First Order Logic

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Problems with propositional logic

Consider the game "minesweeper" on a 10x10 field with only one landmine.

 How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1?

Problems with propositional logic

Consider the game "minesweeper" on a 10x10 field with only one landmine.

- How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1?
- Intuitively with a rule like landmine(x,y) ⇒ number1(neighbors(x,y)) but propositional logic cannot do this...

Problems with propositional logic

- Propositional logic has to say, e.g. for cell (3,4):
 - Landmine_3_4 ⇒ number1_2_3
 - Landmine_3_4 ⇒ number1_2_4
 - Landmine_3_4 ⇒ number1_2_5
 - Landmine_3_4 ⇒ number1_3_3
 - Landmine_3_4 ⇒ number1_3_5
 - Landmine_3_4 ⇒ number1_4_3
 - Landmine_3_4 ⇒ number1_4_4
 - Landmine_3_4 ⇒ number1_4_5
 - And similarly for each of Landmine_1_1,
 Landmine_1_2, Landmine_1_3, ..., Landmine_10_10!
- Difficult to express large domains concisely
- Don't have objects and relations
- First Order Logic is a powerful upgrade

Ontological commitment

 Logics are characterized by what they consider to be 'primitives'

Logic	Primitives	Available Knowledge
Propositional	facts	true/false/unknown
First-Order	facts, objects, relations	true/false/unknown
Temporal	facts, objects, relations, times	true/false/unknown
Probability Theory	facts	degree of belief 01
Fuzzy	degree of truth	degree of belief 01

First Order Logic (FOL) syntax

- User defines these primitives:
 - Constant symbols (i.e. the "individuals" in the world): Jerry, 2, Madison, Green, ...
 - Function symbols (mapping individuals to individuals): Sqrt(9), Distance(Madison, Chicago)
 - Predicate symbols (mapping from individuals to truth values): Teacher(Jerry, you), Bigger(sqrt(2), x)
- FOL supplies these primitives:
 - Variable symbols: x, y
 - Connectives (same as PL): ∧ ∨ ¬ ⇒ ⇔
 - Quantifiers ∀, ∃

"Things" in FOL

- Term: an object in the world
 - Constant (i.e. the "individuals" in the world): Jerry, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.

"True/False" in FOL

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - $term_1 = term_2$
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL syntax

- Sentence: T/F expression
 - Atom
 - Complex sentence using connectives: ∧ ∨ ¬ ⇒ ⇔
 - Spouse(Jerry, Jing) ⇒ Spouse(Jing, Jerry)
 - Less(11,22) ∧ Less(22,33)
 - Complex sentence using quantifiers ∀, ∃
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

- Universal quantifier: ∀
- Sentence is true for all values of x in the domain of variable x.
- Main connective typically is ⇒
 - Forms if-then rules
 - "all humans are mammals"

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

Means if x is a human, then x is a mammal

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

 It's a big AND: Equivalent to the conjunction of all the instantiations of variable x:

```
(human(Jerry) ⇒ mammal(Jerry)) ∧
    (human(Jing) ⇒ mammal(Jing)) ∧
(human(laptop) ⇒ mammal(laptop)) ∧ ...
```

Common mistake is to use A as main connective

```
\forall x \text{ human}(x) \land \text{mammal}(x)
```

This means everything is human and a mammal!

```
(human(Jerry) ∧ mammal(Jerry)) ∧
    (human(Jing) ∧ mammal(Jing)) ∧
(human(laptop) ∧ mammal(laptop)) ∧ ...
```

- Existential quantifier: Э
- Sentence is true for some value of x in the domain of variable x.
- Main connective typically is
 - "some humans are male"

```
\exists x \text{ human}(x) \land \text{male}(x)
```

Means there is an x who is a human and is a male

```
\exists x \text{ human}(x) \land \text{male}(x)
```

 It's a big OR: Equivalent to the disjunction of all the instantiations of variable x:

```
(human(Jerry) ∧ male(Jerry)) ∨
    (human(Jing) ∧ male(Jing)) ∨
(human(laptop) ∧ male(laptop)) ∨ ...
```

- Common mistake is to use ⇒ as main connective
 - "Some pig can fly"

```
\exists x \text{ pig}(x) \Rightarrow \text{fly}(x) \quad \text{(wrong)}
```

```
\exists x \text{ human}(x) \land \text{male}(x)
```

 It's a big OR: Equivalent to the disjunction of all the instantiations of variable x:

```
(human(Jerry) ∧ male(Jerry)) ∨
    (human(Jing) ∧ male(Jing)) ∨
(human(laptop) ∧ male(laptop)) ∨ ...
```

- Common mistake is to use ⇒ as main connective
 - "Some pig can fly"

```
\exists x \text{ pig}(x) \Rightarrow \text{fly}(x) \text{ (wrong)}
```

This is true if there is something not a pig!

```
(pig(Jerry) ⇒ fly(Jerry)) ∨
(pig(laptop) ⇒ fly(laptop)) ∨ ...
```

- Properties of quantifiers:
 - $\forall x \forall y$ is the same as $\forall y \forall x$
 - ∃x ∃y is the same as ∃y ∃x
- Example:
 - ∀x ∀y likes(x,y)
 Everyone likes everyone.
 - ∀y ∀x likes(x,y)
 Everyone is liked by everyone.

- Properties of quantifiers:
 - \blacksquare $\forall x \exists y \text{ is not the same as } \exists y \forall x$
- Example:
 - ∀x∃y likes(x,y)
 Everyone likes someone (can be different).
 - ∃y ∀x likes(x,y)
 There is someone who is liked by everyone.

- Properties of quantifiers:
 - $\forall x P(x)$ when negated becomes $\exists x \neg P(x)$
 - $\exists x P(x)$ when negated becomes $\forall x \neg P(x)$
- Example:
 - $\forall x \text{ sleep}(x)$

Everybody sleeps.

 $\exists x \neg sleep(x)$

Somebody does not sleep.

- Properties of quantifiers:
 - $\forall x P(x)$ is the same as $\neg \exists x \neg P(x)$
 - $\exists x P(x)$ is the same as $\neg \forall x \neg P(x)$
- Example:
 - $\forall x \text{ sleep}(x)$

Everybody sleeps.

 $\neg \exists x \neg sleep(x)$

There does not exist someone who does not sleep.

FOL syntax

- A free variable is a variable that is not bound by an quantifier, e.g. ∃y Likes(x,y): x is free, y is bound
- A well-formed formula (wff) is a sentence in which all variables are quantified (no free variable)
- Short summary so far:
 - Constants: Bob, 2, Madison, ...
 - **Variables:** *x, y, a, b, c, ...*
 - Functions: Income, Address, Sqrt, ...
 - Predicates: Teacher, Sisters, Even, Prime...
 - **■** Connectives: $\land \lor \neg \Rightarrow \Leftrightarrow$
 - Equality: =
 - Quantifiers: ∀∃

Summary

- Term: constant, variable, function. Denotes an object. (A ground term has no variables)
- Atom: the smallest expression assigned a truth value. Predicate and =
- Sentence: an atom, sentence with connectives, sentence with quantifiers. Assigned a truth value
- Well-formed formula (wff): a sentence in which all variables are quantified

Convert the following sentences into FOL:

- "Elmo is a monster."
 - What is the constant? Elmo
 - What is the predicate? Is a monster
 - Answer: monster(Elmo)
- "Tinky Winky and Dipsy are teletubbies"
- "Tom, Jerry or Mickey is not a mouse."

We can also do this with relations:

- "America bought Alaska from Russia."
 - What are the constants?
 - America, Alaska, Russia
 - What are the relations?
 - Bought
 - Answer: bought(America, Alaska, Russia)
- "Warm is between cold and hot."
- "Jerry and Jing are married."

Now let's think about quantifiers:

- "Jerry likes everything."
 - What's the constant?
 - Jerry
 - Thing?
 - Just use a variable x
 - Everything?
 - Universal quantifier
 - Answer: ∀x likes(Jerry, x)
 - i.e. likes(Jerry, IceCream) ∧ likes(Jerry, Jing)
 ∧ likes(Jerry, Armadillos) ∧ ...
- "Jerry likes something."
- "Somebody likes Jerry."

We can also have multiple quantifiers:

- "somebody heard something."
 - What are the variables?
 - Somebody, something
 - How are they quantified?
 - Both are existential
 - Answer: ∃x,y heard(x,y)
- "Everybody heard everything."
- "Somebody did not hear everything."

Let's allow more complex quantified relations:

- "All stinky shoes are allowed."
 - How are ideas connected?
 - Being a shoe and being stinky implies it's allowed
 - Answer: $\forall x \text{ shoe}(x) \land \text{stinky}(x) \Rightarrow \text{allowed}(x)$
- "No stinky shoes are allowed."
 - Answers:
 - $\forall x \text{ shoe}(x) \land \text{stinky}(x) \Rightarrow \neg \text{allowed}(x)$

"No stinky shoes are allowed."

```
¬∃x shoe(x) ∧ stinky(x) ⇒ allowed(x) (?)
¬∃x ¬(shoe(x) ∧ stinky(x)) ∨ allowed(x)
∀x ¬ (¬(shoe(x) ∧ stinky(x)) ∨ allowed(x))
∀x (shoe(x) ∧ stinky(x)) ∧ ¬allowed(x)
```

- But this says "Jerry is a stinky shoe and Jerry is not allowed."
- How about

```
\forall x \text{ allowed}(x) \Rightarrow \neg \text{ (shoe}(x) \land \text{stinky}(x))
```

And some more complex relations:

- "No one sees everything."
- Answer: ¬∃x ∀y sees(x,y)
- Equivalently: "Everyone doesn't see something."
- Answer: ∀x ∃y ¬sees(x,y)
- "Everyone sees nothing."
- Answer: ∀x ¬∃y sees(x,y)

And some *really* complex relations:

- "Any good amateur can beat some professional."
 - Ingredients: x, amateur(x), good(x), y, professional(y), beat(x,y)
 - Answer:

```
\forall x \ [\{amateur(x) \land good(x)\} \Rightarrow \exists y \ \{professional(y) \land beat(x,y)\}]
```

- "Some professionals can beat all amateurs."
 - Answer:

We can throw in functions and equalities, too:

- "Jerry and Jing are the same age."
 - Are functional relations specified?
 - Are equalities specified?
 - Answer: age (Jerry) = age (Jing)
- "There are exactly two shoes."
 - ?

- "There are exactly two shoes."
 - First try:

```
\exists x \exists y \text{ shoe}(x) \land \text{shoe}(y)
```

- "There are exactly two shoes."
 - First try:

```
\exists x \exists y \text{ shoe}(x) \land \text{shoe}(y)
```

Second try:

```
\exists x \exists y \text{ shoe}(x) \land \text{shoe}(y) \land \neg (x=y)
```

- "There are exactly two shoes."
 - First try:

```
\exists x \exists y \text{ shoe}(x) \land \text{shoe}(y)
```

Second try:

```
\exists x \exists y \text{ shoe}(x) \land \text{shoe}(y) \land \neg (x=y)
```

Third try:

```
\exists x \exists y \text{ shoe}(x) \land \text{shoe}(y) \land \neg (x=y) \land \\ \forall z \text{ (shoe}(z) \Rightarrow (x=z) \lor (y=z))
```

- Interesting words: always, sometimes, never
 - "Good people always have friends."

- Interesting words: always, sometimes, never
 - "Good people always have friends."

```
\forall x \text{ person}(x) \land \text{good}(x) \Rightarrow \exists y (\text{friend}(x,y))
```

"Busy people sometimes have friends."

- Interesting words: always, sometimes, never
 - "Good people always have friends."

```
\forall x \text{ person}(x) \land \text{good}(x) \Rightarrow \exists y (\text{friend}(x,y))
```

"Busy people sometimes have friends."

```
\exists x \text{ person}(x) \land \text{busy}(x) \land \exists y (\text{friend}(x,y))
```

"Bad people never have friends."

- Interesting words: always, sometimes, never
 - "Good people always have friends."

```
\forall x \text{ person}(x) \land \text{good}(x) \Rightarrow \exists y (\text{friend}(x,y))
```

"Busy people sometimes have friends."

```
\exists x \text{ person}(x) \land \text{busy}(x) \land \exists y (\text{friend}(x,y))
```

"Bad people never have friends."

```
\forall x \text{ person}(x) \land \text{bad}(x) \Rightarrow \neg \exists y (\text{friend}(x,y))
```

Tricky sentences

"x is above y if and only if x is directly on the top of y, or else there is a pile of one or more other objects directly on top of one another, starting with x and ending with y."

Tricky sentences

"x is above y if and only if x is directly on the top of y, or else there is a pile of one or more other objects directly on top of one another, starting with x and ending with y."

```
\forall x \ \forall y \ above(x,y) \Leftrightarrow
[onTop(x,y) \lor \exists z \{onTop(x,z) \land above(z,y)\}]
```

Next: Inference for FOL

- Recall that in propositional logic, inference is easy
 - Enumerate all possibilities (truth tables)
 - Apply sound inference rules on facts
- But in FOL, we have the concepts of variables, relations, and quantification
 - This complicates things quite a bit!
- We will discuss inference in FOL next time.