
ML (cont.): DECISION TREES

CS540 Bryan R Gibson University of Wisconsin-Madison

Slides adapted from those used by Prof. Jerry Zhu, CS540-1
Some slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials and
Chuck Dyer

1 / 45

http://www.cs.cmu.edu/~awm/tutorials

x: Review

I The input (aka example, point, instance, item)

I Usually represented by a feature vector

I Composed of features (aka attributes)

I For decision trees (DTs), we focus on discrete features

I (continuous features are possible, see end of slides)

2 / 45

Example: Mushrooms

3 / 45

Example: Mushroom features

1. cap-shape: b=bell, c=conical, x=flat, k=knobbed, s=sunken

2. cap-surface: f=fibrous, g=grooves, y=scaly , s=smooth

3. cap-color: n=brown, b=buff, c=cinnamon, g=gray, r=green,
p=pink, u=purple, e=red, w=white, y=yellow

4. bruises?: t=bruises, f=no

5. odor: a=almond, l=anise, c=creosote, y=fishy, f=foul,
m=musty, n=none, p=pungent, s=spicy

6. gill-attachment: a=attached, d=descending, f=free,
n=notched

7. . . .

for example : x1 = [b,g,r,t,f,n,...]

4 / 45

y: Review

I The output (aka label, target, goal)

I It can be . . .
I Continuous → Regression (e.g. population prediction)

I Discrete → Classification (e.g. is mushroom x edible or
poisonous?)

5 / 45

Example: Two Mushrooms

I x1 = [x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u]
y = p

I x2 = [x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g]
y = e

1. cap-shape: b=bell, c=conical, x=flat, k=knobbed, s=sunken

2. cap-surface: f=fibrous, g=grooves, y=scaly , s=smooth

3. cap-color: n=brown, b=buff, c=cinnamon, g=gray, r=green,
p=pink, u=purple, e=red, w=white, y=yellow

4. bruises?: t=bruises, f=no

5. . . .

6 / 45

Supervised Learning: Review

I Training set: n pairs of example,label: (x1, y1), . . . , (xn, yn)

I A function (aka hypotheses) f : x 7→ y

I Hypothesis space (subset of function family): e.g. the set of
dth order polynomials

I Goal: find the best function in the hypothesis space that
generalizes well

I Performance measure:
I MSE for regression,
I accuracy or error rate for classification

7 / 45

Evaluating Classifiers: Review

I During training
I Train classifier from a training set: (x1, y1), . . . , (xn, yn).

I During testing
I For new test data xn+1, . . . ,xn+m, classifier generates

predicted labels: ŷn+1, . . . , ŷn+m.

I Test set accuracy
I Need to know the true test labels: yn+1, . . . , yn+m.

I Test set accuracy: acc = 1
m

∑n+m
i=n+1 1{yi = ŷ}

I Test set error rate: 1− acc

8 / 45

Decision Trees

I Another kind of classifier (SL)
I The tree
I Algorithm
I Mutual Information of questions
I Overfitting and Pruning
I Extension: real-valued features, tree 7→ rules,

pro/con

9 / 45

Decision Trees (cont.)

I A decision tree has 2 kinds of nodes:

I leaf node: has a class label determined by majority vote of
training examples reaching that leaf

I internal node: a question on features. Branches out according
to the answers

10 / 45

Automobile Miles-Per-Gallon Prediction

mpg cylinders displacement horsepower weight acceleration modelyear maker
good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

11 / 45

A Small Decision Tree

root
22 18

root
22 18

cylinders=3
0 0

cylinders=4
4 17

cylinders=5
1 0

cylinders=6
8 0

cylinders=8
9 1

number bad
number good

Internal node question: ”number of cylinders?”

Predict Bad Predict Good Predict Bad Predict Bad Predict Bad

Leaves: classify by majority vote

12 / 45

A Bigger DT

root
22 18

cylinders=3
0 0

cylinders=4
4 17

maker=am
0 10

maker=as
2 5

maker=eur
2 2

cylinders=5
1 0

cylinders=6
8 0

cylinders=8
9 1

hrspwr=l
0 0

hrspwr=m
0 1

hrspwr=h
9 0

Predict Bad Predict Bad Predict Bad

Predict Good Predict Good Predict Bad Predict Bad Predict Good Predict Bad

”where’s it made?” ”what’s the horsepower”

13 / 45

The Full DT

internal
22 18

cylinders=3
0 0

cylinders=4
4 17

maker=am
0 10

maker=as
2 5

hrspwr=l
0 4

hrspwr=m
2 1

accel=l
1 0

accel=m
1 1

accel=h
0 0

hrspwr=h
0 0

maker=eur
2 2

accel=l
1 0

accel=m
0 1

accel=h
1 1

myr=70t74
0 1

myr=75t78
1 0

myr=79t83
0 0

cylinders=5
1 0

cylinders=6
8 0

cylinders=8
9 1

hrspwr=l
0 0

hrspwr=m
0 1

hrspwr=h
9 0

Predict Bad Predict Bad Predict Bad

Predict Good

Predict Good Predict Bad

Predict Bad Predict Bad Predict Bad

Predict Bad Predict Good Predict Bad

Predict Bad Predict Good

Predict Good Predict Bad Predict Bad

1. Don’t split: all instances same label (pure)

2.Can’t split: when no more questions (not true here)

14 / 45

The Decision Tree Algorithm

root.buildTree(examples,questions,default)

/* examples: a list of training examples

questions: set of candidate questions (e.g.‘‘value of feature i?’’)

default: default label prediction (e.g. over-all majority vote) */

IF empty(examples) THEN this.setPrediction(default)

IF (examples all same label y) THEN this.setPrediction(y)

IF empty(questions) THEN this.setPrediction(examples maj. vote)

q = bestQuestion(examples, questions)

For j = 1..n answers to q

node = new Node;

this.addChild(node)

node.buildTree({examples|q=answer j},{questions\q},default)

15 / 45

The Best Question

I What we want: pure leaf nodes

I pure means all examples have (almost) the same label y

I A good question → splits examples into pure child nodes

I How to measure how much “purity” results from a question?

I One possiblity (called Max-Gain in the book):

Mutual Information or Information Gain
(a quantity from information theory)

I But this is a measure of change of purity

I We still need to find a measure of purity/impurity first . . .

16 / 45

The Best Question: Entropy

I Imagine, at a node there are n = n1 + . . .+ nk examples:
I n1 examples have label y1
I n2 examples have label y2
I . . .
I nk examples have label yk

I What’s the impurity of the node?
I Imagine this game:

I I put all of the examples in a bag . . .
I then pull one out at random.
I What is the probability the example has label yi?

I pi!

I but how do we calculate pi?

17 / 45

The Best Question: Entropy (cont.)

I We’ll estimate pi from our examples:
I with probability p1 = n1

n , the example has label y1
I with probability p2 = n2

n , the example has label y2
I . . .
I with probability pk = nk

n , the example has label yk

I so that p1 + p2 + . . .+ pk = 1

I The “outcome” of the draw is a random variable y with
probability (p1, p2, . . . , pk)

I “What’s the impurity of the node” is the same as asking:
“What’s the uncertainty of y in a random drawing”

18 / 45

The Best Question: Entropy Defined

H(Y) =

k∑
i=1

−Pr(Y = yi) log2 Pr(Y = yi)

=

k∑
i=1

−pi log2 pi

Interpretation:

Entropy (H) is the number of yes/no questions (bits)
needed on average to pin down the value of y in a
random drawing

19 / 45

The Best Question: Entropy, some examples

20 / 45

The Best Question: Conditional Entropy

H(Y | X = v) =

k∑
i=1

−Pr(Y = yi | X = v) log2 Pr(Y = yi | X = v)

H(Y | X) =
∑

v∈{values ofX}

Pr(X = v)H(Y | X = v)

I Y : label

I X : a question (e.g. a feature

I v : an answer to the question

I Pr(Y | X = v) : conditional probability

21 / 45

The Best Question: Information Gain

I Information Gain, or Mutual Information

I(Y ;X) = H(Y)−H(Y | X)

I Choose question (feature) X which maximizes I(Y ;X)

argmax
X

I(Y ;X)

22 / 45

The Best Question: Example

I Features: color, shape, size

I What’s the best question at root?

+ -

23 / 45

The Best Question: Example, Information Gain

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

+ -

I H(class) = H
(
3
6 ,

3
6

)
= 1

I H(class | color) = 3
6

[
H(23 ,

1
3)
]
+ 1

6 [H(1, 0)]+ 2
6 [H(0, 1)] = .46

3 out of 6 are red, 2 of those are +;
1 out of 6 is blue, that one is +;
2 out of 6 are green, those are -

I I(class; color) = H(class)−H(class | color) = 0.54 bits

24 / 45

The Best Question: Example, Information Gain (cont.)

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

+ -

I H(class) = 1

I I(class; color) = 0.54 bits

I H(class | shape) = 4
6

[
H(12 ,

1
2)
]
+ 2

6

[
H(12 ,

1
2)
]
= 1

I I(class; shape) = H(class)−H(class | shape) = 0 bits

Shape tells us nothing about class!

25 / 45

The Best Question: Example, Information Gain (cont.)

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

+ -

I H(class) = 1

I I(class; color) = 0.54 bits

I I(class; shape) = 0 bits

I H(class | size) = 4
6

[
H(34 ,

1
4)
]
+ 2

6 [H(0, 1)] = 0.54

I I(class; size) = H(class)−H(class | size) = 0.46 bits

26 / 45

The Best Question: Example, Information Gain (cont.)

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

+ -

I H(class) = 1

I I(class; color) = 0.54 bits

I I(class; shape) = 0 bits

I I(class; size) = 0.46 bits

I We select color as the question at root!

27 / 45

Overfitting Example: Predicting US Population

I Given some training data
(n = 11)

I What will the population be
in 2020?

x=Year y=Millions
1900 75.995
1910 91.972
1920 105.71
1930 123.2
1940 131.67
1950 150.7
1960 179.32
1970 203.21
1980 226.51
1990 249.63
2000 281.42

28 / 45

Overfitting Example: Regression - Polynomial Fit

I The degree d (complexity of the model) is important:

f(x) = cdx
d + cd−1x

d−1 + . . .+ c1x+ c0

I Want to fit (or learn) coefficients cd, . . . , c0 to minimize
Mean Squared Error (MSE) on training data:

MSE =
1

n

n∑
i=1

(yi − f(xi))
2

I Matlab demo: USpopulation.m

29 / 45

Overfitting Example: Regression - Polynomial Fit (cont.)

As d increases, MSE on training set improves,
but prediction outside data worsens

degree MSE
0 4181.4526
1 79.6005
2 9.3469
3 9.2896
4 7.4201
5 5.3101
6 2.4932
7 2.2783
8 1.2580
9 0.0014

10 0.0000

30 / 45

Overfitting a Decision Tree

I construct a special training set

I feature vector of five bits

I create every possible configuration (32 configurations)

I set y = e, then randomly flip 25% of the y labels

a b c d e y

32 records

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 0 0 1
: : : : : :
1 1 1 1 1 1

31 / 45

Overfitting a Decision Tree (cont.)

I Test set is constructed similarly
I y = e, then a different 25% corrupted to y = ¬ e
I corruptions in training and test are independent

I Training and Test sets have many identical feature, label pairs

I Some labels different between Training and Test

32 / 45

Overfitting a Decision Tree (cont.)

I Building the full tree on the Training Set:

root

e=0

a=0 a=1

e=1

a=0 a=1

Training set accuracy = 100%

Remember: 25% of nodes are corrupted (y 6= e)

33 / 45

Overfitting a Decision Tree (cont.)

I Then classify the Test Set with the learned tree:

root

e=0

a=0 a=1

e=1

a=0 a=1

Different 25% corrupted - independent of the training data.

34 / 45

Overfitting a Decision Tree (cont.)

On average:
I 3

4 of training data uncorrupted
I 3

4 of these are uncorrupted in test → correct predicted labels
I 1

4 of these are corrupted in test → incorrect predictions

I 1
4 of training data corrupted

I 3
4 of these are uncorrupted in test → incorrect predictions

I 1
4 of these are also corrupted in test → correct predictions

I Test Set Accuracy =
(
3
4

) (
3
4

)
+
(
1
4

) (
1
4

)
= 5

8 = 62.5%

35 / 45

Overfitting a Decision Tree

I but if we knew a,b,c,d were irrelevant features and didn’t use
them in the tree . . .

a b c d e y

32 records

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 0 0 1
: : : : : :
1 1 1 1 1 1

Pretend these don’t exist

36 / 45

Overfitting a Decision Tree (cont.)

I The tree would be . . .

root

e=0 e=1

In training data,

about 3
4 y’s are 0 here.

Majority vote predicts y=0

In training data,

about 3
4 y’s are 1 here.

Majority vote predicts y=1

I In test data, 1
4 of the y’s are different from e.

I Test accuracy = ?

I Test accuracy = 3
4 = 75%

I (better than full tree test accuracy of 62.5%!)

37 / 45

Overfitting a Decision Tree (cont.)

I In the full tree, we overfit by learning non-existent relations
(noise)

root

e=0

a=0 a=1

e=1

a=0 a=1

38 / 45

Avoiding Overfitting: Pruning

How to prune with a tuning set:

1. Randomly split data into TRAIN and TUNE sets
(say 70% and 30% for instance)

2. Build a full tree using only TRAIN

3. Prune the tree using the TUNE set
(next page shows a greedy version)

39 / 45

Greedy Pruning Algorithm

Prune(tree T , TUNE set)

1. compute T ’s accuracy on TUNE, call it A(T)

2. For every internal node N in T :

2.1 Create new tree TN by: copy T , but prune (delete) subtree
under N

2.2 N becomes a leaf node in TN : label is majority vote of TRAIN
examples reaching N

2.3 Calculate A(TN) = TN ’s accuracy on TUNE

3. Find T ∗, the tree (among TN ’s and T) with largest A()

4. Set T ← T ∗ (pruning!)

5. Repeat from step 1 until no more improvement available
(A() does not increase)

6. Return T (the fully pruned tree)

40 / 45

Real-valued Features

I What if some (or all) of the features x1, x2, . . . , xk are
real-valued?

I Example: x1 = height (in inches)

I Idea 1: branch on each possible numerical value
(fragments the training data, prone to overfitting, with
caveat)

I Idea 2: use questions like (x1 > t?), where t is a threshold.
There are fast ways to try all(?) t.

H(y | xi > t?) = p(xi > t)H(y | xi > t) + p(xi ≤ t)H(y | xi ≤ t)

I(y;xi > t?) = H(y)−H(y | xi > t?)

41 / 45

What does the feature space look like?

Axis-parallel cuts

42 / 45

Trees as Rules

I Each path, from root to a leaf, corresponds to a rule
I antecedent is all of decistions leading to leaf
I consequent is classification at the leaf node

I For example:
from the tree in color/shape/size example, we can generate:

IF ([color]=red) AND ([size]=big) THEN +

43 / 45

Summary

I Decision trees are popular tools for data mining
I Easy to understand
I Easy to implement
I Easy to use
I Computationally cheap

I Overfiting might happen → pruning!

I We’ve used decision trees for classification
(predict categorical output from categorical or real inputs)

44 / 45

What you should know

I Trees for classification

I Top-down tree construction algorithm

I Information Gain (includes Entropy and Conditional Entropy)

I Overfitting

I Pruning

I Dealing with real-valued features

45 / 45

