
1 

Genetic Algorithms 

Chapter 4.1.4 

Introduction to Genetic Algorithms 

• Inspired by natural evolution: 
Living things evolved into more successful organisms 

– offspring exhibit some traits of each parent 

– hereditary traits are determined by genes 

– genetic instructions are contained in 
chromosomes 

– chromosomes are strands of DNA 

– DNA is composed of base pairs (A,C,G,T), when in 
meaningful combinations, encode hereditary 
traits 

Introduction to Genetic Algorithms 

• Mechanisms of evolutionary change: 

– Crossover:  the random exchange of 2 parents’ 
chromosomes during reproduction resulting in 

offspring that have some traits of each parent 

 

• Crossover requires genetic diversity among 
the parents to ensure sufficiently varied 
offspring 

Introduction to Genetic Algorithms 

• Mechanisms of evolutionary change: 

– Mutation:  the rare occurrence of errors during 
the process of copying chromosomes resulting in 

 

• changes that are nonsensical/deadly, 
producing organisms that can't survive 

• changes that are beneficial, producing 
"stronger" organisms 

• changes that aren't harmful or beneficial, 
producing organisms that aren't improved 



2 

Introduction to Genetic Algorithms 

• Mechanisms of evolutionary change: 

– Natural selection:  the fittest survive in a 
competitive environment resulting in better 
organisms 

• individuals with better survival traits 
generally survive for a longer period of time 

• this provides a better chance for reproducing 
and passing the successful traits on to offspring 

• over many generations the species improves 
since better traits will out number weaker ones 

Introduction to Genetic Algorithms 

• Keep a population of individuals that are 
complete solutions (or partial solutions) 

• Explore solution space by having these 
individuals interact and compete 
– interaction produces new individuals 

– competition eliminates weak individuals 

• After multiple generations a strong individual 
(i.e., solution) should be found 

• “Simulated Evolution” via a form of Hill-
Climbing or Randomized Beam Search 

Representation of Individuals 

• Some problems have solutions that 
can be represented as a vector of values: 
– e.g., satisfiability problem (SAT): 

determine if a statement in propositional logic is satisfiable 
(P1 P2)(P1 P3)(P1 P4)(P3 P4) 

• each element corresponds with a proposition having 
a truth value of either true (i.e., 1) or false (i.e., 0) 

• vector: P1 P2 P3 P4 
• values: 1  0  1  1    rep. of 1 individual 

• Some problems have solutions that can be 
represented as a permutation of values: 
– e.g., traveling salesperson problem (TSP) 

Genetic Algorithm 

Create initial random population 

Evaluate fitness of each individual  

Termination criteria satisfied ? 

Select parents according to fitness  

Recombine parents to generate offspring 

Mutate offspring 

Replace population by new offspring 

stop 
yes 

no 



3 

Genetic Algorithm (1 version*) 

1. Let s = {s1, …, sN} be the current population 

2. Let p[i] = f(si)/f(sj) be the fitness probabilities 

3. for k = 1;  k < N;  k += 2 

• Parent1 = randomly pick si with prob. p[i] 

• Parent2 = randomly pick another sj with prob. p[j] 

• Randomly select 1 crossover point, and swap 

strings of parents 1 and 2 to generate children t[k] 

and t[k+1] 

4. for k = 1;  k  N;  k++ 

• Randomly mutate each position in t[k] with a 

small prob. 

5. New generation replaces old generation:  s = t  

*different than in book 

Initialization:  Seeding the Population 

• Initialization sets the beginning population 
of individuals from which future generations 
are produced 
 

• Concerns: 
– size of the initial population 

• experimentally determined for problem 

– diversity of the initial population (genetic 
diversity) 
• a common issue resulting from the lack of diversity is 

premature convergence to non-optimal solution 

Initialization:  Seeding the Population 

• How is a diverse initial population generated? 

– uniformly random: generate individuals 

randomly from a solution space with uniform distribution 

– grid initialization: choose individuals 

at regular "intervals" from the solution space 

– non-clustering: require individuals to be a predefined "distance" 

away from those already in the population 

– local optimization: use another technique (e.g. HC) 

to find initial population of local optima; doesn't ensure diversity but 
guarantees solution to be no worse than the local optima 

Evaluation: Ranking by Fitness 

• Evaluation ranks the individuals by some 
fitness measure that corresponds with the 
quality of the individual solutions 
 

• For example, given individual i: 

– classification:  (correct(i))2 

– TSP:     1/distance(i) 

– SAT:     #ofTermsSatisfied(i) 

– walking animation: subjective rating 



4 

Selection: Finding the Fittest 

• Choose which individuals survive and possibly 
reproduce in the next generation 

• Selection depends on the evaluation/fitness 
function 
– if too dependent, then, like greedy search, a non-

optimal solution may be found 
– if not dependent enough, then may not converge to 

a solution at all 

• Nature doesn't eliminate all "unfit" genes; 
they usually become recessive for a long period 
of time, and then may mutate to something 
useful 

Selection Techniques 

• Proportional Fitness Selection 
– each individual is selected proportionally to their 

fitness score 
– even the worst individual has a chance to survive 
– this helps prevent stagnation in the population 

• Two approaches: 
– rank selection: individual selected with a probability 

proportional to its rank in population sorted by fitness 

– proportional selection: individual selected with a 
probability:  

 
 Fitness(individual) /  Fitness for all individuals 

Selection Techniques 

Proportional selection example: 
• Given the following fitness values for population: 

Individual Fitness 

A 5 

B 20 

C 11 

D 8 

E 6 

 Sum the Fitness 

 5 + 20 + 11 + 8 + 6 = 50 

 Determine probabilities 

 Fitness(i) / 50 

Prob. 

10% 

40% 

22% 

16% 

12% 

Selection Techniques 

• Tournament Selection 
– randomly select two individuals and the one 

with the highest rank goes on and reproduces 

– cares only about the one with the higher rank, 
not the spread between the two fitness scores 

– puts an upper and lower bound on the chances 
that any individual has to reproduce for the next 
generation equal to   (2s – 2r + 1) / s2 

• s is the size of the population 

• r is the rank of the "winning" individual 

– can be generalized to select best of n individuals 



5 

Selection Techniques 

Tournament selection example: 
• Given the following population and fitness: 

Individual Fitness 

A 5 

B 20 

C 11 

D 8 

E 6 

• Select B and D 

• B wins 

• Probability: 

 (2s – 2r + 1) / s2 

Prob. 

1/25 = 4% 

9/25 = 36% 

7/25 = 28% 

5/25 = 20% 

3/25 = 12% 

B:  s=5, r=1 D:  s=5, r=3 

Selection Techniques 

 

• Crowding 
a potential problem associated with the 
selection 

– occurs when the individuals that are most-fit 
quickly reproduce so that a large percentage 
of the entire population looks very similar 

– reduces diversity in the population 

– may hinder the long-run progress of the algorithm 

Alteration:  Producing New Individuals 

• Crossover for vector representations: 
– pick one or more pairs of individuals as parents 

and randomly swap their segments 
– also known as "cut and splice" 

 

• Parameters: 
– crossover rate 
– number of crossover points 
– positions of the crossover points 

•  Alteration is used to produce new individuals 

Alteration:  Producing New Individuals 

• 1-point crossover 

– pick a dividing point in the parents' vectors 
and swap the segments 

• Example 

– given parents:  1101101101  and  0001001000 

– crossover point: after the 4th digit 

– children produced are: 

 1101 + 001000 and 0001 + 101101 



6 

Alteration:  Producing New Individuals 

• N-point crossover 
– generalization of 1-point crossover 
– pick n dividing points in the parents' vectors and splice 

together alternating segments 

• Uniform crossover 
– the value of each element of the vector is randomly 

chosen from the values in the corresponding elements 
of the two parents 

 

• Techniques also exist for permutation 
representations 

Alteration:  Producing New Individuals 

• Alteration is used to produce new individuals 
 

• Mutation 
– randomly change an individual 
– e.g. TSP: two-swap, two-interchange 
– e.g. SAT: bit flip 

 

• Parameters: 
– mutation rate 
– size of the mutation 

Genetic Algorithm (1 version*) 

1. Let s = {s1, …, sN} be the current population 

2. Let p[i] = f(si)/f(sj) be the fitness probabilities 

3. for k = 1;  k < N;  k += 2 

• Parent1 = randomly pick si with prob. p[i] 

• Parent2 = randomly pick another sj with prob. p[j] 

• Randomly select 1 crossover point, and swap 

strings of parents 1 and 2 to generate children t[k] 

and t[k+1] 

4. for k = 1;  k  N;  k++ 

• Randomly mutate each position in t[k] with a 

small prob. 

5. New generation replaces old generation:  s = t  

*different than in book 

Genetic Algorithms Applications 



7 

Genetic Algorithms as Search 

 

• Problem of Local Maxima 

 individuals get stuck at pretty good but not 
optimal solutions 

– any small mutation gives worse fitness 

– crossover can help them get out of a local maximum 

– mutation is a random process, so it is possible that we 
may have a sudden large mutation to get these 
individuals out of this situation 

 

Genetic Algorithms as Search 

 

• GA is a kind of hill-climbing search 

• Very similar to a randomized beam search 

• One significant difference between GAs and HC 
is that, it is generally a good idea in GAs to “fill 
the local maxima up with individuals” 

• Overall, GAs have less problems with local 
maxima than back-propagation neural networks 

Summary 

• Easy to apply to a wide range of problems 
– optimizations like TSP 

– inductive concept learning 

– scheduling 

– layout 

• The results can be very good on some problems, 
and rather poor on others 

• GA is very slow if only mutation is used; 
crossover makes the algorithm significantly 
faster  


