Genetic Algorithms

Chapter 4.1.4

Introduction to Genetic Algorithms

• Inspired by natural evolution:
 Living things evolved into more successful organisms
 — offspring exhibit some traits of each parent
 — hereditary traits are determined by genes
 — genetic instructions are contained in chromosomes
 — chromosomes are strands of DNA
 — DNA is composed of base pairs (A,C,G,T), when in meaningful combinations, encode hereditary traits

Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 – Crossover: the random exchange of 2 parents’ chromosomes during reproduction resulting in offspring that have some traits of each parent

 • Crossover requires genetic diversity among the parents to ensure sufficiently varied offspring

Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 – Mutation: the rare occurrence of errors during the process of copying chromosomes resulting in

 • changes that are nonsensical/deadly, producing organisms that can't survive
 • changes that are beneficial, producing "stronger" organisms
 • changes that aren't harmful or beneficial, producing organisms that aren't improved
Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 – **Natural selection**: the fittest survive in a competitive environment resulting in better organisms
 • individuals with better survival traits generally survive for a longer period of time
 • this provides a better chance for reproducing and passing the successful traits on to offspring
 • over many generations the species improves since better traits will out number weaker ones

Introduction to Genetic Algorithms

• Keep a population of individuals that are complete solutions (or partial solutions)
• Explore solution space by having these individuals interact and compete
 – interaction produces new individuals
 – competition eliminates weak individuals
• After multiple generations a strong individual (i.e., solution) should be found
• “Simulated Evolution” via a form of Hill-Climbing or Randomized Beam Search

Representation of Individuals

• Some problems have solutions that can be represented as a **vector** of values:
 – e.g., satisfiability problem (SAT):
 determine if a statement in propositional logic is satisfiable
 \[(P_1 \land P_2) \lor (P_1 \land \neg P_2) \lor (P_1 \land \neg P_3) \lor (P_1 \land \neg P_4) \lor (\neg P_2 \land \neg P_3)\]
 • each element corresponds with a proposition having a truth value of either true (i.e., 1) or false (i.e., 0)
 • vector: \[P_1 \ P_2 \ P_3 \ P_4\]
 • values: \[1 \ 0 \ 1 \ 1\] \quina\] rep. of 1 individual
• Some problems have solutions that can be represented as a **permutation** of values:
 – e.g., traveling salesperson problem (TSP)

Genetic Algorithm

- Create initial random population
- Evaluate fitness of each individual
- Termination criteria satisfied?
 yes: stop
 no:
 - Select parents according to fitness
 - Recombine parents to generate offspring
 - Mutate offspring
- Replace population by new offspring
Genetic Algorithm (1 version*)

1. Let \(s = \{s_1, \ldots, s_N\} \) be the current population
2. Let \(p[i] = \frac{f(s_i)}{\sum f(s_j)} \) be the fitness probabilities
3. for \(k = 1; \ k < N; \ k += 2 \)
 • Parent1 = randomly pick \(s_i \) with prob. \(p[i] \)
 • Parent2 = randomly pick another \(s_j \) with prob. \(p[j] \)
 • Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate children \(t[k] \) and \(t[k+1] \)
4. for \(k = 1; \ k \leq N; \ k++ \)
 • Randomly mutate each position in \(t[k] \) with a small prob.
5. New generation replaces old generation: \(s = t \)

*different than in book

Initialization: Seeding the Population

• Initialization sets the beginning population of individuals from which future generations are produced

• Concerns:
 – size of the initial population
 • experimentally determined for problem
 – diversity of the initial population (genetic diversity)
 • a common issue resulting from the lack of diversity is premature convergence to non-optimal solution

Evaluation: Ranking by Fitness

• Evaluation ranks the individuals by some fitness measure that corresponds with the quality of the individual solutions

• For example, given individual \(i \):
 – classification: \((\text{correct}(i))^2\)
 – TSP: \(1/\text{distance}(i)\)
 – SAT: \#\text{ofTermsSatisfied}(i)
 – walking animation: subjective rating

Initialization: Seeding the Population

• How is a diverse initial population generated?
 – uniformly random: generate individuals randomly from a solution space with uniform distribution
 – grid initialization: choose individuals at regular "intervals" from the solution space
 – non-clustering: require individuals to be a predefined "distance" away from those already in the population
 – local optimization: use another technique (e.g. HC) to find initial population of local optima; doesn't ensure diversity but guarantees solution to be no worse than the local optima
Selection: Finding the Fittest

- Choose which individuals survive and possibly reproduce in the next generation
- Selection depends on the evaluation/fitness function
 - if too dependent, then, like greedy search, a non-optimal solution may be found
 - if not dependent enough, then may not converge to a solution at all
- Nature doesn't eliminate all "unfit" genes; they usually become recessive for a long period of time, and then may mutate to something useful

Selection Techniques

- **Proportional Fitness Selection**
 - each individual is selected proportionally to their fitness score
 - even the worst individual has a chance to survive
 - this helps prevent stagnation in the population
- Two approaches:
 - **rank selection**: individual selected with a probability proportional to its rank in population sorted by fitness
 - **proportional selection**: individual selected with a probability:
 \[
 \frac{\text{Fitness}(\text{individual})}{\sum \text{Fitness for all individuals}}
 \]

Selection Techniques

- **Tournament Selection**
 - randomly select two individuals and the one with the highest rank goes on and reproduces
 - cares only about the one with the higher rank, not the spread between the two fitness scores
 - puts an upper and lower bound on the chances that any individual has to reproduce for the next generation equal to \(\frac{(2s - 2r + 1)}{s^2} \)
 - \(s \) is the size of the population
 - \(r \) is the rank of the "winning" individual
 - can be generalized to select best of \(n \) individuals

Proportional selection example:

- Given the following fitness values for population:
- **Sum the Fitness**
 \[5 + 20 + 11 + 8 + 6 = 50 \]
- **Determine probabilities**
 \[\frac{\text{Fitness}(i)}{50} \]

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>12%</td>
</tr>
</tbody>
</table>
Selection Techniques

Tournament selection example:
- Given the following population and fitness:
 - Select B and D
 - B wins
 - Probability:
 \[
 \frac{(2s - 2r + 1)}{s^2}
 \]

Individual	Fitness	Prob.
A	5	1/25 = 4%
B	20	9/25 = 36%
C	11	7/25 = 28%
D	8	5/25 = 20%
E	6	3/25 = 12%

B: \(s=5, r=1\) D: \(s=5, r=3\)

Alteration: Producing New Individuals

- Alteration is used to produce new individuals

- **Crossover** for vector representations:
 - pick one or more pairs of individuals as parents and randomly swap their segments
 - also known as "cut and splice"

- Parameters:
 - crossover rate
 - number of crossover points
 - positions of the crossover points

Selection Techniques

- **Crowding**
 - a potential problem associated with the selection
 - occurs when the individuals that are most-fit quickly reproduce so that a large percentage of the entire population looks very similar
 - reduces diversity in the population
 - may hinder the long-run progress of the algorithm

Alteration: Producing New Individuals

- **1-point crossover**
 - pick a dividing point in the parents' vectors and swap the segments

- Example
 - given parents: \(110101101\) and \(0001001000\)
 - crossover point: after the 4th digit
 - children produced are:
 \(1101 + 001000\) and \(0001 + 101101\)
Alteration: Producing New Individuals

- **N-point crossover**
 - generalization of 1-point crossover
 - pick n dividing points in the parents' vectors and splice together alternating segments
- **Uniform crossover**
 - the value of each element of the vector is randomly chosen from the values in the corresponding elements of the two parents
- Techniques also exist for permutation representations

Alteration: Producing New Individuals

- Alteration is used to produce new individuals
- **Mutation**
 - randomly change an individual
 - e.g. TSP: two-swap, two-interchange
 - e.g. SAT: bit flip
- Parameters:
 - mutation rate
 - size of the mutation

Genetic Algorithm (1 version*)

1. Let $s = \{s_1, \ldots, s_N\}$ be the current population
2. Let $p[i] = f(s_i)/\sum f(s_j)$ be the fitness probabilities
3. for $k = 1; \ k < N; \ k += 2$
 - Parent1 = randomly pick s_i with prob. $p[i]$
 - Parent2 = randomly pick another s_j with prob. $p[j]$
 - Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate children $t[k]$
 and $t[k+1]$
4. for $k = 1; \ k \leq N; \ k++$
 - Randomly mutate each position in $t[k]$ with a small prob.
5. New generation replaces old generation: $s = t$

*different than in book

Genetic Algorithms Applications
Genetic Algorithms as Search

- **Problem of Local Maxima**
 individuals get stuck at pretty good but not optimal solutions
 - any small mutation gives worse fitness
 - crossover can help them get out of a local maximum
 - mutation is a random process, so it is possible that we may have a sudden large mutation to get these individuals out of this situation

Genetic Algorithms as Search

- GA is a kind of hill-climbing search
- Very similar to a randomized beam search
- One significant difference between GAs and HC is that, it is generally a good idea in GAs to “fill the local maxima up with individuals”
- Overall, GAs have less problems with local maxima than back-propagation neural networks

Summary

- Easy to apply to a wide range of problems
 - optimizations like TSP
 - inductive concept learning
 - scheduling
 - layout
- The results can be very good on some problems, and rather poor on others
- GA is very slow if only mutation is used; crossover makes the algorithm significantly faster