
Game Playing

Chapter 5.1 – 5.3

Game Playing and AI

• Game playing was thought to be
a good problem for AI research:
– game playing is non-trivial

• players need “human-like” intelligence

• games can be very complex (e.g., Chess, Go)

• requires decision making within limited time

– games usually are:
• well-defined and repeatable

• fully observable and limited environments

– can directly compare humans and computers

Types of Games

Definitions:

• Zero-sum: one player’s gain is the other player’s
loss. Does not mean fair.

• Discrete: states and decisions have discrete values

• Finite: finite number of states and decisions

• Deterministic: no coin flips, die rolls – no chance

• Perfect information: each player can see the
complete game state. No simultaneous decisions.

Game Playing and AI

Deterministic Stochastic (chance)

Fully Observable

(perfect info)

Checkers, Chess,

Go, Othello

Backgammon,

Monopoly

Partially Observable

(imperfect info)

?

Bridge, Poker,

Scrabble

All are also multi-agent, adversarial, static tasks

Game Playing as Search

• Consider two-player, perfect information, 0-
sum board games:
– e.g., chess, checkers, tic-tac-toe

– board configuration: a unique arrangement of
"pieces"

• Representing board games as search problem:
– states: board configurations

– actions: legal moves

– initial state: current board configuration

– goal state: game over/terminal board configuration

Game Tree Representation

 What's the new aspect
to the search problem?

 There’s an opponent
we cannot control!

X X X

X

…

O X O X

O

X

O

X

…

How can we handle this?

X

O

X

X O

X

X O

X

O

X X

…

O X

X

Greedy Search
using an Evaluation Function

• A Utility function is used to map each terminal state
of the board (i.e., states where game is over) to a
score indicating the value of that outcome to the
computer

• We’ll use:
– positive for winning; large + means better for computer
– negative for losing; large - means better for opponent
– 0 for a draw
– typical values (loss to win):

• - to +
• -1.0 to +1.0

Greedy Search
using an Evaluation Function

• Expand the search tree to the terminal states
on each branch

• Evaluate utility of each terminal board
configuration

• Make the initial move that results in the board
configuration with the maximum value

E D B C E
3

D
2

B
-5

C
9

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

computer's

possible moves

opponent's

possible moves

board evaluation from computer's perspective

A

terminal states

A
9

Greedy Search
using an Evaluation Function

• Assuming a reasonable search space, what's the
problem?

 This ignores what the opponent might do!
 Computer chooses C
 Opponent chooses J and defeats computer

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

E
3

D
2

B
-5

C
9

computer's

possible moves

opponent's

possible moves

board evaluation from computer's perspective

A
9

terminal states

Minimax Principle

• Assume both players play optimally

– given there are two moves until the
terminal states

–high utility numbers favor the computer

• computer should choose maximizing moves

– low utility numbers favor the opponent

• smart opponent chooses minimizing moves

Minimax Principle

• The computer assumes after it moves
the opponent will choose the minimizing move

E D B C

A

E
1

D
0

B
-7

C
-6

A
1

• The computer chooses the best move
considering both its move and the opponent’s
optimal move

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

computer's

possible moves

opponent's

possible moves

board evaluation from computer's perspective

terminal states

Propagating Minimax Values
up the Game Tree

• Explore the tree to the terminal states

• Evaluate utility of the resulting board
configurations

• The computer makes a move to put the board
in the best configuration for it assuming
the opponent makes her best moves on her
turn:
– start at the leaves

– assign value to the parent node as follows
• use minimum when children are opponent’s moves
• use maximum when children are computer's moves

Deeper Game Trees

• Minimax can be generalized to more than 2 moves

• Propagate values up through the tree

E D
0

B C

R
0

N
4

O P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M F G
-5

H
3

I
8

J L
2

W
-3

X
-5

A

terminal states

O
-5

K
5

M
-7

F
4

J
9

E
-7

B
-5

C
3

A
3

opponent

min

computer

max

opponent

min

computer max

General Minimax Algorithm

For each move by the computer:

1. Perform depth-first search to a

terminal state

2. Evaluate each terminal state

3. Propagate upwards the minimax values

if opponent's move, propagate up

minimum value of children

if computer's move, propagate up

maximum value of children

4. choose move at root with the maximum of

minimax values of children

Complexity of Minimax Algorithm

Assume all terminal states are at depth d

• Space complexity

 Depth-first search, so O(bd)

• Time complexity

 Branching factor b, so O(bd)

• Time complexity is a major problem since
computer typically only has a finite amount of
time to make a move

Complexity of Game Playing

• Assume the opponent’s moves can be
predicted given the computer's moves

• How complex would search be in this case?
– worst case: O(bd) branching factor, depth

– Tic-Tac-Toe: ~5 legal moves, 9 moves max game
• 59 = 1,953,125 states

– Chess: ~35 legal moves, ~100 moves per game
• bd ~ 35100 ~10154 states, only ~1040 legal states

• Common games produce enormous search trees

Complexity of Minimax Algorithm

• Minimax algorithm applied to complete game
trees is impractical in practice
– instead do depth-limited search to ply (depth) m,

i.e., local search

– but Utility function defined only for terminal
states

– we need to know a value for non-terminal states

• Static Evaluation functions use heuristics to
estimate the value of non-terminal states

Static Board Evaluator (SBE)

• A Static Board Evaluation function is used to
estimate how good the current board
configuration is for the computer
– it reflects the computer’s chances of winning from

that node

– it must be easy to calculate from board
configuration

• For example, for Chess:
 SBE = α * materialBalance + β * centerControl + γ * …

 where material balance = Value of white pieces - Value of
black pieces, pawn = 1, rook = 5, queen = 9, etc.

Static Board Evaluator (SBE)

• Typically, one subtracts how good it is for the
opponent from how good it is for the
computer

• If the SBE gives X for a player, then it gives -X
for the opponent

• SBE should agree with the Utility function
when calculated at terminal nodes

Minimax with Evaluation Functions

• The same as general Minimax, except

– only goes to depth m

– estimates value using SBE function

• How would this algorithm perform at Chess?

– if could look ahead ~4 pairs of moves (i.e., 8 ply),
would be consistently beaten by average players

– if could look ahead ~8 pairs, is as good as human
master

Tic-Tac-Toe
Example

Evaluation function = (# 3-lengths open for me) – (# 3-lengths open for opponent)

Minimax Algorithm

function Max-Value(s)‏
inputs:
 s: current state in game, Max about to play
output: best-score (for Max) available from s

 if (s is a terminal state or at depth limit)‏
 then return (SBE value of s)‏
 else
 α‏‏=:‏– 
 foreach s in Successors(s)‏
 α‏=:‏max(‏α‏,‏Min-Value(s))‏
 return α

function Min-Value(s)‏
output: best-score (for Min) available from s

 if (s is a terminal state or at depth limit)‏
 then return (SBE value of s)‏
 else
 β‏‏=:‏
 foreach s in Successors(s)‏
 β‏=:‏min(‏β‏,‏Max-Value(s))‏
 return β

Minimax Example

A

O

W
-3

B

N
4

F G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

max

min

max

min

max

Summary So Far
• Can't use Minimax search to end of the game

– if we could, then choosing move is easy

• SBE isn't perfect at estimating/scoring

– if it was, just choose best move without searching

• Since neither is feasible for interesting games,
combine Minimax and SBE concepts:

– Minimax to depth m

– use SBE to estimate/score board configuration

Alpha-Beta Idea
• Some of the branches of the game tree won't be

taken if playing against an intelligent opponent
• “If you have an idea that is surely bad, don’t

take the time to see how truly awful it is.”
 -- Pat Winston
• Pruning can be used to ignore some branches
• While doing DFS of game tree, keep track of:

– Alpha () at maximizing levels:
• highest SBE value seen so far in subtree below node
• lower bound on node's final minimax value

– Beta () at minimizing levels:
• lowest SBE value seen so far in subtree below node
• upper bound on node's final minimax value

Alpha-Beta Idea: Alpha Cutoff

max

min

• Depth-first traversal order

• After returning from A, can get at least 100 at S

• After returning from F, can get at most 20 at B

• At this point no matter what minimax value is computed at
G, S will prefer A over B. So, S loses interest in B

• There is no need to visit G. The subtree at G is pruned.
Saves time. Called “Alpha cutoff” (at MIN node B)

S

A
100

C
200

D
100

B

E
120

F
20

G

 = 100

 = 20

Alpha Cutoff

• At each MIN node, keep track of the minimum
value returned so far from its visited children

• Store this value as 

• Anytime  is updated (at a MIN node), check
its value against the  value of (all) its MAX
node ancestor(s)

• If    for some MAX node ancestor, don’t
visit any more of the current MIN node’s
children

Beta Cutoff Example

A
20

B
20

D
20

E
-10

C
25

F
-20

G
25

max

min

max

H

• After returning from B, can get at most 20 at MIN node A

• After returning from G, can get at least 25 at MAX node C

• No matter what minimax value is found at H, A will NEVER
choose‏C‏over‏B,‏so‏don’t‏visit‏node‏H

• Called‏“Beta‏Cutoff”‏(at‏MAX‏node‏C)

S

X

 = 20

 = 25

Beta Cutoff

• At each MAX node, keep track of the maximum
value returned so far from its visited children

• Store this value as 

• Anytime  is updated (at a MAX node), check
its value against the  value of (all) its MIN
node ancestor(s)

• If    for some MIN node ancestor, don’t visit
any more of the current MAX node’s children

Alpha-Beta Idea
• Store  value at MAX nodes and  value at MIN

nodes

• Cutoff/pruning occurs

– At MAX node (when maximizing)

 if    for some MIN ancestor, stop expanding

– Don’t visit more children of MAX node

– Opponent won't allow computer to make this move

– At MIN node (when minimizing)

 if, for some MAX node ancestor,   , stop expanding

– Don’t visit more children of MIN node

– Computer won't want to take this move

Implementation of Cutoffs

• At each node, keep both  and  values

– At MAX node,  = largest value from its children
visited so far, and  = smallest value from its MIN
node ancestors in search tree
•  value at MAX comes from descendants

•  value at MAX comes from MIN node ancestors

– At MIN node,  = smallest value from its children
visited so far, and  = largest value from its MAX
node ancestors in search tree
•  value at MIN comes from MAX node ancestors

•  value at MIN comes from descendants

Implementation of Alpha Cutoff

S

A

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

• At each node, keep two bounds (based on all
ancestors and descendants visited so far):

 : the best (largest) MAX can do

 : the best (smallest) MIN can do

• If at anytime    at a node, the remaining children

are pruned

Initialize root’s values

Alpha Cutoff Example

S

A

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

α=-
β=+

Alpha Cutoff Example

S

A
200

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

α=-
β=200

Alpha Cutoff Example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

α=-
β=100

Alpha Cutoff Example

S
100

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=100
β=+

α=-
β=100

α=100
β=+

Alpha Cutoff Example

S
100

A
100

C
200

D
100

B
120

E
120

F
20

max

min

 G

α=100
β=+

α=-
β=100

α=100
β=120

Alpha Cutoff Example

S
100

A
100

C
200

D
100

B
20

E
120

F
20

max

min

 G

α=100
β=+

α=-
β=100

α=100
β=20

X

Notes:

• Alpha cutoff means not visiting some of a MIN node’s children

• Beta values at MIN come from descendants

• Alpha value at MIN come from MAX node ancestors

Alpha-Beta Algorithm
function Max-Value (s, α, β)‏
inputs:
 s: current state in game, Max about to play
 α: best score (highest) for Max along path to s
 β: best score (lowest) for Min along path to s

 if (s is a terminal state)‏
 then return (SBE value of s)‏
 else for each s’ in Successors(s)‏
 α := max(α, Min-Value(s’, α, β))‏
 if (α ≥ β) then return α /* prune remaining children of Max */
 return α

function Min-Value(s, α, β)‏

 if (s is a terminal state)‏
 then return (SBE value of s)‏
 else for each s’ in Successors(s)‏
 β := min(β, Max-Value(s’, α, β))‏
 if (α ≥ β) then return β /* prune remaining children of Min */
 return β

Starting from the root:

Max-Value(root, -, +)‏

Alpha-Beta Example

O

W
-3

B

N
4

F G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
max Call

Stack

A

A A
α=, +

Alpha-Beta Example

O

W
-3

B

N
4

F G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=-, 

max Call

Stack

A

B B
=-β=+

B

min

Alpha-Beta Example

O

W
-3

B
β=

N
4

F G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

F F
α=-, +

B

min

max

F

Alpha-Beta Example

O

W
-3

B
β=

N
4

F
α=

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

N
4

B

min

max

F

blue: terminal state

N

Alpha-Beta Example

O

W
-3

B
β=

N
4

F
α=

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

 alpha(F) = 4, maximum seen so far

B

min

max

F

blue: terminal state

F
α=4, +

Alpha-Beta Example

O

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

B

min

max

F

blue: terminal state

O

min O O
β=+

Alpha-Beta Example

blue: terminal state

O
β=

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

B

min

max

F

blue: terminal state (depth limit)

O

W
-3

min

W

Alpha-Beta Example

blue: terminal state

O
β=

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

 beta(O) = -3, minimum seen so far

B

min

max

F

O

min
O

β=-3

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

 O's beta  F's alpha: stop expanding O (alpha cutoff)

B

min

max

F

O

min

X
-5

Alpha-Beta Example

Why? Smart opponent will choose W or worse, thus O's upper
bound is –3. So computer shouldn't choose O:-3 since N:4 is
better.

blue: terminal state

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

B

min

max

F

O

min

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

B

min

max

F min

X
-5

 alpha(F) not changed (maximizing)

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

B

min

max

min

X
-5

 beta(B) = 4, minimum seen so far

B
β=4

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=4

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

B

min

max

min

X
-5

G

G
-5

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=4

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

B

min

max

min

X
-5

 beta(B) = -5, updated to minimum seen so far

B
β=-5

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 alpha(A) = -5, maximum seen so far

A
α=-5

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=-5

C

C C
β=

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=-5

C

H
3

H

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 beta(C) = 3, minimum seen so far

A
α=-5

C

C
β=3

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=-5

C

I
8

I

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 beta(C) not changed (minimizing)

A
α=-5

C

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=-5

C

J

J J
α=

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=-5

C

J

P
P
9

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 alpha(J) = 9

A
α=-5

C

J

J
α=9

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 J's alpha  C's beta: stop expanding J (beta cutoff)

A

α=-5

C

J
Q
-6

R
0

Alpha-Beta Example

Why? Computer should choose P or better, thus J's lower
bound is 9. So smart opponent won't take J:9 since H:3 is
worse.

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=-5

C

J

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 beta(C) not changed (minimizing)

A
α=-5

C

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 alpha(A) = 3, updated to maximum seen so far

A
α=-5
A

α=3

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=3

D

D
0

Alpha-Beta Example

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

 alpha(A) not updated (maximizing)

A
α=3

Alpha-Beta Example

How does the algorithm finish the search tree?

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=3

Alpha-Beta Example

E's beta  A's alpha: stop expanding E (alpha cutoff)

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E
β=2

D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K
α=5

M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=3

Alpha-Beta Example

Why? Smart opponent will choose L or worse, thus E's upper
bound is 2. So computer shouldn't choose E:2 since C:3 is
better path.

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E
β=2

D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K
α=5

M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=3

Alpha-Beta Example

Final result: Computer chooses move C

blue: terminal state

O
β=-3

W
-3

B
β=-5

N
4

F
α=4

G
-5

X
-5

E
β=2

D
0

C
β=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K
α=5

M H
3

I
8

J
α=9

L
2

A
α=

max Call

Stack

A

min

max

min

X
-5

A
α=3

Effectiveness of Alpha-Beta Search

• Effectiveness depends on the order in which
successors are examined; more effective if
best successors are examined first

• Worst Case:

– ordered so that no pruning takes place
– no improvement over exhaustive search

• Best Case:
– each player’s best move is evaluated first

• In practice, performance is closer to best,
rather than worst, case

Effectiveness of Alpha-Beta Search

• In practice often get O(b(d/2)) rather than O(bd)

– same as having a branching factor of b

 since (b)d = b(d/2)

• Example: Chess

– goes from b ~ 35 to b ~ 6

– permits much deeper search for the same time

– makes computer chess competitive with humans

Dealing with Limited Time

• In real games, there is usually a time limit T on
making a move

• How do we take this into account?

– cannot stop alpha-beta midway and expect to use
results with any confidence

– so, we could set a conservative depth-limit that
guarantees we will find a move in time < T

– but then, the search may finish early and
the opportunity is wasted to do more search

Dealing with Limited Time

• In practice, iterative deepening search
(IDS) is used

– run alpha-beta search with an increasing
depth limit

– when the clock runs out, use the solution
found for the last completed alpha-beta
search (i.e., the deepest search that was
completed)

The Horizon Effect

• Sometimes disaster lurks just beyond search
depth
– computer captures queen, but a few moves later

the opponent checkmates (i.e., wins)

• The computer has a limited horizon, it cannot
see that this significant event could happen

• How do you avoid catastrophic losses due to
“short-sightedness”?
– quiescence search

– secondary search

The Horizon Effect

• Quiescence Search
– when SBE value is frequently changing, look deeper

than limit

– look for point when game “quiets down”

– E.g., always expand any forced sequences

• Secondary Search
1. find best move looking to depth d

2. look k steps beyond to verify that it still looks good

3. if it doesn't, repeat step 2 for next best move

Book Moves

• Build a database of opening moves, end
games, and studied configurations

• If the current state is in the database,
use database:

– to determine the next move

– to evaluate the board

• Otherwise, do alpha-beta search

More on Evaluation Functions

• The board evaluation function estimates
how good the current board configuration
is for the computer
– it is a heuristic function of the board's features

• i.e., function(f1, f2, f3, …, fn)

– the features are numeric characteristics
• feature 1, f1, is number of white pieces

• feature 2, f2, is number of black pieces

• feature 3, f3, is f1/f2

• feature 4, f4, is estimate of “threat” to white king

• etc.

Linear Evaluation Functions

• A linear evaluation function of the
features is a weighted sum of f1, f2, f3, ...

 w1 * f1 + w2 * f2 + w3 * f3 + … + wn * fn

– where f1, f2, …, fn are the features

– and w1, w2 , …, wn are the weights

• More important features get more weight

Linear Evaluation Functions

• The quality of play depends directly on
the quality of the evaluation function

• To build an evaluation function we have
to:

1. construct good features using expert
domain knowledge

2. pick or learn good weights

Learning the Weights in
a Linear Evaluation Function

• How could we learn these weights?

• Basic idea:
play lots of games against an opponent
– for every move (or game), look at the error =

true outcome  evaluation function

– if error is positive (under-estimating), adjust
weights to increase the evaluation function

– if error is 0, do nothing

– if error is negative (over-estimating), adjust
weights to decrease the evaluation function

Examples of Algorithms
that Learn to Play Well

Checkers
 A. L. Samuel, “Some Studies in Machine Learning

using the Game of Checkers,” IBM Journal of
Research and Development, 11(6):601-617, 1959

• Learned by playing thousands of times against a
copy of itself

• Used an IBM 704 with 10,000 words of RAM,
magnetic tape, and a clock speed of 1 kHz

• Successful enough to compete well at human
tournaments

Examples of Algorithms
that Learn to Play Well

Backgammon

 G. Tesauro and T. J. Sejnowski, “A Parallel
Network that Learns to Play Backgammon,”
Artificial Intelligence, 39(3), 357-390, 1989

• Also learns by playing against copies of itself

• Uses a non-linear evaluation function - a neural
network

• Rated one of the top three players in the world

Non-Deterministic Games

• Some games involve chance, for example:
– roll of dice
– spin of game wheel
– deal of cards from shuffled deck

• How can we handle games with random
elements?

• The game tree representation is extended
to include “chance nodes:”
1. computer moves
2. chance nodes
3. opponent moves

Non-Deterministic Games

Extended game tree representation:

A
α=

B
β=2

7 2

C
β=6

9 6

D
β=0

5 0

E
β=-4

8 -4

50/50 50/50

.5 .5 .5 .5

max

chance

min

Non-Deterministic Games

• Weight score by the probability that move occurs

• Use expected value for move: instead of using max
or min, compute the average, weighted by the
probabilities of each child

A
α=

B
β=2

7 2

C
β=6

9 6

D
β=0

5 0

E
β=-4

8 -4

50/50 50/50

.5 .5 .5 .5

max

chance

min

50/50

4
50/50

-2

Non-Deterministic Games

• Choose move with highest expected value

A
α=

B
β=2

7 2

C
β=6

9 6

D
β=0

5 0

E
β=-4

8 -4

50/50

4
50/50

-2

.5 .5 .5 .5

max

chance

min

A
α=4

Non-Deterministic Games

• Non-determinism increases branching factor
– 21 possible rolls with 2 dice

• Value of look ahead diminishes: as depth
increases, probability of reaching a given node
decreases

• alpha-beta pruning less effective
• TDGammon:

– depth-2 search
– very good heuristic
– played at world champion level

Computers can Play GrandMaster Chess

“Deep Blue” (IBM)

• Parallel processor, 32 “nodes”

• Each node had 8 dedicated VLSI “chess chips”

• Searched 200 million configurations/second

• Used minimax, alpha-beta, sophisticated heuristics

• Average branching factor ~6 instead of ~40

• In 2001 searched to 14 ply (i.e., 7 pairs of moves)

• Avoided horizon effect by searching as deep as 40 ply

• Used book moves

Computers can Play GrandMaster Chess

Kasparov vs. Deep Blue, May 1997

• 6 game full-regulation chess match sponsored by
ACM

• Kasparov lost the match 2 wins to 3 wins and 1 tie

• Historic achievement for computer chess; the first
time a computer became the best chess player on
the planet

• Deep Blue played by “brute force” (i.e., raw power
from computer speed and memory); it used
relatively little that is similar to human intuition and
cleverness

“Game Over: Kasparov and the Machine” (2003) Chess Rating Scale

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

1966 1971 1976 1981 1986 1991 1997

Ratings

Garry Kasparov (World Champion)
Deep Blue

Deep Thought

Status of Computers
in Other Deterministic Games

• Checkers
– First computer world champion: Chinook

– beat all humans (beat Marion Tinsley in 1994)

– used alpha-beta search, book moves (> 443 billion)

• Othello
– computers easily beat world experts

• Go
– branching factor b ~ 360, very large!

– $2 million prize for any system that can beat a world
expert

Summary

• Game playing is best modeled as a search
problem

• Search trees for games represent alternate
computer/opponent moves

• Evaluation functions estimate the quality of
a given board configuration for each player
 good for opponent

0 neutral

+ good for computer

Summary

• Minimax is an algorithm that chooses
“optimal” moves by assuming that the
opponent always chooses their best move

• Alpha-beta is an algorithm that can avoid
large parts of the search tree, thus enabling
the search to go deeper

• For many well-known games, computer
algorithms using heuristic search can match or
out-perform human world experts

