ML (cont.): Perceptrons and Neural Networks

CS540 Bryan R Gibson University of Wisconsin-Madison

Slides adapted from those used by Prof. Jerry Zhu, CS540-1
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SCHWARTENEGGER

Terminator 2 (1991) RHBRPES

JOHN: Canyou learn?So you can be... you know. More human. Not such a %
dork all thetime. e\t
TERMINATOR: My CPU isa neural-net processor... alearning computer.
But Skynet presetsthe switchto "read-only" whenweare sent out alone.
We’ll learn how to set the neural net J
TERMINATOR Basically. (starting theengine, backing out) The Skynet
funding bill ispassed. Thesystem goeson-lineAugust 4th, 1997. Human
decisionsareremoved from strategic defense. Skynet beginstolearn, at a
geometricrate. It becomesself-awar eat 2:14 a.m. easterntime, August 29.
Inapanic,they try to pull the plug.
SARAH: And Skynet fightsback.
TERMINATOR: Yes. It launchesitsICBMsagainst their targetsin Russia.
SARAH: Why attack Russia?

TERMINATOR: Because Skynet knowsthe Russian counter-strikewill
removeitsenemieshere.
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Outline

» Perceptron: a single neuron
» Linear perceptron
Non-linear perceptron
Learning in a single perceptron
The power of a single perceptron

vV vy

» Neural Network: a network of neurons

v

Layers, hidden units

» Learning in a neural-network: backpropogation
» The power of neural networks

> Issues

» Everything revolves around gradient descent
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Biological Neurons

Myelin sheath

Cell Body /

Dendrites

Human brain: around a hundred trillion neurons

v

v

Each neuron receives input from 1,000's of others

v

Impulses arrive simultaneously
Then they're added together

» an impulse can either increase or decrease the possibility of a
nerve pulse firing

v

v

If sufficiently strong, a nerve pulse is generated

v

The pulse becomes and input to other neurons
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Example: ALVINN

[Pomerleau, 1995]
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Linear Perceptron

Perceptron: a math model for a single neuron
Input: z1,...,z4 (signals from other neurons)

| 4

>

» Weights: w, ..., wy (dendrites, can be negative!)

» We sneak in a constant (bias term) z, with weight wy
| 4

Activation function: linear (for now)

a = woxo + W1x1 + ...+ Wqxyq

» This a is the output of a linear perceptron
1 1
w
xI9 w1 0
w2 a
Td Wd
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Learning in a Linear Perceptron

v

First, Regression: Training data {(x1,%1),..., (Xn,Yn)}

v

X1 is a vector [z11,...x1d], same with x2,...,X,

» vy is a real-valued output

v

Goal : learn the weights wy, ..., wq so that:
given input x;, the output of the perceptron a; is close to y;

v

Need to define “close”:

n

E-1 > (ai—wi)’

2 4
=1

v

E is the “error’”: Given the training set, F is a function of
WO, « -+, Wy

v

Want to minimize E: unconstrained optimization
over variables wg, ..., wy
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Learning in a Linear Perceptron (cont.)

» Gradient descent: w <~ w — aVE(w)

> « is a small constant, “learning rate” = step size
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> The gradient descent rule:
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Learning in a Linear Perceptron (cont.)

» Gradient descent: w <~ w — aVE(w)
» « is a small constant, “learning rate” = step size

> The gradient descent rule:

i=1
OE <
By = Z(ai — Yi)Tid
i=1
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Learning in a Linear Perceptron (cont.)

» Gradient descent: w <~ w — aVE(w)
» « is a small constant, “learning rate” = step size

> The gradient descent rule:

=1
OF &
o= Z(ai — Yi)Tid
Owa =
wdewd—az — Yi)Tid

» Repeat until E' converges



Learning in a Linear Perceptron (cont.)

» Gradient descent: w <~ w — aVE(w)
» « is a small constant, “learning rate” = step size

> The gradient descent rule:

=1
OF &
o= Z(ai — Yi)Tid
Owa =
wdewd—az — Yi)Tid

» Repeat until E' converges

» FE is convex in w: there is a unique global minimum!
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The (Limited) Power of a Linear Perceptron

» Linear perceptron is just a = w'x
where x is the input vector, augmented by zp =1
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» Linear perceptron is just a = w'x
where x is the input vector, augmented by zp =1

> it can represent any linear function in d 4+ 1-dimensional space
but that's it!
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The (Limited) Power of a Linear Perceptron

» Linear perceptron is just a = w'x
where x is the input vector, augmented by zp =1

> it can represent any linear function in d 4+ 1-dimensional space

but that's it!
> In particular, it won't be a nice fit for binary classification
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Non-Linear Perceptron
» Change the activation function: use a step function

a = g(wozp + wir1 + ... + waxy)
g(h) = 1{h > 0}

» This is called a Linear Threshold Unit (LTU)

T 1

T2

Tq Wq

» Can you see how to make logical AND, OR, NOT functions
using this perceptron?
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Non-Linear Perceptron: Linear Threshold Unit (LTU)
» Using a step function
g(h) = 1{h > 0}
1 1

wo
Z2 w1

w2

T4 Wq
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Non-Linear Perceptron: Linear Threshold Unit (LTU)

» Using a step function

g(h) = 1{h > 0}

T 1
wo
Z2 w1
w9 a
X4 Wq

» AND: wi =we =1, wg=—1.5
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Non-Linear Perceptron: Linear Threshold Unit (LTU)

» Using a step function

g(h) = 1{h > 0}

T 1
wo
Z2 w1
w9 a
T4 Wq

» AND: wi =we =1, wg=—1.5
» OR: w1 = wy =1, wg = —0.5
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Non-Linear Perceptron: Linear Threshold Unit (LTU)

» Using a step function

g(h) = 1{h > 0}

T 1
wo
Z2 w1
w9 a
T4 Wq

» AND: wi =we =1, wg=—1.5
» OR: w1 = wy =1, wg = —0.5
» NOT: wy = —1, wg=0.5
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Non-Linear Perceptron: Sigmoid Activation Function

» The problem with LTU: step function is discontinuous,
cannot use gradient descent!

» Change the activation function (again): use a sigmoid function

1
g(h) = (1+6(_h))

» Exercise: ¢'(h) = 7
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Non-Linear Perceptron: Sigmoid Activation Function

» The problem with LTU: step function is discontinuous,
cannot use gradient descent!

» Change the activation function (again): use a sigmoid function

1
1+ e

g(h) = (

» Exercise: ¢'(h) =
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Learning in a Non-Linear Perceptron

» Again, we want to minimize the error:
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Learning in a Non-Linear Perceptron

» Again, we want to minimize the error:

B(w) =3 > (ai— i)’

i=1

» But now a; = g(>_,wqxiq) so we get

n

Z(ai —yi)ai(l — a;)wiq

=1

o8 _
owg
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Learning in a Non-Linear Perceptron

» Again, we want to minimize the error:

B(w) =3 > (ai— i)’

i=1

» But now a; = g(>_,wqxiq) so we get

n

aiE — Z(al — yi)ai(l — ai)xid

Owa =
» The sigmoid perceptron update rule is then

Wy ¢ Wg — @ Z —yi)ai(1 — a;)xiq
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Learning in a Non-Linear Perceptron

» Again, we want to minimize the error:

i=1

v

But now a; = g(>_, wqwiq) so we get

n

aiE — Z(al — yi)ai(l — ai)xid

Owa =

v

The sigmoid perceptron update rule is then

Wy ¢ Wg — @ Z —yi)ai(1 — a;)xiq

v

Again, « is a small constant, the step size or learning rate
Repeat until EZ converges

v
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The (Limited) Power of a Non-Linear Perceptron

» Even with a non-linear sigmoid function, the only
decision boundary a perceptron can produce is still linear.
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The (Limited) Power of a Non-Linear Perceptron

v

Even with a non-linear sigmoid function, the only
decision boundary a perceptron can produce is still linear.

v

AND, OR, NOT revisited

» How about XOR

v

This contributed to the first Al winter
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(Multi-Layer) Neural Networks

» Given sigmoid perceptrons . ..

> can you produce output like ...

765V10 1 \2 3 4 /5 6 7

» which has a non-linear decision boundary?

+ - + - +
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Mulit-Layer Neural Networks

» There are many ways to make a network of perceptrons.
» One standard way is multi-layer neural nets.

» 1 hidden layer (we can't see the output); 1 output layer
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The (Unlimited) Power of Neural Networks

> In theory:

» we don't need too many layers

» 1 hidden-layer with enough hidden units can represent any
continuous function of the inputs, with arbrirary accuracy

» 2 hidden-layers can even represent discontinuous functions
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Neural Net for k-way Classification

» Use k output units. During training:
encode a label y by an indicator vector with k entries
» classl = [1,0,...,0]', class2 = [0,1,0,...,0]', ...
» During test (decoding): choose the class corresponding to the
output unit with largest activation
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Example Y encoding

30x32 Sensor
Input Retina

[Pomerleau, 1995]
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Obtaining training data

[Pomerleau, 1995]
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Learning in a Neural Network

» Again, we minimize the error (for k outputs):

n k

E(W) = % Z Z (Oic - yic)2

i=1 c=1
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Learning in a Neural Network

» Again, we minimize the error (for k outputs):

n k

E(W) = % Z Z (Oic - yic)2

i=1 c=1

v

i: the i-th training point

v

0ic: the c-th output for the i-th training point

v

Yic: the c-th element of the i-th label indicator vector
Our variables are all weights w on all edges

v
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v

Yic: the c-th element of the i-th label indicator vector
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Learning in a Neural Network

» Again, we minimize the error (for k outputs):

n k

E(W) = % Z Z (Oic - yic)2

i=1 c=1

> i: the i-th training point
> 0;c: the c-th output for the i-th training point
> y;.. the c-th element of the i-th label indicator vector
» Qur variables are all weights w on all edges

» Problem? : We don't know the “correct” output of hidden

units
» Turns out to be ok: we can still do gradient descent.
The trick is to use the chain rule

» The algorithm: back-propogation

17/25



The Back-Propogation Algorithm (Part 1)

BACKPROPOGATION(training set, d, k, &, npiq)

> Training set: {(Xh yl)v ) (Xn7 yn)}
X;: a feature vector of size d

y;: an output vector of size k
a: learning rate (step size)
Nnid: humber of hidden units
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The Back-Propogation Algorithm (Part 1)

BACKPROPOGATION(training set, d, k, &, npiq)

> Training set: {(X17 yl)v ) (Xn7 yn)}

X;: a feature vector of size d

y;: an output vector of size k

a: learning rate (step size)

Nnid: humber of hidden units
» Create neural network: d inputs, ny;q hidden units, & outputs.
> Initialize weights to small random numbers (e.g. in [-0.05,0.05])

» Repeat (Part 2) until termination condition is met ...
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The Back-Propogation Algorithm (Part 2)

For each training example (x,y):
» — : Propogate input forward through the network:
Input x and compute output o, for every unit u in network
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The Back-Propogation Algorithm (Part 2)

For each training example (x,y):
» — : Propogate input forward through the network:
Input x and compute output o, for every unit u in network
» < : Propogate errors backward through the network
» for each output unit ¢, compute its error term o,

Oc + (Oc - yC)OC(l - OC)
» for each hidden unit h, compute its error term §y,
Jh < Z wq;hdi Oh(l — 0},)
i€succ(h)
» update each weight w;;

Wjj < Wj; — aéjxji

> xj;: input from unit ¢ into j
(0i if i is hidden unit; x; if ¢ is an input)
> wj;: weight from unit ¢ to unit j

19/25



Derivation of Back-Propagation

v

For simplicity, assume online learning (vs. batch learning):
1-step grad. descent after seeing ea. training example (x,y)

v

For each (x,y) the error is

k

Bw) = 53 (0~ )

c=1

> o,: the c-th output unit (when input is x)
> y.: the c-th element of label indicator vector

v

Use grad. descent to change all weights wj; to minimize error.

v

Separate into two cases:
» Case 1: wj; when j is output unit
» Case 2: wj; when j is hidden unit
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Case 1: Weights for Output Unit
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Case 1: Weights for Output Unit

OE _ 03(0j —y)* _ 95 (9 [0 Wim®im] — yj)*
8wﬁ 6wji awji
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Case 1: Weights for Output Unit

OE _ 95(0 — )* _ 9% (9 [Zm Wim®jm] — 5)°
8w]'i 6wji iji

= (0j —yj)o;(1 — 0j)ji

> oc: the c-th output unit (when input is x)
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Case 1: Weights for Output Unit

OB 95(0j — ) _ 93 ([, wimjm] — v;)*
f?lUji f)lvji f)lvji

= (0j —yj)o;(1 — 0j)ji

> oc: the c-th output unit (when input is x)

> y.: the c-th element of label indicator vector
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Case 1: Weights for Output Unit

OB 95(0j — ) _ 93 ([, wimjm] — v;)*
f?lUji f)lvji f)lvji

= (0j —yj)o;(1 — 0j)ji

> oc: the c-th output unit (when input is x)
> y.: the c-th element of label indicator vector

» grad. descent: to min. error, head away from part. derivative:

OF
wji € Wji = ap = wji — oo = yj)o;(1 = 0j);i
IUji
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Case 2: Weights for Hidden Unit @
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a_OC 80]‘ 8w]~i

0E Z [8Ec 00, 8@}

owj;
Jr c€succ(y)
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D

c€succ(j

>

c€succ(j)

)6_0080]‘

[3Ec do,.

(=)

) 80j
owj;
89 (Zm wcmfﬂcm) ) ag (Zn wjnxjn)
8xcm aw]‘i

|
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Case 2: Weights for Hidden Unit @

aE Z |:8EC aOc 8OJ :|

8wﬂ cesuce(j) a_OC 80j 8wji
0 WemTem 0 n WinTjn
_ Z (Oc_yc)' g(Zm ) g(z J J )
) 8xcm aw]‘i
c€succ(j)
= > [(0c—ye) - 0c(1 = 0c)wes - 0j(1 — 0j)i]
c€esucc(j)
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Neural Network Learning Issues: Weights

» When to terminate back-prop.? Overfitting and early-stopping

> After fixed number of iterations (ok)
» When training error less than a threshold (not ok!)
» When holdout set error starts to go up (ok)

» Local Optima:
» Weights will converge to local minimum

» Learning Rate:

» Convergence sensitive to learning rate
» Weight learning can be slow
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Sensitivity to learning rate

From J. Hertz, A. Krogh, and R.
G. Palmer. Introduction to the
Theory of Neural Computation.
Addison-Wesley, 1994.
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Neural Network Learning Issues: Weights (cont.)

» Use “momentum” (a heuristic?) to dampen grad. descent

Aw"™1) = previous change to w

Aw® = —q 8? )+BA -1

w— w+ Aw®

f

FIGURE 6.3 Gradient descent on the
simple quadratic surface of Fig. 5.10.
Both trajectories are for 12 steps with

n = 0.0476, the best value in the absence
of momenturn. On the left there is no mo-
mentum (¢ = (), while @ = 0.5 on the
right.

» Alternatives to gradient descent:
Newton-Raphson, Conjugate Gradient

24 /25



Neural Network Learning Issues: Structure

v

How many hidden units?

v

How many layers?

» How to connect units?

Cross validation

v
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