreting line drawings of solid 
polyhedra 

Look at all intersections. 

What kind of intersection could this be? A  

 concave intersection of three faces? Or  

  an external convex intersection? 

Adjacent intersections impose constraints on each other.  Use CSP to 

find a unique set of labelings.  Important step to “understanding” the 

image. 

Waltz Algorithm on Simple Scenes 

Assume all objects: 

• Have no shadows or cracks 
• Three-faced vertices 
• “General position”: no junctions change with small movements of the eye. 

Then each line on image is one of the following 3 types: 

• Boundary line (edge of an object) (<) with right hand of arrow denoting “solid” 
and left hand denoting “space” 

• Interior convex edge (+) 
• Interior concave edge () 
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18 Legal Kinds of Junctions 

Given a representation of the diagram, label each junction in one of the above ways. 

The junctions must be labeled so that lines are labeled consistently at both ends. 

Can you formulate this as a CSP?  FUN FACT: Constraint Propagation always works 
perfectly. 

Junction 
Dictionary 

Waltz Examples Summary 
• CSPs are a special kind of problem: 

– states defined by values of a fixed set of variables 
– goal test defined by constraints on variable values 

 
• Backtracking = depth-first search with one variable assigned per node 

plus simple consistency checking 
 

• Variable ordering and value selection heuristics help significantly 
 

• Forward checking prevents assignments that guarantee later failure 
 

• Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies 

 
• Iterative min-conflicts is usually effective in practice 


