
Game Playing 

Chapter 5.1 – 5.3 

Game Playing and AI 

• Game playing was thought to be 
a good problem for AI research: 
– game playing is non-trivial 

• players need “human-like” intelligence 

• games can be very complex (e.g., Chess, Go) 

• requires decision making within limited time 

– games usually are: 
• well-defined and repeatable 

• fully observable and limited environments 

– can directly compare humans and computers 

Types of Games 

Definitions: 

 

• Zero-sum: one player’s gain is the other player’s 
loss.  Does not mean fair. 

• Discrete: states and decisions have discrete values 

• Finite: finite number of states and decisions 

• Deterministic: no coin flips, die rolls – no chance 

• Perfect information: each player can see the 
complete game state.  No simultaneous decisions. 

Game Playing and AI 

Deterministic Stochastic (chance) 

 

Fully Observable 

(perfect info) 

 

Checkers, Chess, 

Go, Othello 

 

Backgammon, 

Monopoly 

 

Partially Observable 

(imperfect info) 

 

? 

 

Bridge, Poker, 

Scrabble 

All are also multi-agent, adversarial, static tasks 



Game Playing as Search 

• Consider two-player, perfect information, 0-
sum board games: 
– e.g., chess, checkers, tic-tac-toe 

– board configuration:  a unique arrangement of 
"pieces" 

• Representing board games as search problem: 
– states: board configurations 

– actions: legal moves 

– initial state: current board configuration 

– goal state: game over/terminal board configuration 

Game Tree Representation 

 What's the new aspect 
to the search problem? 

 

 There’s an opponent 
we cannot control! 
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Greedy Search 
using an Evaluation Function 

• A Utility function is used to map each terminal state 
of the board (i.e., states where game is over) to a 
score indicating the value of that outcome to the 
computer 
 

• We’ll use: 
– positive for winning;  large + means better for computer 
– negative for losing;  large  - means better for opponent 
– 0 for a draw 
– typical values (loss to win): 

• - to + 
• -1.0 to +1.0 

Greedy Search 
using an Evaluation Function 

• Expand the search tree to the terminal states 
on each branch 

• Evaluate utility of each terminal board 
configuration 

• Make the initial move that results in the board 
configuration with the maximum value 
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Greedy Search 
using an Evaluation Function 

• Assuming a reasonable search space, what's the 
problem? 

  This ignores what the opponent might do! 
  Computer chooses C 
  Opponent chooses J and defeats computer 
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Minimax Principle 
 

• Assume both players play optimally 

– given there are two moves until the 
terminal states 

–high utility numbers favor the computer 

• computer should choose maximizing moves 

– low utility numbers favor the opponent 

• smart opponent chooses minimizing moves 

Minimax Principle 

• The computer assumes after it moves 
the opponent will choose the minimizing move 
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• The computer chooses the best move 
considering both its move and the opponent’s 
optimal move 
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Propagating Minimax Values 
up the Game Tree 

• Explore the tree to the terminal states 

• Evaluate utility of the resulting board 
configurations 

• The computer makes a move to put the board 
in the best configuration for it assuming 
the opponent makes her best moves on her 
turn: 
– start at the leaves 

– assign value to the parent node as follows 
• use minimum when children are opponent’s moves 
• use maximum when children are computer's moves 



Deeper Game Trees 

• Minimax can be generalized to more than 2 moves   

• Propagate values up through the tree 
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General Minimax Algorithm 

For each move by the computer: 

1. Perform depth-first search to a 

terminal state 

2. Evaluate each terminal state 

3. Propagate upwards the minimax values 

if opponent's move, propagate up 

minimum value of children 

if computer's move, propagate up 

maximum value of children 

4. choose move at root with the maximum of 

minimax values of children 
 

Complexity of Minimax Algorithm 

Assume all terminal states are at depth d 

• Space complexity 

  Depth-first search, so O(bd) 

• Time complexity 

  Branching factor b, so O(bd) 

 

• Time complexity is a major problem since 
computer typically only has a finite amount of 
time to make a move 

Complexity of Game Playing 

• Assume the opponent’s moves can be 
predicted given the computer's moves 

• How complex would search be in this case? 
– worst case: O(bd)    branching factor, depth 

– Tic-Tac-Toe:  ~5 legal moves, 9 moves max game 
• 59 = 1,953,125 states 

– Chess:  ~35 legal moves, ~100 moves per game 
• bd ~ 35100 ~10154 states, only ~1040 legal states 

 

• Common games produce enormous search trees 



Complexity of Minimax Algorithm 
 

• Minimax algorithm applied to complete game 
trees is impractical in practice 
– instead do depth-limited search to ply (depth) m, 

i.e., local search 

– but Utility function defined only for terminal 
states 

– we need to know a value for non-terminal states 

 

• Static Evaluation functions use heuristics to 
estimate the value of non-terminal states 

Static Board Evaluator (SBE) 

• A Static Board Evaluation function is used to 
estimate how good the current board 
configuration is for the computer 
– it reflects the computer’s chances of winning from 

that node  

– it must be easy to calculate from board 
configuration 

 

• For example, for Chess: 
 SBE = α * materialBalance + β * centerControl + γ * … 

 where material balance = Value of white pieces - Value of 
black pieces, pawn = 1, rook = 5, queen = 9, etc. 

Static Board Evaluator (SBE) 

• Typically, one subtracts how good it is for the 
opponent from how good it is for the 
computer 

• If the SBE gives X for a player, then it gives  -X 
for the opponent  

• SBE should agree with the Utility function 
when calculated at terminal nodes 

Minimax with Evaluation Functions 

• The same as general Minimax, except 

– only goes to depth m 

– estimates value using SBE function 

• How would this algorithm perform at Chess? 

– if could look ahead ~4 pairs of moves (i.e., 8 ply),  
would be consistently beaten by average players 

– if could look ahead ~8 pairs, is as good as human 
master 



Tic-Tac-Toe 
Example 

Evaluation function = (# 3-lengths open for me) – (# 3-lengths open for opponent) 

Minimax  Algorithm 

function Max-Value(s)‏ 
inputs: 
 s: current state in game, Max about to play 
output: best-score (for Max) available from s 

 if ( s is a terminal state or at depth limit )‏ 
 then return ( SBE value of s )‏ 
 else  
  α‏‏=:‏–  
  foreach s in Successors(s)‏ 
       α‏=:‏max(‏α‏,‏Min-Value(s))‏ 
 return α 

function Min-Value(s)‏ 
output: best-score (for Min) available from s 

 if ( s is a terminal state or at depth limit )‏ 
 then return ( SBE value of s)‏ 
 else  
  β‏‏=:‏ 
  foreach s in Successors(s)‏ 
       β‏=:‏min(‏β‏,‏Max-Value(s))‏ 
 return β 



Minimax  Example 
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Summary So Far 
• Can't use Minimax search to end of the game 

– if we could, then choosing move is easy 

• SBE isn't perfect at estimating/scoring 

– if it was, just choose best move without searching 

• Since neither is feasible for interesting games, 
combine Minimax and SBE concepts: 

– Minimax to depth m 

– use SBE to estimate/score board configuration 

Alpha-Beta Idea 
• Some of the branches of the game tree won't be 

taken if playing against an intelligent opponent 
• “If you have an idea that is surely bad, don’t 

take the time to see how truly awful it is.” 
     -- Pat Winston 
• Pruning can be used to ignore some branches 
• While doing DFS of game tree, keep track of: 

– Alpha () at maximizing levels: 
• highest SBE value seen so far in subtree below node 
• lower bound on node's final minimax value 

– Beta () at minimizing levels: 
• lowest SBE value seen so far in subtree below node 
• upper bound on node's final minimax value 

Alpha-Beta Idea:  Alpha Cutoff 
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• Depth-first traversal order 

• After returning from A, can get at least 100 at S 

• After returning from F, can get at most 20 at B 

• At this point no matter what minimax value is computed at 
G, S will prefer A over B.  So, S loses interest in B 

• There is no need to visit G.  The subtree at G is pruned.  
Saves time.  Called “Alpha cutoff” (at MIN node B) 
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Alpha Cutoff 

• At each MIN node, keep track of the minimum 
value returned so far from its visited children 

• Store this value as  

• Anytime  is updated (at a MIN node), check 
its value against the  value of (all) its MAX 
node ancestor(s) 

• If    for some MAX node ancestor, don’t 
visit any more of the current MIN node’s 
children 

Beta Cutoff Example 
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• After returning from B, can get at most 20 at MIN node A 

• After returning from G, can get at least 25 at MAX node C 

• No matter what minimax value is found at H, A will NEVER 
choose‏C‏over‏B,‏so‏don’t‏visit‏node‏H 

• Called‏“Beta‏Cutoff”‏(at‏MAX‏node‏C) 
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Beta Cutoff 

• At each MAX node, keep track of the maximum 
value returned so far from its visited children 

• Store this value as  

• Anytime  is updated (at a MAX node), check 
its value against the  value of (all) its MIN 
node ancestor(s) 

• If    for some MIN node ancestor, don’t visit 
any more of the current MAX node’s children 

Alpha-Beta  Idea 
• Store  value at MAX nodes and  value at MIN 

nodes 

• Cutoff/pruning occurs 

– At MAX node (when maximizing) 

 if      for some MIN ancestor, stop expanding 

– Don’t visit more children of MAX node 

– Opponent won't allow computer to make this move 

 

– At MIN node (when minimizing) 

 if, for some MAX node ancestor,    ,  stop expanding 

– Don’t visit more children of MIN node 

– Computer won't want to take this move 



Implementation of Cutoffs 

• At each node, keep both  and  values 

– At MAX node,  = largest value from its children 
visited so far, and  = smallest value from its MIN 
node ancestors in search tree 
•  value at MAX comes from descendants 

•  value at MAX comes from MIN node ancestors 

– At MIN node,  = smallest value from its children 
visited so far, and  = largest value from its MAX 
node ancestors in search tree 
•  value at MIN comes from MAX node ancestors 

•  value at MIN comes from descendants 

Implementation of Alpha Cutoff 
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• At each node, keep two bounds (based on all 
ancestors and descendants visited so far): 

 : the best (largest) MAX can do 

 : the best (smallest) MIN can do 

• If at anytime    at a node, the remaining children 

are pruned 

Initialize root’s values 

Alpha Cutoff Example 
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Alpha Cutoff Example 
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Alpha Cutoff Example 
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Alpha Cutoff Example 
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Alpha Cutoff Example 
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Notes: 

• Alpha cutoff  means not visiting some of a MIN node’s children 

• Beta values at MIN come from descendants 

• Alpha value at MIN come from MAX node ancestors 



Alpha-Beta Algorithm 
function Max-Value (s, α, β)‏ 
inputs: 
 s: current state in game, Max about to play 
 α: best score (highest) for Max along path to s 
 β: best score (lowest) for Min along path to s 

 if ( s is a terminal state )‏ 
 then return ( SBE value of s )‏ 
 else for each s’ in Successors(s)‏ 
    α := max( α, Min-Value(s’, α, β))‏ 
    if ( α ≥ β ) then return α    /* prune remaining children of Max */ 
 return α 
 

function Min-Value(s, α, β)‏ 

 if ( s is a terminal state )‏ 
 then return ( SBE value of s)‏ 
 else for each s’ in Successors(s)‏ 
    β := min( β, Max-Value(s’, α, β))‏ 
          if (α ≥ β ) then return β    /* prune remaining children of Min */ 
 return β 

Starting from the root: 

Max-Value(root, -, +)‏ 

Alpha-Beta Example 
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Alpha-Beta Example 
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Alpha-Beta Example 
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Alpha-Beta Example 
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Alpha-Beta Example 

blue: terminal state 
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Alpha-Beta Example 

blue: terminal state 
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Alpha-Beta Example 

blue: terminal state 
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Alpha-Beta Example 

Why? Smart opponent will choose W or worse, thus O's upper 
bound is –3.  So computer shouldn't choose O:-3 since N:4 is 
better. 
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Alpha-Beta Example 

blue: terminal state 

O 
β=-3 

W 
-3 

B 
β= 

N 
4 

F 
α=4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α= 

max Call 

Stack 

A 

B 

min 

max 

F min 

X 
-5 

     alpha(F) not changed (maximizing) 



 

Alpha-Beta Example 

blue: terminal state 
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Alpha-Beta Example 
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Alpha-Beta Example 

blue: terminal state 
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Alpha-Beta Example 
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Why? Computer should choose P or better, thus J's lower 
bound is 9.  So smart opponent won't take J:9 since H:3 is 
worse. 
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Alpha-Beta Example 

How does the algorithm finish the search tree? 
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Alpha-Beta Example 

E's beta  A's alpha: stop expanding E (alpha cutoff) 
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Alpha-Beta Example 

Why? Smart opponent will choose L or worse, thus E's upper 
bound is 2.  So computer shouldn't choose E:2 since C:3 is 
better path. 
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Alpha-Beta Example 

Final result:  Computer chooses move C 
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Effectiveness of Alpha-Beta Search 

• Effectiveness depends on the order in which 
successors are examined;  more effective if 
best successors are examined first 

 
• Worst Case: 

– ordered so that no pruning takes place 
– no improvement over exhaustive search 

• Best Case: 
– each player’s best move is evaluated first 

• In practice, performance is closer to best, 
rather than worst, case 

Effectiveness of Alpha-Beta Search 

 

• In practice often get O(b(d/2)) rather than O(bd) 

– same as having a branching factor of b 

 since (b)d =  b(d/2) 

• Example:  Chess 

– goes from b ~ 35  to  b ~ 6 

– permits much deeper search for the same time 

– makes computer chess competitive with humans 



Dealing with Limited Time 

 

• In real games, there is usually a time limit T on 
making a move 

• How do we take this into account?  

– cannot stop alpha-beta midway and expect to use 
results with any confidence 

– so, we could set a conservative depth-limit that 
guarantees we will find a move in time < T 

– but then, the search may finish early and 
the opportunity is wasted to do more search 

Dealing with Limited Time 

 

• In practice, iterative deepening search 
(IDS) is used 

– run alpha-beta search with an increasing 
depth limit 

– when the clock runs out, use the solution 
found for the last completed alpha-beta 
search (i.e., the deepest search that was 
completed) 

The Horizon Effect 

• Sometimes disaster lurks just beyond search 
depth 
– computer captures queen, but a few moves later 

the opponent checkmates (i.e., wins) 

• The computer has a limited horizon, it cannot 
see that this significant event could happen 

• How do you avoid catastrophic losses due to 
“short-sightedness”? 
– quiescence search 

– secondary search 

The Horizon Effect 

• Quiescence Search 
– when SBE value is frequently changing, look deeper 

than limit 

– look for point when game “quiets down” 

– E.g., always expand any forced sequences 

 

• Secondary Search 
1. find best move looking to depth d 

2. look k steps beyond to verify that it still looks good 

3. if it doesn't, repeat step 2 for next best move 



Book Moves 
 

• Build a database of opening moves, end 
games, and studied configurations 

• If the current state is in the database, 
use database: 

– to determine the next move 

– to evaluate the board 

• Otherwise, do alpha-beta search 

More on Evaluation Functions 

• The board evaluation function estimates 
how good the current board configuration 
is for the computer 
– it is a heuristic function of the board's features 

• i.e.,  function(f1, f2, f3, …, fn) 

– the features are numeric characteristics 
• feature 1, f1, is number of white pieces 

• feature 2, f2, is number of black pieces 

• feature 3, f3, is f1/f2 

• feature 4, f4, is estimate of “threat” to white king 

• etc. 

Linear Evaluation Functions 

 

• A linear evaluation function of the 
features is a weighted sum of f1, f2, f3, ... 

 w1 * f1  +  w2 * f2  +  w3 * f3  +  …  +  wn * fn 

– where f1,  f2, …, fn are the features 

– and w1, w2 , …, wn are the weights 

 

• More important features get more weight 

Linear Evaluation Functions 
 

• The quality of play depends directly on 
the quality of the evaluation function 

 

• To build an evaluation function we have 
to: 

1. construct good features using expert 
domain knowledge 

2. pick or learn good weights 



Learning the Weights in 
a Linear Evaluation Function 

• How could we learn these weights? 

• Basic idea: 
play lots of games against an opponent 
– for every move (or game), look at the error = 

true outcome    evaluation function 

– if error is positive (under-estimating), adjust 
weights to increase the evaluation function 

– if error is 0, do nothing 

– if error is negative (over-estimating), adjust 
weights to decrease the evaluation function 

Examples of Algorithms 
that Learn to Play Well 

Checkers 
 A. L. Samuel, “Some Studies in Machine Learning 

using the Game of Checkers,” IBM Journal of 
Research and Development, 11(6):601-617, 1959 

• Learned by playing thousands of times against  a 
copy of itself 

• Used an IBM 704 with 10,000 words of RAM, 
magnetic tape, and a clock speed of 1 kHz 

• Successful enough to compete well at human 
tournaments 

Examples of Algorithms 
that Learn to Play Well 

Backgammon 

 G. Tesauro and T. J. Sejnowski, “A Parallel 
Network that Learns to Play Backgammon,” 
Artificial Intelligence, 39(3), 357-390, 1989 

• Also learns by playing against copies of itself 

• Uses a non-linear evaluation function - a neural 
network  

• Rated one of the top three players in the world 

Non-Deterministic Games 

• Some games involve chance, for example: 
– roll of dice 
– spin of game wheel 
– deal of cards from shuffled deck 

• How can we handle games with random 
elements? 

• The game tree representation is extended 
to include “chance nodes:” 
1. computer moves 
2. chance nodes 
3. opponent moves 



Non-Deterministic Games 

Extended game tree representation: 
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Non-Deterministic Games 

• Weight score by the probability that move occurs 

• Use expected value for move:  instead of using max 
or min, compute the average, weighted by the 
probabilities of each child 

A 
α= 

B 
β=2 

7 2 

C 
β=6 

9 6 

D 
β=0 

5 0 

E 
β=-4 

8 -4 

50/50 50/50 

.5 .5 .5 .5 

max 

chance 

min 

50/50 

4 
50/50 

-2 

Non-Deterministic Games 

• Choose move with highest expected value 
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Non-Deterministic Games 

• Non-determinism increases branching factor 
– 21 possible rolls with 2 dice 

• Value of look ahead diminishes: as depth 
increases, probability of reaching a given node 
decreases 

• alpha-beta pruning less effective 
• TDGammon: 

– depth-2 search 
– very good heuristic 
– played at world champion level 



Computers can Play GrandMaster Chess 

“Deep Blue” (IBM) 

• Parallel processor, 32 “nodes” 

• Each node had 8 dedicated VLSI “chess chips” 

• Searched 200 million configurations/second 

• Used minimax, alpha-beta, sophisticated heuristics 

• Average branching factor ~6 instead of ~40 

• In 2001 searched to 14 ply (i.e., 7 pairs of moves) 

• Avoided horizon effect by searching as deep as 40 ply 

• Used book moves 

Computers can Play GrandMaster Chess 

Kasparov vs. Deep Blue, May 1997 

• 6 game full-regulation chess match sponsored by 
ACM 

• Kasparov lost the match 2 wins to 3 wins and 1 tie 

• Historic achievement for computer chess; the first 
time a computer became the best chess player on 
the planet 

• Deep Blue played by “brute force” (i.e., raw power 
from computer speed and memory); it used 
relatively little that is similar to human intuition and 
cleverness 

“Game Over: Kasparov and the Machine” (2003) Chess Rating Scale 
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Status of Computers 
in Other Deterministic Games 

• Checkers 
– First computer world champion:  Chinook 

– beat all humans (beat Marion Tinsley in 1994) 

– used alpha-beta search, book moves (> 443 billion) 

• Othello 
– computers easily beat world experts 

• Go 
– branching factor b ~ 360, very large! 

– $2 million prize for any system that can beat a world 
expert 

Summary 

• Game playing is best modeled as a search 
problem 

• Search trees for games represent alternate 
computer/opponent moves 

• Evaluation functions estimate the quality of 
a given board configuration for each player 
  good for opponent 

0  neutral 

+  good for computer 

Summary 

• Minimax is an algorithm that chooses 
“optimal” moves by assuming that the 
opponent always chooses their best move 

• Alpha-beta is an algorithm that can avoid 
large parts of the search tree, thus enabling 
the search to go deeper 

• For many well-known games, computer 
algorithms using heuristic search can match or 
out-perform human world experts 


