
1

Informed Search

Chapter 3.5 – 3.6, 4.1

Informed Search

• Informed searches use domain knowledge
to guide selection of the best path to continue
searching

• Heuristics are used, which are informed guesses

• Heuristic means "serving to aid discovery"

Informed Search

• Define a heuristic function, h(n)

– uses domain-specific info. in some way

– is computable from the current state description

– it estimates

• the "goodness" of node n

• how close node n is to a goal

• the cost of minimal cost path from node n to a goal
state

Informed Search

• h(n)  0 for all nodes n

• h(n) = 0 implies that n is a goal node

• h(n) =  implies that n is a dead end from
 which a goal cannot be reached

• All domain knowledge used in the search is encoded in
the heuristic function, h

• An example of a “weak method” for AI because of the
limited way that domain-specific information is
used to solve a problem

2

Best-First Search

• Sort nodes in the Frontier list by increasing
values of an evaluation function, f(n), that
incorporates domain-specific information

• This is a generic way of referring to the class
of informed search methods

Greedy Best-First Search

• Use as an evaluation function, f(n) = h(n),
sorting nodes in the Frontier list by
increasing values of f

• Selects the node to expand that is believed
to be closest (i.e., smallest f value) to a goal
node

Greedy Best-First Search

of nodes tested: 0, expanded: 0

expnd. node Frontier list

{S:8}

 f(n) = h(n)

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

Greedy Best-First Search

of nodes tested: 1, expanded: 1

expnd. node Frontier list

{S:8}

S not goal {C:3,B:4,A:8}

 f(n) = h(n)

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

3

Greedy Best-First Search

of nodes tested: 2, expanded: 2

expnd. node Frontier list

{S:8}

S {C:3,B:4,A:8}

C not goal {G:0,B:4,A:8}

 f(n) = h(n)

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

Greedy Best-First Search

of nodes tested: 3, expanded: 2

expnd. node Frontier list

{S:8}

S {C:3,B:4,A:8}

C {G:0,B:4, A:8}

G goal {B:4, A:8} no expand

 f(n) = h(n)

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

Greedy Best-First Search

• Fast but not optimal

of nodes tested: 3, expanded: 2

expnd. node Frontier list

{S:8}

S {C:3,B:4,A:8}

C {G:0,B:4, A:8}

G {B:4, A:8}

 f(n) = h(n)

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

path: S,C,G

cost: 13

Greedy Best-First Search

• Not complete
• Not optimal/admissible

2 2

1 2

S
h=5

A
h=3

C
h=3

B
h=4

D
h=1

G
goal

G
goal

E
h=2

1 1

3

Greedy search finds the left goal

(solution cost of 7)

Optimal solution is the path to the

right goal (solution cost of 5)

4

Beam Search

• Use an evaluation function f(n) = h(n) as in
greedy best-first search, but restrict the
maximum size of the Frontier list to a constant, k

• Only keep k best nodes as candidates for
expansion, and throw away the rest

• More space efficient than Greedy Search,
but may throw away a node on a solution path

• Not complete

• Not optimal/admissible

Algorithm A Search

• Use as an evaluation function f(n) = g(n) +
h(n), where g(n) is minimal cost path from
start to current node n (as defined in UCS)

• The g term adds a “breadth-first component”
to the evaluation function

• Nodes on the Frontier are ranked by the
estimated cost of a solution, where g(n) is the
cost from the start node to node n, and h(n) is
the estimated cost from node n to a goal

Algorithm A Search

• Not complete 2 2

1 2

S
h=5

A
h=3

C
h=3

B
h=4

D
h=1

F
h=∞

G
h=0

E
h=∞

1 1

99

Algorithm A never expands

E because h(E) = 

 Not optimal/admissible

Algorithm A* Search

• Use the same evaluation function used by Algorithm A,
except add the constraint that for all nodes n in the
search space, h(n) ≤ h*(n), where h*(n) is the true cost
of the minimal cost path from n to a goal

• The cost to the nearest goal is never over-estimated

• When h(n) ≤ h*(n) holds true for all n, h is called an
admissible heuristic function

• An admissible heuristic guarantees that a node on the
optimal path cannot look so bad so that it is never
considered

5

Admissible Heuristics are Good for
Playing The Price is Right

Algorithm A* Search

• Complete

• Optimal / Admissible

Example

n g(n) h(n) f(n) h*(n)

S

A

B

C

D

E

G

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

g(n) = actual cost to get to node n
 from start

n g(n) h(n) f(n) h*(n)

S

A

B

C

D

E

G

Example

n g(n) h(n) f(n) h*(n)

S 0

A

B

C

D

E

G

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

g(n) = actual cost to get to node n
 from start

6

Example

n g(n) h(n) f(n) h*(n)

S 0

A 1

B

C

D

E

G

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

g(n) = actual cost to get to node n
 from start

Example

n g(n) h(n) f(n) h*(n)

S 0

A 1

B 5

C 8

D

E

G

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

g(n) = actual cost to get to node n
 from start

Example

n g(n) h(n) f(n) h*(n)

S 0

A 1

B 5

C 8

D 1+3 = 4

E

G

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

g(n) = actual cost to get to node n
 from start

Example

n g(n) h(n) f(n) h*(n)

S 0

A 1

B 5

C 8

D 4

E 1+7 = 8

G

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

g(n) = actual cost to get to node n
 from start

7

Example

n g(n) h(n) f(n) h*(n)

S 0

A 1

B 5

C 8

D 4

E 8

G 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

g(n) = actual cost to get to node n
 from start

Example

n g(n) h(n) f(n) h*(n)

S 0

A 1

B 5

C 8

D 4

E 8

G 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h(n) = estimated cost to get to a goal

 from node n

Example

n g(n) h(n) f(n) h*(n)

S 0 8

A 1

B 5

C 8

D 4

E 8

G 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h(n) = estimated cost to get to a goal

 from node n

n g(n) h(n) f(n) h*(n)

S 0 8

A 1 8

B 5 4

C 8 3

D 4 ∞

E 8 ∞

G 10/9/13 0

Example

n g(n) h(n) f(n) h*(n)

S 0 8

A 1 8

B 5 4

C 8 3

D 4 ∞

E 8 ∞

G 10/9/13 0

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

f(n) = g(n) + h(n)

 actual cost to get from start to n

 plus estimated cost from n to goal

n g(n) h(n) f(n) h*(n)

S 0 8 8

A 1 8 9

B 5 4 9

C 8 3 11

D 4 ∞ ∞

E 8 ∞ ∞

G 10/9/13 0 10/9/13

8

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8

A 1 8 9

B 5 4 9

C 8 3 11

D 4 ∞ ∞

E 8 ∞ ∞

G 10/9/13 0 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h*(n) = true cost of minimal path

 from n to a goal

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9

B 5 4 9

C 8 3 11

D 4 ∞ ∞

E 8 ∞ ∞

G 10/9/13 0 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h*(n) = true cost of minimal path

 from n to a goal

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9 9

B 5 4 9

C 8 3 11

D 4 ∞ ∞

E 8 ∞ ∞

G 10/9/13 0 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h*(n) = true cost of minimal path

 from n to a goal

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11

D 4 ∞ ∞

E 8 ∞ ∞

G 10/9/13 0 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h*(n) = true cost of minimal path

 from n to a goal

9

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11 5

D 4 ∞ ∞

E 8 ∞ ∞

G 10/9/13 0 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h*(n) = true cost of minimal path

 from n to a goal

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11 5

D 4 ∞ ∞

E 8 ∞ ∞

G 10/9/13 0 10/9/13

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

h*(n) = true cost of minimal path

 from n to a goal

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11 5

D 4 ∞ ∞ ∞

E 8 ∞ ∞ ∞

G 10/9/13 0 10/9/13 0

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11 5

D 4 ∞ ∞ ∞

E 8 ∞ ∞ ∞

G 10/9/13 0 10/9/13 0

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

optimal path = S,B,G

cost = 9

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11 5

D 4 ∞ ∞ ∞

E 8 ∞ ∞ ∞

G 10/9/13 0 10/9/13 0

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

Since h(n) ≤ h*(n) for all n,

h is admissible

10

Admissible Heuristic Functions, h
• 8-Puzzle example

• Which of the following are admissible
heuristics?

8 4 7

3 6 2

5 1

8 7

6 5 4

3 2 1
Example
State

Goal
State

 h(n) = number of tiles in wrong position

 h(n) = 0

 h(n) = 1

 h(n) = sum of “City-block distance” between

each tile and its goal location

Note: City-block distance = L1 norm

Admissible Heuristic Functions, h

Which of the following are admissible heuristics?

 h(n) = h*(n)

 h(n) = max(2, h*(n))

 h(n) = min(2, h*(n))

 h(n) = h*(n) - 2

 h(n) = ℎ(𝑛)

• A* should terminate only when a goal is
popped from the priority queue

• Same rule as for uniform cost search

• A* with h() = 0 is uniform cost search

When should A* Stop?

B

A G

C

999 1

1 1
h=2

h=2

h=0

h=1

• One more complication: A* can revisit an
expanded state (on Frontier or Expanded),
and discover a better path

• Solution: Put D back into the priority
queue, with the smaller g value

A* Revisiting Expanded States

B

A D

C

999

1

1 1
h=1

h=900

h=1

h=1
G

h=0

2

11

A* Search

expnd.

node

Frontier list

{S:0+8}

of nodes tested: 0, expanded: 0

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

 f(n) = g(n) + h(n)

A* Search

expnd.

node

Frontier list

{S:8}

S not goal {A:1+8,B:5+4,C:8+3}

of nodes tested: 1, expanded: 1

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

 f(n) = g(n) + h(n)

A* Search

of nodes tested: 2, expanded: 2

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

 f(n) = g(n) + h(n)

expnd.

node

Frontier list

{S:8}

S {A:9,B:9,C:11}

A not goal {B:9,G:1+9+0,C:11,

D:1+3+∞,E:1+7+∞}

A* Search

of nodes tested: 3, expanded: 3

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

 f(n) = g(n) + h(n)

expnd.

node

Frontier list

{S:8}

S {A:9,B:9,C:11}

A {B:9,G:10,C:11,D:∞,E:∞}

B not goal {G:5+4+0,G:10,C:11,

D:∞,E:∞} replace

12

A* Search

of nodes tested: 4, expanded: 3

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

 f(n) = g(n) + h(n)

expnd.

node

Frontier list

{S:8}

S {A:9,B:9,C:11}

A {B:9,G:10,C:11,D:∞,E:∞}

B {G:9,C:11,D:∞,E:∞}

G goal {C:11,D:∞,E:∞}

not expanded

A* Search

• Pretty fast and optimal

of nodes tested: 4, expanded: 3

1 5

3 9 7

8

4

S
h=8

A
h=8

E
h=∞

D
h=∞

B
h=4

G
h=0

C
h=3

5

 f(n) = g(n) + h(n)

expnd.

node

Frontier list

{S:8}

S {A:9,B:9,C:11}

A {B:9,G:10,C:11,D:∞,E:∞}

B {G:9,C:11,D:∞,E:∞}

G {G:10,C:11,D:∞,E:∞}

path: S,B,G

cost: 9

Proof of A* Optimality
(by Contradiction)

• Let

G be the goal in the optimal solution

G2 be a sub-optimal goal

f* be the cost of the optimal path from Start to G

 g(G2) > f* and assume G2 is found using A* where
 f(n) = g(n) + h(n), and h(n) is admissible

• That is, A* found a sub-optimal path
(which it shouldn't)

Proof of A* Optimality
(by Contradiction)

• Let n be some node on the optimal path but not on the
path to G2

• f(n) ≤ f*

 by admissibility, since f(n) never overestimates the cost
to the goal it must be ≤ the cost of the optimal path

• f(G2) ≤ f(n)

 G2 was chosen over n for the sub-optimal goal to be
found

• f(G2) ≤ f*

 combining equations

13

Proof of A* Optimality
(by Contradiction)

• f(G2)  f*

• g(G2) + h(G2)  f*

 substituting the definition of f

• g(G2)  f*

 h(G2) = 0 since G2 is a goal node

• This contradicts the assumption that G2 was sub-
optimal, g(G2) > f*

• Therefore, A* is optimal with respect to path cost; A*
search never finds a sub-optimal goal

A* : The Dark Side

• A* can use lots of memory:

O(number of states)

• For really big search spaces,
A* will run out of memory

Devising Heuristics

Are often defined by relaxing the problem, i.e.,
computing exact cost of a solution to a
simplified version of problem

– remove constraints: 8-puzzle movement

– simplify problem: straight line distance for 8-
puzzle and mazes

Comparing Iterative Deepening with A*
[from Russell and Norvig, page 104, Fig 3.29]

For 8-puzzle, average number of states

expanded over 100 randomly chosen

problems in which optimal path is

length …

… 4 steps … 8 steps … 12 steps

Depth-First Iterative Deepening 112 6,300 3.6 x 106

A* search using “number of misplaced

tiles” as the heuristic

13 39 227

A* using “Sum of Manhattan distances”

as the heuristic

12 25 73

14

Devising Heuristics

• Goal of an admissible heuristic is to get as close
to the actual cost without going over

• Must also be relatively fast to compute

• Trade off:
use more time to compute a complex heuristic versus
use more time to expand more nodes with a simpler
heuristic

Devising Heuristics

• If h(n) = h*(n) for all n,
– only nodes on optimal solution path are expanded

– no unnecessary work is performed

• If h(n) = 0 for all n,
– the heuristic is admissible

– A* performs exactly as Uniform-Cost Search (UCS)

• The closer h is to h*,
the fewer extra nodes that will be expanded

Devising Heuristics

If h1(n)  h2(n)  h*(n) for all n that aren't goals,
then h2 dominates h1

– h2 is a better heuristic than h1

– A* using h1 (i.e., A1*) expands at least as many
if not more nodes than using A* with h2 (i.e., A2*)

– A2* is said to be better informed than A1*

Devising Heuristics

For an admissible heuristic

– h is frequently very simple

– therefore search resorts to (almost) UCS
through parts of the search space

15

Devising Heuristics

• If optimality is not required, i.e., satisficing
solution okay, then

• Goal of heuristic is then to get as close as
possible, either under or over, to the actual cost

• It results in many fewer nodes being expanded
than using a poor, but provably admissible,
heuristic

Devising Heuristics

A* often suffers because it cannot venture
down a single path unless it is almost
continuously having success (i.e., h is
decreasing); any failure to decrease h will
almost immediately cause the search to
switch to another path

Local Searching

• Systematic searching: search for a path from
start state to a goal state, then “execute”
solution path’s sequence of operators

– BFS, DFS, IDS, UCS, Greedy Best-First, A, A*, etc.

– ok for small search spaces

– not okay for NP-Hard problems requiring
exponential time to find the (optimal) solution

Optimization Problems

• Now a different setting:

– Each state s has a score or cost, f(s), that we can
compute

– The goal is to find the state with the highest (or
lowest) score, or a reasonably high (low) score

– We do not care about the path

– This is an optimization problem

– Enumerating the states is intractable

– Previous search algorithms are too expensive

– No known algorithm for finding optimal solution
efficiently

16

Traveling Salesperson Problem (TSP)

• Classic NP-Hard problem:

 A salesperson wants to visit a list of cities

– stopping in each city only once

– returning to the first city

– traveling the shortest distance

– f = total distance traveled

Traveling Salesperson Problem (TSP)

Nodes are cities

Arcs are labeled with distances
between cities

Adjacency matrix (notice the graph is
fully connected):

5 City TSP

(not to scale)

5

9

8

4

A

E D

B C

5

6

7

5 3
2

A B C D E

A 0 5 8 9 7

B 5 0 6 5 5

C 8 6 0 2 3

D 9 5 2 0 4

E 7 5 3 4 0

Traveling Salesperson Problem (TSP)

a solution is a permutation of cities,
called a tour

5 City TSP

(not to scale)

5

9

8

4

A

E D

B C

5

6

7

5 3
2

A B C D E

A 0 5 8 9 7

B 5 0 6 5 5

C 8 6 0 2 3

D 9 5 2 0 4

E 7 5 3 4 0

Traveling Salesperson Problem (TSP)

a solution is a permutation of cities,
called a tour

e.g. A – B – C – D – E

5 City TSP

(not to scale)

5

9

8

4

A

E D

B C

5

6

7

5 3
2

A B C D E

A 0 5 8 9 7

B 5 0 6 5 5

C 8 6 0 2 3

D 9 5 2 0 4

E 7 5 3 4 0

assume tours return home

17

Traveling Salesperson Problem (TSP)

How many solutions exist?

(n-1)!/2 where n = # of cities

n = 5 results in 12 tours

n = 10 results in 181440 tours

n = 20 results in ~6*1016 tours

5 City TSP
(not to scale)

5

9

8

4

A

E D

B C

5

6

7

5 3
2

A B C D E

A 0 5 8 9 7

B 5 0 6 5 5

C 8 6 0 2 3

D 9 5 2 0 4

E 7 5 3 4 0

Example Problems

• N-Queens

– Place n queens on n x n checkerboard so that no
one can capture another

– f = number of conflicting queens

• Boolean Satisfiability

– Given a Boolean expression containing n Boolean
variables, find an assignment of {T, F} to each
variable so that the expression evaluates to True

– (A  B  C)  (A  C  D)

– f = number of satisfied clauses

Example Problem: Chip Layout

Channel

Routing

Lots of Chip Real Estate Same connectivity,

much less space

Example Problem: Scheduling

Also:

parking lot layout,

product design, aero-

dynamic design,

“Million Queens”

problem, radiotherapy

treatment planning, …

18

Local Searching

• Hard problems can be solved in a reasonable (i.e.,
polynomial) time by using either:
– approximate model: find an exact solution

to a simpler version of the problem
– approximate solution: find a non-optimal solution

of the original hard problem

• We'll explore means to search through a solution
space by iteratively improving solutions until one
is found that is optimal or near optimal

Local Searching

• Local searching: every node is a solution
– operators go from one solution to another
– can stop any time and have a valid solution
– goal of search is to find a better solution

• No longer searching state space for a solution
path and then executing the steps of the solution
path

• A* isn't a local search since it searches different
partial solutions by looking at the estimated cost
of a solution path

Local Searching

• An operator is needed to transform one
solution to another

• TSP: two-swap operator

– take two cities and swap their positions in the tour

– A-B-C-D-E with swap(A,D) yields D-B-C-A-E

– possible since graph is fully connected

• TSP: two-interchange operator

– reverse the path between two cities

– A-B-C-D-E with interchange(A,D) yields D-C-B-A-E

Neighbors: TSP
• state: A-B-C-D-E-F-G-H-A

• f = length of tour

• 2-interchange

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip

19

Local Searching

• Those solutions that can be reached with one
application of an operator are in the current
solution's neighborhood (“move set”)

• Local search considers only those solutions in
the neighborhood

• The neighborhood should be much smaller
than the size of the search space
(otherwise the search degenerates)

Examples of Neighborhoods

• N-queens: Move queen in rightmost, most-
conflicting column to a different position in
that column

• SAT: Flip the assignment of one Boolean
variable

Neighbors: SAT

• State: (A=T, B=F, C=T, D=T, E=T)

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D   E

A   C  E

(A=F, B=F, C=T, D=T, E=T)

(A=T, B=T, C=T, D=T, E=T)

(A=T, B=F, C=F, D=T, E=T)

(A=T, B=F, C=T, D=F, E=T)

(A=T, B=F, C=T, D=T, E=F)

Local Searching

• An evaluation function, f, is used to map
each solution/state to a number corresponding
to the quality of that solution

• TSP: Use the distance of the tour path;
A better solution has a shorter tour path

• Maximize f:
called hill-climbing (gradient ascent if continuous)

• Minimize f:
called or valley-finding (gradient descent if
continuous)

• Can be used to maximize/minimize some cost

20

Hill-Climbing

• Question: What’s a neighbor?

 Problem spaces tend to have structure. A small

change produces a neighboring state

 The neighborhood must be small enough for

efficiency

 Designing the neighborhood is critical; This is the real

ingenuity – not the decision to use hill-climbing

• Question: Pick which neighbor? The best one (greedy)

• Question: What if no neighbor is better than the current

state? Stop

Hill-Climbing Algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. if f(t)  f(s) then stop and return s

4. s = t. Goto Step 2.

• Simple

• Greedy

• Gets stuck at a local maximum

Hill-Climbing (HC)

• HC exploits the neighborhood
– like Greedy Best-First search, it chooses what

looks best locally

– but doesn't allow backtracking or jumping to an
alternative path since there is no Frontier list

• HC is very space efficient
– Like Beam search with a beam width of 1

• HC is very fast and often effective in practice

• Useful mental picture: f is a surface (‘hills’) in
state space

• But we can’t see the entire landscape all at once.
Can only see a neighborhood; like climbing in fog.

state

f

Global optimum,
where we want to be

Local Optima in Hill-Climbing

state

f

fog

21

Hill-Climbing

f(x, y)

x

y

Visualized as a 2D surface

 Height is quality of solution

f = f(x, y)

 Solution space is a 2D surface

 Initial solution is a point

 Goal is to find a higher point on

the surface of solution space

 Hill-Climbing follows the

direction of the steepest ascent,

i.e., where f increases the most

Hill-Climbing (HC)

 At a local maximum

 At plateaus and ridges

Global maximum may not be found

f(y)

y

Trade off:

greedily exploiting locality as in HC

vs. exploring state space as in BFS

Solution found by HC is totally

determined by the starting point;

fundamental weakness is getting stuck:

Hill-Climbing with Random Restarts

• Very simple modification:

1. When stuck, pick a random new starting state
and re-run hill-climbing from there

2. Repeat this k times

3. Return the best of the k local optima

• Can be very effective

• Should be tried whenever hill-climbing is used

• Fast, easy to implement; works well for many

applications where the solution space surface is not

too “bumpy” (i.e., not too many local maxima)

Escaping Local Maxima

• HC gets stuck at a local maximum, limiting
 the quality of the solution found

• Two ways to modify HC:
1. choice of neighborhood

2. criteria for deciding to move to neighbor

• For example:
1. choose neighbor randomly

2. move to neighbor if it is better or, if it isn't, move
with some probability, p

22

Variations on Hill-Climbing

• Question: How do we make hill climbing less greedy?

• Stochastic hill-climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?

• Question: What if the neighborhood is too large to
easily compute? (e.g. N-queens if we need to pick
both the column and the move within it)

• First-choice hill-climbing

• Randomly generate neighbors, one at a time

• If better, take the move

• Pros / cons compared with basic hill climbing?

Life Lesson #237

• Sometimes one needs to temporarily
step backward in order to move forward

• Lesson applied to iterative, local search:

– Sometimes one needs to move to an inferior
neighbor in order to escape a local optimum

Hill-Climbing Example: SAT Variations on Hill-Climbing

• Pick a random unsatisfied clause

• Select and flip a variable from that clause:

– With prob. p, pick a random variable

– With prob. 1-p, pick variable that maximizes
the number of satisfied clauses

• Repeat until solution found or max number
of flips attempted

A  B  C

A  C  D

B  D  E

C   D   E

A   C  E

WALKSAT [Selman]

This is the best known algorithm for
satisfying Boolean formulas

23

Simulated Annealing
(Stochastic Hill-Climbing)

1. Pick initial state, s

2. Randomly pick state t from neighbors of s

3. if f(t) better than f(s)

then s = t

else with small probability s = t

4. Goto Step 2 until bored

Simulated Annealing

Origin:

The annealing process of heated solids –
Alloys manage to find a near global minimum
energy state when heated and then slowly cooled

Intuition:

By allowing occasional ascent in the
search process, we might be able to
escape the trap of local minima

Introduced by Nicholas Metropolis

in 1953

Consequences of Occasional Bad Moves

Help escaping the
local optimum

desired effect (when searching for a global min)

Might pass global optimum
 after reaching it

adverse effect

Idea 1: Use a

small, fixed

probability

threshold, say,

p = 0.1

Escaping Local Optima

• Modified HC can escape from a local optimum
but
– chance of making a bad move is the same at the

beginning of the search as at the end
– magnitude of improvement, or lack of, is ignored

• Fix by replacing fixed probability, p, that a bad
move is accepted with a probability that
decreases as the search proceeds

• Now as the search progresses, the chance of
taking a bad move reduces

24

Control of Annealing Process

Acceptance of a search step (Metropolis
Criterion) when Hill-Climbing:

• Let the performance change in the search be:

 E = f(newNode) – f(currentNode)

• Accept a descending step only if it passes a test

• Always accept an ascending step (i.e., better state)

0E

Escaping Local Maxima

Let E = f(newNode) – f(currentNode)

 p = e E / T (Boltzman's equation)

• E  -, p  0

 as badness of the move increases
probability of taking it decreases exponentially

• T  0, p  0

 as temperature decreases
probability of taking bad move decreases

Idea: Probability

decreases as

neighbor gets worse

Escaping Local Maxima

Let E = f(newNode) – f(currentNode)

 p = e E / T (Boltzman's equation)

 E << T

 if badness of move is small compared to T,

move is likely to be accepted

 E >> T

 if badness of move is large compared to T,

 move is unlikely to be accepted

Control of Annealing Process

At each temperature, search is allowed to
proceed for a certain number of steps,
L(k)

Cooling Schedule:

T, the annealing temperature, is the
parameter that control the frequency of
acceptance of bad steps

We gradually reduce temperature T(k)

The choice of parameters
is called the cooling schedule

    kLkT ,

25

Simple Cooling Schedules
Simulated Annealing

(Stochastic Hill-Climbing)

Pick initial state, s
k = 0
while k < kmax {

T = temperature(k)
Randomly pick state t from neighbors of s
if f(t) > f(s) then s = t
else if (e(f(newNode) – f(currentNode) / T) > random()
then s = t
k = k +1
}

return s

SA for Solving TSP Simulated Annealing

• Can perform multiple backward steps in a row
to escape a local optimum

• Chance of finding a global optimum increased

• Fast

– only one neighbor generated at each iteration

– whole neighborhood isn't checked to find best
neighbor as in HC

• Usually finds a good quality solution in a very
short amount of time

26

Simulated Annealing

• Requires several parameters to be set

– starting temperature
• must be high enough to escape local optima

but not too high to be random exploration of space

– cooling schedule
• typically exponential

– halting temperature

• Domain knowledge helps set values:
size of search space, bounds of maximum
and minimum solutions

Simulated Annealing Issues

• Neighborhood design is critical. This is the real ingenuity
– not the decision to use simulated annealing

• Evaluation function design often critical

• Annealing schedule often critical

• It’s often cheaper to evaluate an incremental change of a
previously evaluated object than to evaluate from
scratch. Does simulated annealing permit that?

• What if approximate evaluation is cheaper than accurate
evaluation?

• Inner-loop optimization often possible

Implementation of Simulated
Annealing

• This is a stochastic algorithm; the outcome
may be different at different trials

• Convergence to global optimum can only be
realized in an asymptotic sense

• With infinitely slow cooling rate, finds

global optimum with probability 1

SA Discussion

• Simulated annealing is sometimes empirically
much better at avoiding local maxima than hill-
climbing. It is a successful, frequently-used,
algorithm. Worth putting in your algorithmic
toolbox.

• Sadly, not much opportunity to say anything
formal about it (though there is a proof that with
an infinitely slow cooling rate, you’ll find the
global optimum)

• There are mountains of practical, and problem-
specific, papers on improvements

