ML (cont.): DECISION TREES

CS540 Bryan R Gibson University of Wisconsin-Madison

Slides adapted from those used by Prof. Jerry Zhu, CS540-1 Some slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials and Chuck Dyer

x: Review

- The input (aka example, point, instance, item)
- Usually represented by a feature vector
 - Composed of features (aka attributes)
 - ► For decision trees (DTs), we focus on discrete features
 - (continuous features are possible, see end of slides)

Example: Mushrooms

Mushroom cap shapes

Mushroom cap surfaces

Annular rings

Example: Mushroom features

- 1. cap-shape: b=bell, c=conical, x=flat, k=knobbed, s=sunken
- 2. cap-surface: f=fibrous, g=grooves, y=scaly , s=smooth
- cap-color: n=brown, b=buff, c=cinnamon, g=gray, r=green, p=pink, u=purple, e=red, w=white, y=yellow
- 4. bruises?: t=bruises, f=no
- odor: a=almond, l=anise, c=creosote, y=fishy, f=foul, m=musty, n=none, p=pungent, s=spicy
- gill-attachment: a=attached, d=descending, f=free, n=notched

7. . . .

for example : $\mathbf{x}_1 = [\mathsf{b},\mathsf{g},\mathsf{r},\mathsf{t},\mathsf{f},\mathsf{n},\ldots]$

y: Review

- The output (aka label, target, goal)
- It can be ...
 - Continuous \rightarrow Regression (e.g. population prediction)
 - Discrete \rightarrow Classification (e.g. is mushroom x edible or poisonous?)

Example: Two Mushrooms

$$\mathbf{x}_1 = [\mathsf{x},\mathsf{s},\mathsf{n},\mathsf{t},\mathsf{p},\mathsf{f},\mathsf{c},\mathsf{n},\mathsf{k},\mathsf{e},\mathsf{e},\mathsf{s},\mathsf{s},\mathsf{w},\mathsf{w},\mathsf{p},\mathsf{w},\mathsf{o},\mathsf{p},\mathsf{k},\mathsf{s},\mathsf{u}]$$

$$y = \mathsf{p}$$

- 1. cap-shape: b=bell, c=conical, x=flat, k=knobbed, s=sunken
- 2. cap-surface: f=fibrous, g=grooves, y=scaly, s=smooth
- cap-color: n=brown, b=buff, c=cinnamon, g=gray, r=green, p=pink, u=purple, e=red, w=white, y=yellow
- 4. **bruises?**: t=bruises, f=no 5. ...

Supervised Learning: Review

- ▶ Training set: *n* pairs of example, label: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$
- A function (aka hypotheses) $f : \mathbf{x} \mapsto y$
- Hypothesis space (subset of function family): e.g. the set of dth order polynomials
- Goal: find the best function in the hypothesis space that generalizes well
- Performance measure:
 - MSE for regression,
 - accuracy or error rate for classification

Evaluating Classifiers: Review

- During training
 - Train classifier from a training set: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$.
- During testing
 - ► For new test data x_{n+1},..., x_{n+m}, classifier generates predicted labels: ŷ_{n+1},..., ŷ_{n+m}.
- Test set accuracy
 - ▶ Need to know the true test labels: y_{n+1}, \ldots, y_{n+m} .
 - Test set accuracy: acc = $\frac{1}{m} \sum_{i=n+1}^{n+m} \mathbb{1}\{y_i = \hat{y}\}$
 - ► Test set error rate: 1 acc

Decision Trees

- Another kind of classifier (SL)
 - The tree
 - Algorithm
 - Mutual Information of questions
 - Overfitting and Pruning
 - ► Extension: real-valued features, tree → rules, pro/con

Decision Trees (cont.)

- A decision tree has 2 kinds of nodes:
 - leaf node: has a class label determined by majority vote of training examples reaching that leaf
 - internal node: a question on features. Branches out according to the answers

Automobile Miles-Per-Gallon Prediction

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

A Small Decision Tree

A Bigger DT

The Full DT

The Decision Tree Algorithm

root.buildTree(examples, questions, default)

/* examples: a list of training examples
 questions: set of candidate questions (e.g. 'value of feature i?'')
 default: default label prediction (e.g. over-all majority vote) */

IF empty(examples) THEN this.setPrediction(default)
IF (examples all same label y) THEN this.setPrediction(y)
IF empty(questions) THEN this.setPrediction(examples maj. vote)

q = bestQuestion(examples, questions)

```
For j = 1..n answers to q
node = new Node;
this.addChild(node)
node.buildTree({examples|q=answer j}, {questions\q}, default)
```

The Best Question

- What we want: pure leaf nodes
- pure means all examples have (almost) the same label y
- \blacktriangleright A good question \rightarrow splits examples into pure child nodes
- How to measure how much "purity" results from a question?
- One possiblity (called Max-Gain in the book):

Mutual Information or Information Gain (a quantity from information theory)

- But this is a measure of change of purity
- ▶ We still need to find a measure of purity/impurity first ...

The Best Question: Entropy

• Imagine, at a node there are $n = n_1 + \ldots + n_k$ examples:

- n_1 examples have label y_1
- n₂ examples have label y₂
- ▶ ...
- n_k examples have label y_k
- What's the impurity of the node?
- Imagine this game:
 - I put all of the examples in a bag ...
 - then pull one out at random.
 - What is the probability the example has label y_i ?
- ► $p_i!$
- ▶ but how do we calculate p_i ?

The Best Question: Entropy (cont.)

• We'll estimate p_i from our examples:

- with probability $p_1 = \frac{n_1}{n}$, the example has label y_1
- with probability $p_2 = \frac{n_2}{n}$, the example has label y_2
- •
- with probability $p_k = \frac{n_k}{n}$, the example has label y_k
- so that $p_1 + p_2 + \ldots + p_k = 1$
- ► The "outcome" of the draw is a random variable y with probability (p₁, p₂,..., p_k)
- "What's the impurity of the node" is the same as asking:
 "What's the uncertainty of y in a random drawing"

The Best Question: Entropy Defined

$$H(Y) = \sum_{i=1}^{k} -Pr(Y = y_i) \log_2 Pr(Y = y_i)$$
$$= \sum_{i=1}^{k} -p_i \log_2 p_i$$

Interpretation:

Entropy (H) is the number of yes/no questions (bits) needed **on average** to pin down the value of y in a random drawing

The Best Question: Entropy, some examples

The Best Question: Conditional Entropy

$$H(Y \mid X = v) = \sum_{i=1}^{k} -Pr(Y = y_i \mid X = v) \log_2 Pr(Y = y_i \mid X = v)$$
$$H(Y \mid X) = \sum_{v \in \{\text{values of } X\}} Pr(X = v)H(Y \mid X = v)$$

► Y : label

- ▶ X : a question (e.g. a feature
- v : an answer to the question
- $Pr(Y \mid X = v)$: conditional probability

The Best Question: Information Gain

Information Gain, or Mutual Information

$$I(Y;X) = H(Y) - H(Y \mid X)$$

• Choose question (feature) X which maximizes I(Y;X)

 $\arg\max_X I(Y;X)$

The Best Question: Example

- Features: color, shape, size
- What's the best question at root?

The Best Question: Example, Information Gain

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

- $H(class) = H(\frac{3}{6}, \frac{3}{6}) = 1$
- ► H(class | color) = ³/₆ [H(²/₃, ¹/₃)] + ¹/₆ [H(1,0)] + ²/₆ [H(0,1)] = .46
 3 out of 6 are red, 2 of those are +;
 1 out of 6 is blue, that one is +;
 2 out of 6 are green, those are -
- I(class; color) = H(class) H(class | color) = 0.54 bits

The Best Question: Example, Information Gain (cont.)

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

- H(class) = 1
- I(class; color) = 0.54 bits
- $H(\text{class} \mid \text{shape}) = \frac{4}{6} \left[H(\frac{1}{2}, \frac{1}{2}) \right] + \frac{2}{6} \left[H(\frac{1}{2}, \frac{1}{2}) \right] = 1$
- I(class; shape) = H(class) − H(class | shape) = 0 bits
 Shape tells us nothing about class!

The Best Question: Example, Information Gain (cont.)

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

- H(class) = 1
- I(class; color) = 0.54 bits
- I(class; shape) = 0 bits
- ► $H(\text{class} \mid \text{size}) = \frac{4}{6} \left[H(\frac{3}{4}, \frac{1}{4}) \right] + \frac{2}{6} \left[H(0, 1) \right] = 0.54$
- ▶ I(class; size) = H(class) H(class | size) = 0.46 bits

The Best Question: Example, Information Gain (cont.)

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

- $\blacktriangleright \ H({\rm class}) = 1$
- I(class; color) = 0.54 bits
- I(class; shape) = 0 bits
- I(class; size) = 0.46 bits
- We select color as the question at root!

Overfitting Example: Predicting US Population

- ► Given some training data (n = 11)
- What will the population be in 2020?

x=Year	y=Millions
1900	75.995
1910	91.972
1920	105.71
1930	123.2
1940	131.67
1950	150.7
1960	179.32
1970	203.21
1980	226.51
1990	249.63
2000	281.42

Overfitting Example: Regression - Polynomial Fit

▶ The degree *d* (complexity of the model) is important:

$$f(x) = c_d x^d + c_{d-1} x^{d-1} + \ldots + c_1 x + c_0$$

► Want to fit (or learn) coefficients c_d,..., c₀ to minimize Mean Squared Error (MSE) on training data:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Matlab demo: USpopulation.m

Overfitting Example: Regression - Polynomial Fit (cont.)

As d increases, MSE on training set improves, but prediction outside data worsens

Overfitting a Decision Tree

- construct a special training set
- feature vector of five bits
- create every possible configuration (32 configurations)
- set y = e, then randomly flip 25% of the y labels

	а	b	С	d	е	У
(0	0	0	0	0	0
	0	0	0	0	1	0
	0	0	0	1	0	0
32 records	0	0	0	1	1	1
1	0	0	1	0	0	1
	:	•••	:	:	:	:
l	1	1	1	1	1	1

- Test set is constructed similarly
 - y = e, then a different 25% corrupted to y = \neg e
 - corruptions in training and test are independent
- > Training and Test sets have many identical feature, label pairs
- Some labels different between Training and Test

Building the full tree on the Training Set:

► Then classify the Test Set with the learned tree:

rupted - independent of the training data.

On average:

- $\frac{3}{4}$ of training data uncorrupted
 - ▶ $\frac{3}{4}$ of these are uncorrupted in test \rightarrow correct predicted labels ▶ $\frac{1}{4}$ of these are corrupted in test \rightarrow incorrect predictions
- \blacktriangleright $\frac{1}{4}$ of training data corrupted
 - ▶ $\frac{3}{4}$ of these are uncorrupted in test \rightarrow incorrect predictions ▶ $\frac{1}{4}$ of these are also corrupted in test \rightarrow correct predictions
- Test Set Accuracy = $\begin{pmatrix} 3\\4 \end{pmatrix} \begin{pmatrix} 3\\4 \end{pmatrix} + \begin{pmatrix} 1\\4 \end{pmatrix} \begin{pmatrix} 1\\4 \end{pmatrix} = \frac{5}{8} = 62.5\%$

Overfitting a Decision Tree

but if we knew a,b,c,d were irrelevant features and didn't use them in the tree . . .

The tree would be ...

- In test data, $\frac{1}{4}$ of the y's are different from e.
- Test accuracy = ?
- Test accuracy $= \frac{3}{4} = 75\%$
- (better than full tree test accuracy of 62.5%!)

 In the full tree, we overfit by learning non-existent relations (noise)

Avoiding Overfitting: Pruning

How to prune with a tuning set:

- 1. Randomly split data into TRAIN and TUNE sets (say 70% and 30% for instance)
- 2. Build a full tree using only TRAIN
- 3. Prune the tree using the **TUNE set** (next page shows a greedy version)

Greedy Pruning Algorithm

Prune(tree T, TUNE set)

- 1. compute T's accuracy on TUNE, call it A(T)
- 2. For every internal node N in T:
 - 2.1 Create new tree T_N by: copy $T, \, {\rm but} \, {\rm prune}$ (delete) subtree under N
 - 2.2 N becomes a leaf node in $T_N\colon$ label is majority vote of TRAIN examples reaching N
 - 2.3 Calculate $A(T_N) = T_N$'s accuracy on TUNE
- 3. Find T^* , the tree (among T_N 's and T) with largest A()
- 4. Set $T \leftarrow T^*$ (pruning!)
- Repeat from step 1 until no more improvement available (A() does not increase)
- 6. Return T (the fully pruned tree)

Real-valued Features

- ► What if some (or all) of the features x₁, x₂,..., x_k are real-valued?
- Example: $x_1 =$ height (in inches)
- Idea 1: branch on each possible numerical value (fragments the training data, prone to overfitting, with caveat)
- ► Idea 2: use questions like (x₁ > t?), where t is a threshold. There are fast ways to try all(?) t.

$$\begin{aligned} H(y \mid x_i > t?) &= p(x_i > t) H(y \mid x_i > t) + p(x_i \le t) H(y \mid x_i \le t) \\ I(y; x_i > t?) &= H(y) - H(y \mid x_i > t?) \end{aligned}$$

What does the feature space look like?

Axis-parallel cuts

Trees as Rules

- ▶ Each path, from root to a leaf, corresponds to a rule
 - antecedent is all of decistions leading to leaf
 - consequent is classification at the leaf node
- ► For example:

from the tree in color/shape/size example, we can generate:

IF ([color]=red) AND ([size]=big) THEN +

Summary

Decision trees are popular tools for data mining

- Easy to understand
- Easy to implement
- Easy to use
- Computationally cheap
- Overfiting might happen \rightarrow pruning!
- We've used decision trees for classification (predict categorical output from categorical or real inputs)

What you should know

- Trees for classification
- Top-down tree construction algorithm
- Information Gain (includes Entropy and Conditional Entropy)
- Overfitting
- Pruning
- Dealing with real-valued features