
1 

Informed Search 

Chapter 3.5 – 3.6, 4.1 

Informed Search 

 

• Informed searches use domain knowledge 
to guide selection of the best path to continue 
searching 

 

• Heuristics are used, which are informed guesses 

 

• Heuristic means "serving to aid discovery" 

Informed Search 

 

• Define a heuristic function, h(n) 

– uses domain-specific info. in some way 

– is computable from the current state description  

– it estimates 

• the "goodness" of node n 

• how close node n is to a goal 

• the cost of minimal cost path from node n to a goal 
state 

Informed Search 

• h(n)    0  for all nodes n 

• h(n)  =  0  implies that n is a goal node 

• h(n)  =    implies that n is a dead end from 
   which a goal cannot be reached 

 

• All domain knowledge used in the search is encoded in 
the heuristic function, h 

• An example of a “weak method” for AI because of the 
limited way that domain-specific information is 
used to solve a problem 
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Best-First Search 

 

• Sort nodes in the Frontier list by increasing 
values of an evaluation function, f(n), that 
incorporates domain-specific information 

 

• This is a generic way of referring to the class 
of informed search methods 

 

Greedy Best-First Search 

 

• Use as an evaluation function, f(n) = h(n), 
sorting nodes in the Frontier list by 
increasing values of f 

 

• Selects the node to expand that is believed 
to be closest (i.e., smallest f value) to a goal 
node 

Greedy Best-First Search 

# of nodes tested: 0, expanded: 0 

expnd. node Frontier list 

{S:8} 

 f(n) = h(n) 
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5 

Greedy Best-First Search 

# of nodes tested: 1, expanded: 1 

expnd. node Frontier list 

{S:8} 

S not goal {C:3,B:4,A:8} 

 f(n) = h(n) 
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Greedy Best-First Search 

# of nodes tested: 2, expanded: 2 

expnd. node Frontier list 

{S:8} 

S {C:3,B:4,A:8} 

C not goal {G:0,B:4,A:8} 

 f(n) = h(n) 

1 5 

3 9 7 

8 

4 
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h=∞ 
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h=∞ 
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h=4 

G 
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5 

Greedy Best-First Search 

# of nodes tested: 3, expanded: 2 

expnd. node Frontier list 

{S:8} 

S {C:3,B:4,A:8} 

C {G:0,B:4, A:8} 

G goal {B:4, A:8} no expand 

 f(n) = h(n) 

1 5 

3 9 7 

8 

4 

S 
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h=∞ 
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h=4 
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Greedy Best-First Search 

• Fast but not optimal 

# of nodes tested: 3, expanded: 2 

expnd. node Frontier list 

{S:8} 

S {C:3,B:4,A:8} 

C {G:0,B:4, A:8} 

G {B:4, A:8} 

 f(n) = h(n) 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

path: S,C,G 

cost: 13 

Greedy Best-First Search 

• Not complete 
• Not optimal/admissible 

2 2 

1 2 

S 
h=5 

A 
h=3 

C 
h=3 

B 
h=4 

D 
h=1 

G 
goal 

G 
goal 

E 
h=2 

1 1 

3 

Greedy search finds the left goal 

(solution cost of 7) 

Optimal solution is the path to the 

right goal (solution cost of 5) 
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Beam Search 

• Use an evaluation function f(n) = h(n) as in 
greedy best-first search, but restrict the 
maximum size of the Frontier list to a constant, k 

• Only keep k best nodes as candidates for 
expansion, and throw away the rest 

• More space efficient than Greedy Search, 
but may throw away a node on a solution path 

• Not complete 

• Not optimal/admissible 

Algorithm A Search 

• Use as an evaluation function f(n) = g(n) + 
h(n), where g(n) is minimal cost path from 
start to current node n (as defined in UCS) 

• The g term adds a “breadth-first component” 
to the evaluation function 

• Nodes on the Frontier are ranked by the 
estimated cost of a solution, where g(n) is the 
cost from the start node to node n, and h(n) is 
the estimated cost from node n to a goal 

Algorithm A Search 

• Not complete 2 2 

1 2 

S 
h=5 

A 
h=3 

C 
h=3 

B 
h=4 

D 
h=1 

F 
h=∞ 

G 
h=0 

E 
h=∞ 

1 1 

99 

Algorithm A never expands 

E because h(E) =  

 Not optimal/admissible 

Algorithm A* Search 

• Use the same evaluation function used by Algorithm A, 
except add the constraint that for all nodes n in the 
search space, h(n) ≤ h*(n), where h*(n) is the true cost 
of the minimal cost path from n to a goal 

• The cost to the nearest goal is never over-estimated 

• When h(n) ≤ h*(n) holds true for all n, h is called an 
admissible heuristic function 

• An admissible heuristic guarantees that a node on the 
optimal path cannot look so bad so that it is never 
considered 
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Admissible Heuristics are Good for 
Playing The Price is Right 

Algorithm A* Search 

 

• Complete 

• Optimal / Admissible 

Example 

n g(n) h(n) f(n) h*(n) 

S 

A 

B 

C 

D 

E 

G 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

g(n) = actual cost to get to node n 
            from start 

n g(n) h(n) f(n) h*(n) 

S 

A 

B 

C 

D 

E 

G 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 

A 

B 

C 

D 

E 

G 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

g(n) = actual cost to get to node n 
            from start 
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Example 

n g(n) h(n) f(n) h*(n) 

S 0 

A 1 

B 

C 

D 

E 

G 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

g(n) = actual cost to get to node n 
            from start 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 

A 1 

B 5 

C 8 

D 

E 

G 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

g(n) = actual cost to get to node n 
            from start 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 

A 1 

B 5 

C 8 

D 1+3 = 4 

E 

G 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

g(n) = actual cost to get to node n 
            from start 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 

A 1 

B 5 

C 8 

D 4 

E 1+7 = 8 

G 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

g(n) = actual cost to get to node n 
            from start 
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Example 

n g(n) h(n) f(n) h*(n) 

S 0 

A 1 

B 5 

C 8 

D 4 

E 8 

G 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

g(n) = actual cost to get to node n 
            from start 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 

A 1 

B 5 

C 8 

D 4 

E 8 

G 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h(n) = estimated cost to get to a goal 

            from node n 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 

A 1 

B 5 

C 8 

D 4 

E 8 

G 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h(n) = estimated cost to get to a goal 

            from node n 

n g(n) h(n) f(n) h*(n) 

S 0 8 

A 1 8 

B 5 4 

C 8 3 

D 4 ∞ 

E 8 ∞ 

G 10/9/13 0 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 

A 1 8 

B 5 4 

C 8 3 

D 4 ∞ 

E 8 ∞ 

G 10/9/13 0 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

f(n) = g(n) + h(n) 

          actual cost to get from start to n 

           plus estimated cost from n to goal 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 

A 1 8 9 

B 5 4 9 

C 8 3 11 

D 4 ∞ ∞ 

E 8 ∞ ∞ 

G 10/9/13 0 10/9/13 
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Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 

A 1 8 9 

B 5 4 9 

C 8 3 11 

D 4 ∞ ∞ 

E 8 ∞ ∞ 

G 10/9/13 0 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h*(n) = true cost of minimal path 

              from n to a goal 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 

B 5 4 9 

C 8 3 11 

D 4 ∞ ∞ 

E 8 ∞ ∞ 

G 10/9/13 0 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h*(n) = true cost of minimal path 

              from n to a goal 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 9 

B 5 4 9 

C 8 3 11 

D 4 ∞ ∞ 

E 8 ∞ ∞ 

G 10/9/13 0 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h*(n) = true cost of minimal path 

              from n to a goal 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 9 

B 5 4 9 4 

C 8 3 11 

D 4 ∞ ∞ 

E 8 ∞ ∞ 

G 10/9/13 0 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h*(n) = true cost of minimal path 

              from n to a goal 
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Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 9 

B 5 4 9 4 

C 8 3 11 5 

D 4 ∞ ∞ 

E 8 ∞ ∞ 

G 10/9/13 0 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h*(n) = true cost of minimal path 

              from n to a goal 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 9 

B 5 4 9 4 

C 8 3 11 5 

D 4 ∞ ∞ 

E 8 ∞ ∞ 

G 10/9/13 0 10/9/13 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

h*(n) = true cost of minimal path 

              from n to a goal 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 9 

B 5 4 9 4 

C 8 3 11 5 

D 4 ∞ ∞ ∞ 

E 8 ∞ ∞ ∞ 

G 10/9/13 0 10/9/13 0 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 9 

B 5 4 9 4 

C 8 3 11 5 

D 4 ∞ ∞ ∞ 

E 8 ∞ ∞ ∞ 

G 10/9/13 0 10/9/13 0 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

optimal path = S,B,G 

cost = 9 

Example 

n g(n) h(n) f(n) h*(n) 

S 0 8 8 9 

A 1 8 9 9 

B 5 4 9 4 

C 8 3 11 5 

D 4 ∞ ∞ ∞ 

E 8 ∞ ∞ ∞ 

G 10/9/13 0 10/9/13 0 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

Since h(n) ≤ h*(n) for all n, 

h is admissible 
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Admissible Heuristic Functions, h 
• 8-Puzzle example 

 

 

 

• Which of the following are admissible 
heuristics? 

8 4 7 

3 6 2 

5 1 

8 7 

6 5 4 

3 2 1 
Example 
State 

Goal 
State 

 h(n) = number of tiles in wrong position 

 h(n) = 0 

 h(n) = 1 

 h(n) = sum of “City-block distance” between 

each tile and its goal location 

Note:  City-block distance = L1 norm 

Admissible Heuristic Functions, h 

Which of the following are admissible heuristics?    

 h(n) = h*(n)  

 

 h(n) = max(2, h*(n))  

 

 h(n) = min(2, h*(n))  

 

 h(n) = h*(n) - 2 

 

 h(n) = ℎ(𝑛) 

• A* should terminate only when a goal is 
popped from the priority queue 

 

 

 

 

 

• Same rule as for uniform cost search 

• A* with h() = 0 is uniform cost search 

When should A* Stop? 

B 

A G 

C 

999 1 

1 1 
h=2 

h=2 

h=0 

h=1 

• One more complication:  A* can revisit an 
expanded state (on Frontier or Expanded), 
and discover a better path 

 

 

 

 

 

• Solution:  Put D back into the priority 
queue, with the smaller g value 

 

A* Revisiting Expanded States  

B 

A D 

C 

999 

1 

1 1 
h=1 

h=900 

h=1 

h=1 
G 

h=0 

2 
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A* Search 

expnd. 

node 

Frontier list 

{S:0+8} 

# of nodes tested: 0, expanded: 0 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

 f(n) = g(n) + h(n) 

A* Search 

expnd. 

node 

Frontier list 

{S:8} 

S not goal {A:1+8,B:5+4,C:8+3} 

# of nodes tested: 1, expanded: 1 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

 f(n) = g(n) + h(n) 

A* Search 

# of nodes tested: 2, expanded: 2 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

 f(n) = g(n) + h(n) 

expnd. 

node 

Frontier list 

{S:8} 

S {A:9,B:9,C:11} 

A not goal {B:9,G:1+9+0,C:11, 

D:1+3+∞,E:1+7+∞} 

A* Search 

# of nodes tested: 3, expanded: 3 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

 f(n) = g(n) + h(n) 

expnd. 

node 

Frontier list 

{S:8} 

S {A:9,B:9,C:11} 

A {B:9,G:10,C:11,D:∞,E:∞} 

B not goal {G:5+4+0,G:10,C:11,  

D:∞,E:∞}   replace 
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A* Search 

# of nodes tested: 4, expanded: 3 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

 f(n) = g(n) + h(n) 

expnd. 

node 

Frontier list 

{S:8} 

S {A:9,B:9,C:11} 

A {B:9,G:10,C:11,D:∞,E:∞} 

B {G:9,C:11,D:∞,E:∞} 

G goal {C:11,D:∞,E:∞} 

not expanded 

A* Search 

• Pretty fast and optimal 

# of nodes tested: 4, expanded: 3 

1 5 

3 9 7 

8 

4 

S 
h=8 

A 
h=8 

E 
h=∞ 

D 
h=∞ 

B 
h=4 

G 
h=0 

C 
h=3 

5 

 f(n) = g(n) + h(n) 

expnd. 

node 

Frontier list 

{S:8} 

S {A:9,B:9,C:11} 

A {B:9,G:10,C:11,D:∞,E:∞} 

B {G:9,C:11,D:∞,E:∞} 

G {G:10,C:11,D:∞,E:∞} 

path: S,B,G 

cost: 9 

Proof of A* Optimality 
(by Contradiction) 

• Let 

G be the goal in the optimal solution 

G2 be a sub-optimal goal 

f* be the cost of the optimal path from Start to G 

    g(G2) > f* and assume G2  is found using A* where   
 f(n) = g(n) + h(n), and h(n) is admissible 

• That is, A* found a sub-optimal path 
(which it shouldn't) 

Proof of A* Optimality 
(by Contradiction) 

• Let n be some node on the optimal path but not on the 
path to G2 

• f(n) ≤  f* 

 by admissibility, since f(n) never overestimates the cost 
to the goal it must be ≤ the cost of the optimal path 

• f(G2) ≤  f(n) 

 G2 was chosen over n for the sub-optimal goal to be 
found 

• f(G2) ≤  f* 

 combining equations 
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Proof of A* Optimality 
(by Contradiction) 

• f(G2)    f* 

• g(G2) + h(G2)    f* 

 substituting the definition of f 

• g(G2)   f* 

 h(G2) = 0 since G2 is a goal node 

• This contradicts the assumption that G2 was sub-
optimal, g(G2)  >  f* 

• Therefore, A* is optimal with respect to path cost; A* 
search never finds a sub-optimal goal 

A* : The Dark Side 

• A* can use lots of memory: 

O(number of states) 

 

• For really big search spaces, 
A* will run out of memory  

Devising Heuristics 

 

Are often defined by relaxing the problem, i.e., 
computing exact cost of a solution to a 
simplified version of problem 

– remove constraints:  8-puzzle movement 

– simplify problem:  straight line distance for 8-
puzzle and mazes 

Comparing Iterative Deepening with A* 
[from Russell and Norvig, page 104, Fig 3.29] 

For 8-puzzle, average number of states 

expanded over 100 randomly chosen 

problems in which optimal path is 

length … 

… 4 steps … 8 steps … 12 steps 

Depth-First Iterative Deepening 112 6,300 3.6 x 106 

A* search using “number of misplaced 

tiles” as the heuristic 

13 39 227 

A* using “Sum of Manhattan distances” 

as the heuristic 

12 25 73 
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Devising Heuristics 

 

• Goal of an admissible heuristic is to get as close 
to the actual cost without going over 

 

• Must also be relatively fast to compute 

 

• Trade off: 
use more time to compute a complex heuristic versus 
use more time to expand more nodes with a simpler 
heuristic 

Devising Heuristics 

• If h(n) = h*(n) for all n, 
– only nodes on optimal solution path are expanded 

– no unnecessary work is performed 

• If h(n) = 0 for all n, 
– the heuristic is admissible 

– A* performs exactly as Uniform-Cost Search (UCS) 

 

• The closer h is to h*, 
the fewer extra nodes that will be expanded 

Devising Heuristics 

 

If h1(n)  h2(n)  h*(n) for all n that aren't goals,  
then h2  dominates  h1 

– h2 is a better heuristic than h1 

– A* using h1 (i.e., A1*) expands at least as many 
if not more nodes than using A* with h2 (i.e., A2*) 

– A2* is said to be better informed than A1*  

Devising Heuristics 

 

For an admissible heuristic 

– h is frequently very simple 

– therefore search resorts to (almost) UCS 
through parts of the search space 
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Devising Heuristics 

• If optimality is not required, i.e., satisficing 
solution okay, then 

 

• Goal of heuristic is then to get as close as 
possible, either under or over, to the actual cost 

 

• It results in many fewer nodes being expanded 
than using a poor, but provably admissible, 
heuristic 

Devising Heuristics 

A* often suffers because it cannot venture 
down a single path unless it is almost 
continuously having success (i.e., h is 
decreasing);  any failure to decrease h will 
almost immediately cause the search to 
switch to another path 

Local Searching 

 

• Systematic searching: search for a path from 
start state to a goal state, then “execute” 
solution path’s sequence of operators 

 
– BFS, DFS, IDS, UCS, Greedy Best-First, A, A*, etc. 

– ok for small search spaces 

– not okay for NP-Hard problems requiring 
exponential time to find the (optimal) solution 

Optimization Problems 

• Now a different setting: 

– Each state s has a score or cost, f(s), that we can 
compute 

– The goal is to find the state with the highest (or 
lowest) score, or a reasonably high (low) score 

– We do not care about the path 

– This is an optimization problem 

– Enumerating the states is intractable 

– Previous search algorithms are too expensive 

– No known algorithm for finding optimal solution 
efficiently 
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Traveling Salesperson Problem (TSP) 

 

• Classic NP-Hard problem: 

 A salesperson wants to visit a list of cities 

– stopping in each city only once 

– returning to the first city 

– traveling the shortest distance 

– f = total distance traveled 

Traveling Salesperson Problem (TSP) 

Nodes are cities 

Arcs are labeled with distances 
between cities 

Adjacency matrix (notice the graph is 
fully connected): 

5 City TSP 

(not to scale) 

5 

9 

8 

4 

A 

E D 

B C 

5 

6 

7 

5 3 
2 

A B C D E 

A 0 5 8 9 7 

B 5 0 6 5 5 

C 8 6 0 2 3 

D 9 5 2 0 4 

E 7 5 3 4 0 

Traveling Salesperson Problem (TSP) 

a solution is a permutation of cities, 
called a tour 

 

5 City TSP 

(not to scale) 

5 

9 

8 

4 

A 

E D 

B C 

5 

6 

7 

5 3 
2 

A B C D E 

A 0 5 8 9 7 

B 5 0 6 5 5 

C 8 6 0 2 3 

D 9 5 2 0 4 

E 7 5 3 4 0 

Traveling Salesperson Problem (TSP) 

a solution is a permutation of cities, 
called a tour 

e.g. A – B – C – D – E 

5 City TSP 

(not to scale) 

5 

9 

8 

4 

A 

E D 

B C 

5 

6 

7 

5 3 
2 

A B C D E 

A 0 5 8 9 7 

B 5 0 6 5 5 

C 8 6 0 2 3 

D 9 5 2 0 4 

E 7 5 3 4 0 

assume tours return home 
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Traveling Salesperson Problem (TSP) 

How many solutions exist? 

(n-1)!/2 where n = # of cities 

n =   5 results in 12 tours 

n = 10 results in 181440 tours 

n = 20 results in ~6*1016 tours 

5 City TSP 
(not to scale) 

5 

9 

8 

4 

A 

E D 

B C 

5 

6 

7 

5 3 
2 

A B C D E 

A 0 5 8 9 7 

B 5 0 6 5 5 

C 8 6 0 2 3 

D 9 5 2 0 4 

E 7 5 3 4 0 

Example Problems 

• N-Queens 

– Place n queens on n x n checkerboard so that no 
one can capture another 

– f = number of conflicting queens 

• Boolean Satisfiability 

– Given a Boolean expression containing n Boolean 
variables, find an assignment of {T, F} to each 
variable so that the expression evaluates to True 

– (A  B  C)  (A  C  D) 

– f = number of satisfied clauses 

Example Problem:  Chip Layout 

Channel 

Routing 

Lots of Chip Real Estate Same connectivity, 

much less space 

Example Problem:  Scheduling 

Also: 

parking lot layout, 

product design, aero-

dynamic design, 

“Million Queens” 

problem, radiotherapy 

treatment planning, … 
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Local Searching 

 

• Hard problems can be solved in a reasonable (i.e., 
polynomial) time by using either: 
– approximate model: find an exact solution 

to a simpler version of the problem 
– approximate solution: find a non-optimal solution 

of the original hard problem 
 

• We'll explore means to search through a solution 
space by iteratively improving solutions until one 
is found that is optimal or near optimal 

Local Searching 

 

• Local searching: every node is a solution 
– operators go from one solution to another 
– can stop any time and have a valid solution 
– goal of search is to find a better solution 

• No longer searching state space for a solution 
path and then executing the steps of the solution 
path 

• A* isn't a local search since it searches different 
partial solutions by looking at the estimated cost 
of a solution path 

Local Searching 

• An operator is needed to transform one 
solution to another 

• TSP: two-swap operator 

– take two cities and swap their positions in the tour 

– A-B-C-D-E  with swap(A,D) yields D-B-C-A-E 

– possible since graph is fully connected 

• TSP: two-interchange operator 

– reverse the path between two cities 

– A-B-C-D-E with interchange(A,D) yields D-C-B-A-E 

Neighbors: TSP 
• state: A-B-C-D-E-F-G-H-A 

• f = length of tour 

• 2-interchange 

A-B-C-D-E-F-G-H-A 

A-E-D-C-B-F-G-H-A 

flip 
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Local Searching 

• Those solutions that can be reached with one 
application of an operator are in the current 
solution's neighborhood  (“move set”) 

• Local search considers only those solutions in 
the neighborhood  

• The neighborhood should be much smaller 
than the size of the search space 
(otherwise the search degenerates) 

Examples of Neighborhoods 

• N-queens:  Move queen in rightmost, most-
conflicting column to a different position in 
that column 

 

• SAT:  Flip the assignment of one Boolean 
variable 

Neighbors:  SAT  

• State: (A=T, B=F, C=T, D=T, E=T) 

• f = number of satisfied clauses 

• Neighbor: flip the assignment of one variable 

A  B  C 

A  C  D 

B  D  E 

C   D   E 

A   C  E 

(A=F, B=F, C=T, D=T, E=T) 

(A=T, B=T, C=T, D=T, E=T) 

(A=T, B=F, C=F, D=T, E=T) 

(A=T, B=F, C=T, D=F, E=T) 

(A=T, B=F, C=T, D=T, E=F) 

Local Searching 

• An evaluation function, f, is used to map 
each solution/state to a number corresponding 
to the quality of that solution 

• TSP: Use the distance of the tour path; 
A better solution has a shorter tour path 

• Maximize f: 
called hill-climbing (gradient ascent if continuous) 

• Minimize f: 
called or valley-finding (gradient descent if 
continuous) 

• Can be used to maximize/minimize some cost 
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Hill-Climbing 

• Question: What’s a neighbor?  

 Problem spaces tend to have structure.  A small 

change produces a neighboring state 

 The neighborhood must be small enough for 

efficiency 

 Designing the neighborhood is critical;  This is the real 

ingenuity – not the decision to use hill-climbing 

• Question: Pick which neighbor?  The best one (greedy) 

• Question: What if no neighbor is better than the current 

state?  Stop 

Hill-Climbing Algorithm 

1. Pick initial state s 

2. Pick t in neighbors(s) with the largest f(t) 

3. if f(t)  f(s) then stop and return s 

4. s = t.  Goto Step 2. 

• Simple 

• Greedy  

• Gets stuck at a local maximum 
 

Hill-Climbing (HC) 

• HC exploits the neighborhood 
– like Greedy Best-First search, it chooses what 

looks best locally 

– but doesn't allow backtracking or jumping to an 
alternative path since there is no Frontier list 

• HC is very space efficient 
– Like Beam search with a beam width of 1 

  

• HC is very fast and often effective in practice 

• Useful mental picture:  f is a surface (‘hills’) in 
state space 

 

 

 

• But we can’t see the entire landscape all at once.  
Can only see a neighborhood;  like climbing in fog. 

state 

f 

Global optimum, 
where we want to be 

Local Optima in Hill-Climbing 

state 

f 

fog 
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Hill-Climbing 

f(x, y) 

x 

y 

Visualized as a 2D surface 

 Height is quality of solution 

f = f(x, y) 

 Solution space is a 2D surface 

 Initial solution is a point 

 Goal is to find a higher point on 

the surface of solution space 

 Hill-Climbing follows the 

direction of the steepest ascent, 

i.e., where f increases the most 

Hill-Climbing (HC) 

 At a local maximum 

 At plateaus and ridges 

Global maximum may not be found 

f(y) 

y 

Trade off: 

greedily exploiting locality as in HC 

vs. exploring state space as in BFS 

Solution found by HC is totally 

determined by the starting point; 

fundamental weakness is getting stuck: 

Hill-Climbing with Random Restarts 

• Very simple modification: 

1. When stuck, pick a random new starting state 
and re-run hill-climbing from there 

2. Repeat this k times 

3. Return the best of the k local optima 

 

 
• Can be very effective 

• Should be tried whenever hill-climbing is used 

• Fast, easy to implement;  works well for many 

applications where the solution space surface is not 

too “bumpy” (i.e., not too many local maxima) 

 

 

 

 

Escaping Local Maxima 

 

• HC gets stuck at a local maximum, limiting 
 the quality of the solution found 

• Two ways to modify HC: 
1. choice of neighborhood 

2. criteria for deciding to move to neighbor 

• For example: 
1. choose neighbor randomly 

2. move to neighbor if it is better or, if it isn't, move 
with some probability, p 
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Variations on Hill-Climbing 

• Question: How do we make hill climbing less greedy? 

• Stochastic hill-climbing 

• Randomly select among better neighbors 

• The better, the more likely 

• Pros / cons compared with basic hill climbing? 

• Question: What if the neighborhood is too large to 
easily compute?  (e.g. N-queens if we need to pick 
both the column and the move within it) 

• First-choice hill-climbing 

• Randomly generate neighbors, one at a time 

• If better, take the move 

• Pros / cons compared with basic hill climbing? 

Life Lesson #237 

• Sometimes one needs to temporarily 
step backward in order to move forward 

 

• Lesson applied to iterative, local search: 

– Sometimes one needs to move to an inferior 
neighbor in order to escape a local optimum 

Hill-Climbing Example:  SAT Variations on Hill-Climbing 

• Pick a random unsatisfied clause 

• Select and flip a variable from that clause: 

– With prob. p, pick a random variable 

– With prob. 1-p, pick variable that maximizes 
the number of satisfied clauses 

• Repeat until solution found or max number 
of flips attempted 

A  B  C 

A  C  D 

B  D  E 

C   D   E 

A   C  E 

WALKSAT [Selman] 

This is the best known algorithm for 
satisfying Boolean formulas 
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Simulated Annealing 
(Stochastic Hill-Climbing) 

1. Pick initial state, s 

2. Randomly pick state t from neighbors of s 

3. if f(t) better than f(s) 

then s = t 

else with small probability  s = t 

4. Goto  Step 2 until bored 

Simulated Annealing 

Origin: 

The annealing process of heated solids – 
Alloys manage to find a near global minimum 
energy state when heated and then slowly cooled 
 

Intuition: 

By allowing occasional ascent in the 
search process, we might be able to 
escape the trap of local minima 

Introduced by Nicholas Metropolis 

in 1953 

Consequences of Occasional Bad Moves 

Help escaping the  
local optimum 

desired effect (when searching for a global min) 

Might pass global optimum 
 after reaching it  

adverse effect 

Idea 1:  Use a 

small, fixed 

probability 

threshold, say, 

p = 0.1 

Escaping Local Optima 

 

• Modified HC can escape from a local optimum 
but 
– chance of making a bad move is the same at the 

beginning of the search as at the end 
– magnitude of improvement, or lack of, is ignored 

• Fix by replacing fixed probability, p, that a bad 
move is accepted with a probability that 
decreases as the search proceeds 

• Now as the search progresses, the chance of 
taking a bad move reduces 
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Control of Annealing Process 

Acceptance of a search step (Metropolis 
Criterion) when Hill-Climbing: 

• Let the performance change in the search be:    

 E = f(newNode) – f(currentNode) 

• Accept a descending step only if it passes a test  

• Always accept an ascending step (i.e., better state) 

0E

Escaping Local Maxima 

 

Let E = f(newNode) – f(currentNode) 

 p = e E / T  (Boltzman's equation) 

• E  -,  p  0 

 as badness of the move increases 
probability of taking it  decreases exponentially 

• T  0,  p  0 

 as temperature decreases 
probability of taking bad move decreases 

Idea:  Probability 

decreases as 

neighbor gets worse 

Escaping Local Maxima 

 

Let E = f(newNode) – f(currentNode) 

 p = e E / T  (Boltzman's equation) 

 E  <<  T 

 if badness of move is small compared to T, 

move is likely to be accepted 

 E  >>  T 

 if badness of move is large compared to T, 

 move is unlikely to be accepted 

Control of Annealing Process 

At each temperature, search is allowed to 
proceed for a certain number of steps, 
L(k) 

Cooling Schedule: 

T, the annealing temperature, is the 
parameter that control the frequency of 
acceptance of bad steps 

We gradually reduce temperature T(k) 

The choice of parameters 
is called the cooling schedule 

    kLkT ,
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Simple Cooling Schedules 
Simulated Annealing 

(Stochastic Hill-Climbing) 

Pick initial state, s 
k = 0 
while k < kmax { 

T = temperature(k) 
Randomly pick state t from neighbors of s 
if f(t) > f(s) then s = t 
else if (e(f(newNode) – f(currentNode) / T ) > random() 
then s = t 
k = k +1 
} 

return s 

SA for Solving TSP Simulated Annealing 

• Can perform multiple backward steps in a row  
to escape a local optimum 

• Chance of finding a global optimum increased 

• Fast 

– only one neighbor generated at each iteration 

– whole neighborhood isn't checked to find best 
neighbor as in HC 

• Usually finds a good quality solution in a very 
short amount of time 
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Simulated Annealing 

• Requires several parameters to be set 

– starting temperature 
• must be high enough to escape local optima 

but not too high to be random exploration of space 

– cooling schedule 
• typically exponential 

– halting temperature 

• Domain knowledge helps set values: 
size of search space, bounds of maximum 
and minimum solutions 

Simulated Annealing Issues 

• Neighborhood design is critical.  This is the real ingenuity 
– not the decision to use simulated annealing 

• Evaluation function design often critical 

• Annealing schedule often critical 

• It’s often cheaper to evaluate an incremental change of a 
previously evaluated object than to evaluate from 
scratch.  Does simulated annealing permit that? 

• What if approximate evaluation is cheaper than accurate 
evaluation? 

• Inner-loop optimization often possible 

Implementation of Simulated 
Annealing 

• This is a stochastic algorithm; the outcome 
may be different at different trials 
 

• Convergence to global optimum can only be 
realized in an asymptotic sense 

 
• With infinitely slow cooling rate, finds 

global optimum with probability 1 

SA Discussion 

• Simulated annealing is sometimes empirically 
much better at avoiding local maxima than hill-
climbing.  It is a successful, frequently-used, 
algorithm.  Worth putting in your algorithmic 
toolbox. 

• Sadly, not much opportunity to say anything 
formal about it (though there is a proof that with 
an infinitely slow cooling rate, you’ll find the 
global optimum) 

• There are mountains of practical, and problem-
specific, papers on improvements 


