
1 

Supervised Learning Methods 

• k-nearest-neighbor (k-NN) 

• Neural networks (ANN) 

• Support vector machines (SVM) 

• Decision trees 

Inductive Concept Learning by 
Learning Decision Trees 

• Goal: 
Build a decision tree for classifying examples 
as positive or negative instances of a concept 

– is a form of supervised learning 

– uses batch processing of training examples 

– uses a preference bias 
• Learning can be viewed as searching the Hypothesis 

Space H of possible h functions, y = h(x)  
• Preference bias:  define a metric for comparing h’s so 

as to determine whether one is better than another 

Inductive Concept Learning by 
Learning Decision Trees 

• A decision tree is a tree in which: 

– each non-leaf node has associated with it an 
attribute/feature 

– each leaf node has associated with it a 
classification (class label, e.g., + or -) 

– each arc has associated with it one of the possible 
values of the attribute of its parent node (i.e., 
node from where the arc is directed) 

Inductive Concept Learning by 
Learning Decision Trees 

Suit 

Rank - 

clubs hearts spades 

- + Size 

- + 

large small 

9 jack 10 

Size 

+ - 

large small 

Interior node = feature Leaf node = classification arc = value 

- 

diamonds 

… … 



2 

Example: Mushroom Classification 

http://www.usask.ca/biology/fungi/ 

Edible or 

Poisonous? 

Mushroom Features 
1. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, 

sunken=s  

2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s  

3. cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, 
pink=p, purple=u, red=e, white=w, yellow=y  

4. bruises?: bruises=t, no=f  

5. odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, 
musty=m, none=n, pungent=p, spicy=s  

6. gill-attachment: attached=a, descending=d, free=f, 
notched=n 

7. …  

Classes:  edible=e, poisonous=p 

Using a Decision Tree 

• A Decision Tree is used as a classifier by taking a 
given input example, which is given by its feature 
vector, and: 

1. The attribute at the root node of the tree is 
interpreted as a question, and the answer is 
determined by the value of that feature in the 
input example 

2. Answer determines which child node to move to 

3. Repeat until a leaf node is reached; class label at 
leaf is the classification given to the input 
example 

Inductive Concept Learning by 
Learning Decision Trees 

 

• What is the best decision tree? 

• Preference Bias: Ockham's Razor 
– The simplest hypothesis that is consistent with all 

observations is most likely 

– The smallest decision tree that correctly classifies all 
of the training examples is best 

• Finding the provably smallest decision tree is an 
NP-Hard problem, so instead construct one that 
is “pretty small” 



3 

Ockham's Razor 

“Everything should be made as 

simple as possible, but not 

simpler.”    – Albert Einstein 

Decision Tree Construction 
using a Greedy Algorithm 

• Aka ID3 or C5.0 

• Top-down construction of the decision tree: 
1. Select the "best attribute" to use for the new node 

at the current level in the tree 

2. For each possible value of the selected attribute: 

a) Partition the examples using the possible values 
of this attribute, and assign these subsets of 
the examples to the appropriate child node 

b) Recursively generate each child node until (ideally) 
all examples for a node are either all + or all - 

Decision Tree Algorithm 
buildtree(examples, attributes, default) 
/* examples: a list of training examples 

     attributes: a set of candidate questions, e.g., “what’s the value of attribute xi?” 

     default: default label prediction, e.g., over-all majority vote */ 

IF empty(examples) THEN return(default) 

IF (examples have same label y) THEN return(y) 

IF empty(attributes) THEN return(majority vote in examples) 

q = best_attribute(examples, attributes)  

Let there be n possible values of attribute q 

– Create and return an internal node with n children 

– The ith child is built by calling  

buildtree({example|q=ith value}, attributes-{q}, default) 

Decision Tree Algorithm 

• How could the “best attribute” be chosen? 

– Random:  choose any attribute at random  

– Least-Values:  choose the attribute with the 
smallest number of possible values 

– Most-Values:  choose the attribute with the 
largest number of possible values 

– Max-Gain:  choose the attribute that has the 
largest expected information gain 



4 

Information Gain 

 

• How is the information gain determined? 

– goal: try to select the attribute that will result in 
the smallest expected size of the sub-trees rooted 
at its children 

– use information theory 

Information Theory 

• How many yes/no questions would you expect 
to ask to determine which number I'm 
thinking of in the range 1 to 100? 

7 

• With each yes/no question in the optimal 
decision tree at most 1/2 of the elements 
remaining can be eliminated 

log2100 = 6.64 

Information Theory 

 

• Given a set S of size |S|, the expected work 
required to determine a specific element is: 

log2 |S| 

 

• Call this value the information value of being 
told the element rather than having to work 
for it (by asking questions) 

Entropy 

• At the current node, say there are n = n1 + … + nk 
examples  
– n1 examples have label y1 

– n2 examples have label y2 

– … 

– nk examples have label yk 

 

• What’s the impurity/inhomogeneity/disorder of the 
examples at this node? 

• Turn it into a game:  If I put these examples in a bag, 
and grab one at random, what is the probability the 
example has label yi?  

 



5 

Entropy 

• Probability estimated from the given samples:  

 with probability p1 = n1/n the example has label y1 

 with probability p2 = n2/n the example has label y2 

 … 

 with probability pk = nk/n the example has label yk 

• p1 + p2 + … + pk = 1 

• The “outcome” of the draw is a random variable y with 
probability (p1, p2, …, pk) 

• What’s the impurity/disorder of the node?    

 What’s the uncertainty of y in a random drawing? 

 

Entropy  

• Interpretation:  The number of yes/no questions 
(bits) needed on average to pin down the value of y 
in a random drawing 

 













k

i

ii

k

i

ii

pp

yYyYYH

1

2

1

2

log

)Pr(log)Pr()(

Entropy:  H(Y) 

• H measures the information content in bits 
associated with a set of examples  

• 0  H(Y) 
where 0 is no information, and 1 is maximum 
information (for a 2-class Y) 

• Bit 

– information needed to answer a yes/no question 

– a real value, not binary bits 

Information Theory 

• Given S = P U N, where P and N are two 
disjoint sets, how hard is it to determine 
which element I am thinking of in S? 

 

if x is in P, 
then log2p questions needed, where p = |P| 

if x is in N, 
then log2n questions needed, where n = |N| 



6 

Information Theory 

 

• So, the expected number of questions that 
have to be asked is: 

(Prob(x P) * log2p) + (Prob(x N) * log2n) 

• or, equivalently, 

(p/(p+n)) log2p + (n/(p+n)) log2n 

Information Extremes 

• 2 classes:  + and - 

• Perfect Balance (Maximum Inhomogeneity): 

given p+ = p- = ½ 

H(Y)      =  - ½ log2 ½ - ½ log2 ½ 

              =  -½ (log21 - log22) - ½ (log21 - log22) 

              =  -½ (0 - 1) - ½ (0 - 1) 

              =  ½ + ½ 

              =  1   ( the entropy is large) 

• “High Entropy” means Y is from a nearly uniform 
distribution 

A histogram of the frequency 

distribution of values of Y 

would be nearly flat 

Information Extremes 

• 2 classes:  + and - 

• Perfect Homogeneity: 

given p+ = 1 and p- = 0 

H(Y)    =  -1 log2 1 - 0 log2 0 

            =  -1 (0) - ??? 

            =  -0 - 0 

            =  0   ( no information content) 

• “Low Entropy” means Y is from a varied (peaks and 
valleys) distribution 

 

 

A histogram of the 

frequency distribution of 

values of Y would have 

many lows and one or two 

highs 

Entropy 

H 

p+ 



7 

Entropy 

Pr(head) = 0.5 

Pr(tail) = 0.5 

H = 1 

Pr(head) = 0.51 

Pr(tail) = 0.49 

H = 0.9997 

biased 

coin 

Conditional Entropy 

 

 

 

 

• Y:  a label 

• X:  an attribute  (i.e., feature or question) 

• v:  a value of the attribute 

• Pr(Y|X=v):  conditional probability 

• Textbook calls H(Y|X) the Remainder(X) 










Xv

k

i

ii

vXYHvXXYH

vXyYvXyYvXYH

 of values:

1

2

)|()Pr()|(

)|Pr(log)|Pr()|(

Conditional Entropy:  H(Y | X) 

• Weighted sum of the entropy of each subset of 
the examples partitioned by the possible values of 
the attribute X 

• Weighted sum of the entropy at each child node 
generated by attribute X 

• Measures the total “impurity,” "disorder" or 
"inhomogeneity“ of the children nodes 

• 0  H(Y | X)  1 

 

Conditional Entropy:  H(Y|X=v) 

X Y 

Math Yes 

History No 

CS Yes 

Math No 

Math No 

CS Yes 

History No 

Math Yes 

Suppose I’m trying to predict output Y and I have input X 

Let’s assume this reflects the true probabilities 

From this data we estimate 

• Pr(LikeG = Yes) = 0.5 

• Pr(Major = Math & LikeG = No) = 0.25 

• Pr(Major = Math) = 0.5 

• Pr(LikeG = Yes | Major = History) = 0 

Note: 

• H(X) =  

• H(Y) = 1 

 

X = College Major 

Y = Likes “Gladiator” 

 



8 

Definition of Specific Conditional Entropy: 

 H(Y | X=v) = entropy of Y among only 

those records in which X has value v 

 

X = College Major 

Y = Likes “Gladiator” 

 

X Y 

Math Yes 

History No 

CS Yes 

Math No 

Math No 

CS Yes 

History No 

Math Yes 

Specific Conditional Entropy:  H(Y|X=v) 

Definition of Specific Conditional Entropy: 

 H(Y | X=v) = entropy of Y among only 

those records in which X has value v 

Example: 

• H(Y | X=Math) = 1 

• H(Y | X=History) = 0 

• H(Y | X=CS) = 0 

X = College Major 

Y = Likes “Gladiator” 

 

X Y 

Math Yes 

History No 

CS Yes 

Math No 

Math No 

CS Yes 

History No 

Math Yes 

Specific Conditional Entropy:  H(Y|X=v) 

Conditional Entropy:  H(Y|X) 

Definition of Conditional Entropy: 

H(Y | X) = average specific conditional 

entropy of Y 

= if you choose a record at random what will 

be the conditional entropy of Y, conditioned on 

that row’s value of X 

= Expected number of bits to transmit Y if 

both sides know the value of X 

= Σj Pr(X=vj) H(Y | X = vj) 

X = College Major 

Y = Likes “Gladiator” 

 

X Y 

Math Yes 

History No 

CS Yes 

Math No 

Math No 

CS Yes 

History No 

Math Yes 

Conditional Entropy 
Definition of Conditional Entropy: 

 H(Y | X) = average conditional entropy of Y 

= ΣjPr(X=vj) H(Y | X = vj) 

X = College Major 

Y = Likes “Gladiator” 

 

Example: 

vj Pr(X =vj) H(Y | X = vj) 

Math 0.5 1 

History 0.25 0 

CS 0.25 0 

H(Y |X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5 

X Y 

Math Yes 

History No 

CS Yes 

Math No 

Math No 

CS Yes 

History No 

Math Yes 



9 

Information Gain 

• Information gain, or mutual information 

 

 

• Measures the difference in entropy of a node and the 
entropy remaining after the node’s examples are “split 
up” between the children using a chosen attribute 

• I(Y; X) = I must transmit Y. How many bits on average 
would it save me if both ends of the line knew X? 

• Choose the attribute (i.e., feature or question) X that         
maximizes I(Y; X) 

• Textbook calls I(Y; X) the Gain(X) 

)|()();( XYHYHXYI 

Using Information Gain to 
Select the Best Attribute 

 

• Goal: Construct a small decision tree that 
correctly classifies the training examples 

• Why would high information gain be desirable? 

– means more of the examples are the same class in the 
child nodes 

– the decision trees rooted at each child that are 
needed to differentiate between the classes should be 
small 

Using Information Gain 

B
ef

o
re

 s
p

li
t 

S
p

li
t 

1
 

S
p

li
t 

2
 

+           - 

Example 
• Features: color, shape, size 

• What’s the best attribute for the root? 



10 

The Training Set 

Example Color Shape Size  Class  

1 Red Square Big + 

2 Blue Square Big + 

3  Red Circle Big + 

4 Red Circle Small - 

5 Green Square Small - 

6 Green Square Big - 

H(class)= 

H(class | color)= 

 green is -  blue is + 

Example Color Shape Size  Class  

1 Red Square Big + 

2 Blue Square Big + 

3  Red Circle Big + 

4 Red Circle Small - 

5 Green Square Small - 

6 Green Square Big - 

H(class)= H(3/6,3/6) = 1 

H(class | color)= 3/6 * H(2/3,1/3) + 1/6 * H(1,0) + 2/6 * H(0,1) 

3 out of 6 

are red 

1 out of 6 

is blue 

2 out of 6 

are green 

2 of the red 

are + 

Example Color Shape Size  Class  

1 Red Square Big + 

2 Blue Square Big + 

3  Red Circle Big + 

4 Red Circle Small - 

5 Green Square Small - 

6 Green Square Big - 

H(class)= H(3/6,3/6) = 1 

H(class | color)= 3/6 * H(2/3,1/3) + 1/6 * H(1,0) + 2/6 * H(0,1) 

I(class; color) = H(class) – H(class | color) = 0.54 bits 

Example Color Shape Size  Class  

1 Red Square Big + 

2 Blue Square Big + 

3  Red Circle Big + 

4 Red Circle Small - 

5 Green Square Small - 

6 Green Square Big - 

H(class)= H(3/6,3/6) = 1 

H(class | shape)= 4/6 * H(1/2, 1/2) + 2/6 * H(1/2,1/2)  

I(class; shape) = H(class) – H(class | shape) = 0 bits 

Shape tells us 

nothing about the 

class! 



11 

Example Color Shape Size  Class  

1 Red Square Big + 

2 Blue Square Big + 

3  Red Circle Big + 

4 Red Circle Small - 

5 Green Square Small - 

6 Green Square Big - 

H(class)= H(3/6,3/6) = 1 

H(class | size)= 4/6 * H(3/4, 1/4) + 2/6 * H(0,1)  

I(class; size) = H(class) – H(class | size) = 0.46 bits 

Example Color Shape Size  Class  

1 Red Square Big + 

2 Blue Square Big + 

3  Red Circle Big + 

4 Red Circle Small - 

5 Green Square Small - 

6 Green Square Big - 

I(class; color) = H(class) – H(class | color) = 0.54 bits 

I(class; shape) = H(class) – H(class | shape) = 0 bits 

I(class; size) = H(class) – H(class | size) = 0.46 bits 

 

 Select color as the best attribute at the root 

What’s the Next Step? 

color 

red 
green 

blue 

Selecting the Best Attribute 

• The best attribute for a node is the attribute A 
(of those candidates available for that node) 
with: 

 

– Maximum Information Gain, or 

– Minimum Conditional Entropy 

• Since at a given node, since H(Y) is fixed 



12 

Decision Tree Algorithm 
buildtree(examples, attributes, default) 
/* examples: a list of training examples 

     attributes: a set of candidate questions, e.g., “what’s the value of attribute xi?” 

     default: default label prediction, e.g., over-all majority vote */ 

IF empty(examples) THEN return(default) 

IF (examples have same label y) THEN return(y) 

IF empty(attributes) THEN return(majority vote in examples) 

q = best_attribute(examples, attributes)  

Let there be n possible values of attribute q 

– Create and return an internal node with n children 

– The ith child is built by calling  

buildtree({example|q=ith value}, attributes-{q}, default) 

Case Studies 

• Decision trees have been shown to be at least as 
accurate as human experts 

• Diagnosing breast cancer 

– humans correct 65% of the time 

– decision tree classified 72% correct 

• BP designed a decision tree for gas-oil separation 
for offshore oil platforms 

• Cessna designed a flight controller using 90,000 
examples and 20 attributes per example 

Expressiveness of Decision Trees 

• Assume all inputs are Boolean and all outputs are 
Boolean 

• What is the class of Boolean functions that are 
possible to represent by decision trees? 

• Answer:  All Boolean functions! 

Simple proof: 

1. Take any Boolean function 

2. Convert it into a truth table 

3. Construct a decision tree in which each row of the truth 
table corresponds to one path through the decision tree 

Overfitting a Decision Tree 

• In general, overfitting means finding 
“meaningless” regularity in data 

 

• Noisy Data:  "noise" could be in the examples: 
– examples have the same attribute values, but 

different classifications 

– classification is wrong 

– attributes values are incorrect because of errors 
getting or preprocessing the data 

– irrelevant attributes 



13 

Overfitting a Decision Tree 

a b c d e y 

0 0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 1 1 1 

0 0 1 0 0 1 

: : : : : : 

1 1 1 1 1 1 

Five inputs, all bits, are 
generated in all 32 possible 
combinations 

Output y = copy of e, 
except a random 25% 
of the records have y 
set to the opposite of e 

3
2
 r

e
co

rd
s 

Overfitting a Decision Tree 
 

• The test set is constructed similarly 

– y=e, but 25% the time we corrupt it by y = 1-e 

– The corruptions in training and test sets are 
independent 

• The training and test sets are the same, except 

– Some y’s are corrupted in training, but not in test 

– Some y’s are corrupted in test, but not in training 

Overfitting a Decision Tree 

• Suppose we build a full tree on the training set 

Root 

e=0 

a=0 a=1 

e=1 

a=0 a=1 

Training set accuracy = 100% (all leaf nodes contain exactly 1 example) 
25% of these training leaf node labels will be corrupted (e) 

Overfiting a Decision Tree 
• Next, classify the test data with the tree 

Root 

e=0 

a=0 a=1 

e=1 

a=0 a=1 

25% of the test examples are corrupted – independent of training data 



14 

Overfitting a Decision Tree 

 

 

On average: 

• ¾ training data uncorrupted 

– ¾ of these are uncorrupted in test – correct labels 

– ¼ of these are corrupted in test – wrong 

• ¼ training data corrupted 

– ¾ of these are uncorrupted in test – wrong 

– ¼ of these are also corrupted in test – correct labels 

• Test accuracy = (¾ * ¾) + (¼ * ¼) = 5/8 = 62.5% 

Overfitting a Decision Tree 
• But if we knew a,b,c,d are irrelevant attributes and don’t 

use them in the tree… 

a b c d e y 

0 0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 1 1 1 

0 0 1 0 0 1 

: : : : : : 

1 1 1 1 1 1 

Pretend they don’t exist 

Overfitting a Decision Tree 
• The tree would be: 

Root 

e=0 e=1 

In training data, about ¾ 

y’s are 0 here. Majority 

vote predicts y=0 

In training data, about ¾ 

y’s are 1 here. Majority 

vote predicts y=1 

In test data, ¼ y’s are different from e because 

they were corrupted, and ¾ y’s will be correct, so 

test accuracy = 75%, which is better than when 

using more (meaningless) attributes (= 62.5%) 

Overfitting a Decision Tree 
• In the full tree, we overfit by learning non-existent 

relations (noise) 

Root 

e=0 

a=0 a=1 

e=1 

a=0 a=1 



15 

Extensions to 
Decision Tree Learning Algorithm 

 

• Overfitting 

– meaningless regularity is found in the data 

– irrelevant attributes confound the true, important, 
distinguishing features 

– fix by pruning some nodes in the decision tree 

Avoiding Overfitting:  Pruning 

Pruning with a tuning set 

1. Randomly split the training data into TRAIN and 
TUNE, say 70% and 30% 

2. Build a full tree using only TRAIN set 

3. Prune the tree using the TUNE set 

 

Pruning using a Greedy Algorithm 

Prune(tree T, TUNE set) 

1. Compute T’s accuracy on TUNE, call it A(T) 

2. For every internal node N in T: 

a) New tree TN = copy of T, but prune (delete) the subtree 
under N  

b) N becomes a leaf node in TN.  The label is the majority 
vote of TRAIN examples reaching N 

c) A(TN) = TN’s accuracy on TUNE 

3. Let T* be the tree (among the TN’s and T) with the largest A()  
Set T = T*  /* prune */ 

4. Repeat from Step 1 until no more improvement 

5. Return T 

Extensions to Decision Tree Learning: 
Real-valued Features 

• What if some (or all) of the features, x1, x2, …, 
xk, are real-valued? 

• Example: x1=height (in inches) 

• Idea 1: Branch on each possible numerical 
value 



16 

Extensions to Decision Tree Learning: 
Real-valued Features 

• What if some (or all) of the features, x1, x2, …, 
xk, are real-valued? 

• Example: x1=height (in inches) 

• Idea 1: Branch on each possible numerical 
value 

– fragments the training data and prone to 
overfitting 

• Idea 2: Use questions of the form of (x1 > t?), 
where t is a threshold  

Extensions to Decision Tree Learning: 
Missing Data 

– learning:  replace with most likely value 

– learning:  use NotKnown as a value 

– classifying:  follow arc for all values and weight each 
by the frequency of examples following that arc 

Extensions to 
Decision Tree Learning Algorithm 

 

• Generation of rules 
for each path from the root to a leaf 

– the rule's antecedent is the attribute tests 

– the consequent is the classification at leaf node 
 

if (Size = small && Suit = hearts) class = '+'; 

 

– Constructing these rules yields an interpretation 
of the tree's meaning 

Decision Trees Summary 

 

• One of the most widely used learning 
methods in practice 

• Can out-perform human experts in many 
problems 



17 

Decision Trees Summary 

• Strengths 
– fast 

– simple to implement 

– well founded in information theory 

– can convert result to a set of easily 
interpretable rules 

– empirically valid in many commercial products 

– handles noisy data 

– scales well 

Decision Trees Summary 

• Weaknesses 

– Univariate splits/partitions using only one 
attribute at a time, which limits types of 
possible trees 

– large decision trees may be hard to understand 

– requires fixed-length feature vectors 

– non-incremental (i.e., batch method) 

• Aggregation of predictions of multiple 
classifiers with the goal of improving 
accuracy by reducing the variance of an 
estimated prediction function 

• Mixture of experts 

• Combining multiple classifiers often 
produces higher accuracy than any 
individual classifier 

Combining Classifiers: 
Ensemble Methods 

• Supervised learning task 
– Training data is a set of users and ratings (1,2,3,4,5 

stars) those users have given to movies 

– Construct a classifier that given a user and an unrated 
movie, correctly classifies that movie as either 1, 2, 3, 
4, or 5 stars 

 

• $1 million prize for a 10% improvement over 
Netflix’s current movie recommender/classifier  

 (MSE = 0.9514) 

Began October 2006 

Slide by T. Holloway 

Example:  Netflix Prize Competition 



18 

Just 3 weeks after it 
began, at least 40 
teams could beat the 
Netflix classifier 

 

Top teams showed 
about 5% 
improvement 

Slide by T. Holloway 
from http://www.research.att.com/~volinsky/netflix/ 

However, improvement slowed… 

Slide by T. Holloway 

“Thanks to Paul Harrison's 
collaboration, a simple mix 
of our solutions improved 
our result from 6.31 to 
6.75” 

Rookies 

Slide by T. Holloway 

Ensemble methods 
to the rescue… 

“My approach is to 
combine the results of 
many methods (also two-
way interactions between 
them) using linear 
regression on the test set. 
The best method in my 
ensemble is regularized 
SVD with biases, post 
processed with kernel 
ridge regression” 

Arek Paterek 

http://rainbow.mimuw.edu.pl/~ap/ap_kdd.pdf 

Slide by T. Holloway 



19 

“When the predictions of 
multiple RBM models and 
multiple SVD models are 
linearly combined, we 
achieve an error rate that 
is well over 6% better than 
the score of Netflix’s own 
system.” 

U of Toronto 

http://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pdf 

Slide by T. Holloway 

Gravity 

home.mit.bme.hu/~gtakacs/download/gravity.pdf  

Slide by T. Holloway 

“Our common team blends 
the result of team Gravity 
and team Dinosaur Planet.” 

When Gravity and  
Dinosaurs Unite 

Slide by T. Holloway 

The winning team was from 
AT&T: 
 
“Our final solution 
(RMSE=0.8712) consists of 
blending 107 individual 
results. “ 

BellKor / KorBell 

Slide by T. Holloway 

An 8.5% improvement 
over Netflix 



20 

Why Combine Classifiers? 

• Statistical:  When training data is small relative to size 
of hypothesis/classifier space, there are many possible 
classifiers that fit the data; “averaging” their results 
reduces risk of picking wrong classifier 

• Computational:  Small training set + local search 
means hard to find “true” classifier; ensemble 
simulates multiple random restarts to obtain multiple 
classifiers 

• Representational:  True classifier may not be 
representable in the hypothesis space of a method, but 
some (weighted) combination of hypotheses expands 
the space of representable functions 

How to Combine Classifiers? 

Given a test example, classify it using each 
classifier and report as the output class the 
majority (for a 2-class problem) or mode 
classification 

Majority Vote Classifier 

Suppose we have 5 completely independent 
classifiers 

– If accuracy is 70% for each, combined accuracy 
is:  10(.73)(.32) + 5(.74)(.3) + (.75)  

• 83.7% majority vote accuracy 

– 101 such classifiers 

• 99.9% majority vote accuracy 

 

 

Intuition 

Slide by T. Holloway 

When is an Ensemble Better? 

• Necessary and sufficient conditions for an 
ensemble to be more accurate than individual 
classifiers, is when each individual classifier is: 

– Accurate:  error rate is better than random 
guessing 

– Diverse:  Classifiers make errors on different 
examples, i.e., they are at least somewhat 
uncorrelated 



21 

Ensemble Strategies 

Boosting 

– Sequential production of classifiers, where each 
classifier is dependent on the previous one 

– Make examples misclassified by current classifier 
more important in the next classifier 

Bagging  

– Create classifiers using different training sets, 
where each training set is created by 
“bootstrapping,” i.e., drawing examples (with 
replacement) from all possible training examples 

 Slide by T. Holloway 

Bagging 

• Given N training examples, generate separate 
training sets by choosing n examples with 
replacement from all N examples 

• Called “taking a bootstrap sample” or 
“randomizing the training set” 

• Construct a classifier using the n examples in 
current training set 

• Calculate error using rest of training examples 

• Repeat for multiple classifiers 

Bagging Example (Opitz, 1999) 

Original 1 2 3 4 5 6 7 8 

Training set 1 2 7 8 3 7 6 3 1 

Training set 2 7 8 5 6 4 2 7 1 

Training set 3 3 6 2 7 5 6 2 2 

Training set 4 4 5 1 4 6 4 3 8 

N = 8, n = 8 

Bagging with Decision Trees 

• For each training set, build a separate 
decision tree 

• Take majority/mode vote from all the 
decision trees to determine the output 
classification of a given testing example 



22 

Random Forests 

aka  Decision Forest, Classification Forest 

 

2 Main Ideas: 
1. Bagging:  Use random samples of the 

training examples to construct the 
classifiers 

2. Randomized Node Optimization:  Each 
time a node is split, only a randomly 
chosen subset of the features/attributes 
are considered 

Random Forests 

For each tree, 

1. Choose a training set by choosing n times with 
replacement from all N available training 
examples 

2. At each node of decision tree during construction, 
choose a random subset of m features/attributes 
from the total number, M, of possible attributes 
(m << M) 

3. Select best attribute at node using Max-Gain 

• No tree pruning 

• Doesn’t overfit 

Breiman, Leo (2001). "Random Forests". Machine Learning 45 (1), 5-32  

Classification Error Body Tracking in Microsoft 

Kinect for XBox 360 

left  

hand 

right 

shoulder neck 

right  

foot 

Input depth image Training labelled data Visual features 

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, 

and A. Blake, Real-Time  Human Pose  Recognition in Parts from a Single 

Depth Image, Proc. Computer Vision and Pattern Recognition Conference, 2011 

http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf
http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf
http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf


23 

Input depth image (bg removed) Inferred body parts posterior 

Body Tracking in Microsoft 

Kinect for XBox 360 

(2 videos here) 

Segmentation of Tumors 

MRI input data 

Segmentation of  

tumorous tissues: 
 

 

 

 
 

 
 

 
 

 

---- Active cells 

---- Necrotic core 

---- Edema 

---- Background 

 DTI-q DTI-p 

FLAIR T2 

T1 T1-gad 

D. Zikic, B. Glocker, E. Konukoglu , A. Criminisi, J. Shotton,  C. 

Demiralp, O. Thomas, T. Das, R. Jena and S. Price, Decision Forests for 

Tissue-specific Segmentation of High-grade Gliomas in Multi-Channel 

MR, Proc. MICCAI,  2012 

• Location 
• Shape 
• Intensity 
• Texture 

P
at

ie
n

t A
 

P
at

ie
n

t 
B

 
P

at
ie

n
t 

C
 

P
at

ie
n

t 
D

 
P

at
ie

n
t 

E
 

Challenge: Variability of Input Data Training the Random Forest 

B E AC NC AC NC B E 

test example: 
 
 
 
 
- Spatial context, across channels 
- Test selection: optimization over 

randomized features 

 

ø(     ) - ø(     ) > θ ? 



24 

B E AC NC AC NC B E 

Testing using the Random Forest Glioblastoma Segmentation 

Random Forest Summary 

• Advantages 

– One of the most accurate learning algorithms 

– Efficient 

– Can handle thousands of attributes 

• Disadvantages 

– Difficult to interpret (compared to decision trees) 

 

 


