
1

Neural Networks

Chapter 18.6.3, 18.6.4 and 18.7

Introduction

• Known as:
– Neural Networks (NNs)

– Artificial Neural Networks (ANNs)

– Connectionist Models

– Parallel Distributed Processing (PDP) Models

• Neural Networks are a fine-grained,
parallel, distributed, computing model

Introduction

• Attractions of NN approach
– massively parallel

• from a large collection of simple processing elements
emerges interesting complex global behavior

– can do complex tasks
• pattern recognition (handwriting, facial expressions)
• forecasting (stock prices, power grid demand)
• adaptive control (autonomous vehicle control, robot

control)

– robust computation
• can handle noisy and incomplete data due to fine-

grained, distributed and continuous knowledge
representation

Introduction

• Attractions of NN approach
– fault tolerant

• ok to have faulty elements and bad connections

• isn't dependent on a fixed set of elements and
connections

– degrades gracefully
• continues to function, at a lower level of performance,

when portions of the network are faulty

– uses inductive learning
• useful for a wide variety of high-performance apps

2

Basics of NN

• Neural network composition:
– large number of units

• simple neuron-like processing elements

– connected by a large number of links
• directed from one unit to another

– with a weight associate with each link
• positive or negative real values
• means of long term storage
• adjusted by learning

– and an activation level associated with each unit
• result of the unit's processing
• unit's output

Basics of NN

• Neural network
configurations:
– represent as a graph

• nodes: units

– multi-layered

Layer 1

Layer 3

Layer 2

– feedback

– layer skipping

– fully connected?
 N2 links

– single layered

 arcs: links

Basics of NN

• Unit composition:

– set of input links

• from other units or sensors of the environment

– set of output links

• to other units or effectors of the environment

– and an activation function

• computes the output activation value using a simple
function of the linear combination of its inputs

Basics of NN

• Given n inputs, the unit's activation (i.e., output)
is defined by:

a = g(w1x1 + w2x2 + ... + wnxn) = g(wixi) = g(in)

where:

– wi are the weights

– xi are the input values

– g() is a simple, non-linear function, commonly:

• step: activation flips from 0 to 1 when in  threshold

• sign: activation flips from –1 to 1 when in  0

• sigmoid / logistic: g(in) = 1 / (1 + exp(- in))

3

Perceptrons

• Studied in the 1950s, mainly as simple networks for
which there was an effective learning algorithm

• “1-layer network”: one or more output units
• “Input units” don’t count because they don’t

compute anything
• Output units are all linear threshold units (LTUs)

– a unit's inputs, xi, are weighted, wi, and linearly
combined

– step function computes binary output activation value, a

 t

w1

wn

x1

xn

xi
a

Perceptrons,
Linear Threshold Units (LTU)

• Threshold is just another weight (called the bias):
(w1  x1) + (w2  x2) + ... + (wn  xn)  t

 is equivalent to

(w1  x1) + (w2  x2) + ... + (wn  xn) + (t  -1)  0

a

w1

wn

x1

xn

+1

t

Use +1
instead of -1,

however

Perceptron Examples

• “AND” Perceptron:
– inputs are 0 or 1
– output is 1 when

both x1 and x2 are 1
a

.5

.5

x1

x2

1

-.75

 2D input space

1

0

1 0

x1

x2

– 4 possible

data points

– threshold

is like a separating line

.5*0+.5*0-.75*1

=-.75 output = 0

.5*1+.5*1-.75*1

=.25 output = 1
.5*1+.5*0-.75*1

=-.25 output = 0

Perceptron Examples

• “OR” Perceptron:
– inputs are 0 or 1
– output is 1 when

either x1 or x2 are 1

???
-.25

 2D input space

1

0

1 0

x1

x2

– 4 possible

data points

– threshold

is like a separating line

.5*0+.5*0-.25*1

=-.25 output = 0

.5*1+.5*1-.25*1

=.75 output = 1
.5*1+.5*0-.25*1

=.25 output = 1

a
.5

.5

x1

x2

1

4

Perceptron Learning

 How are weights learned by a Perceptron?

• Programmer specifies:
– numbers of units in each layer

– connectivity between units

– so the only unknown is the set of weights

• Learning of weights is supervised
– for each training example

list of values for input into the input units of the network

– the correct output is given
list of values for the desired output of output units

Perceptron Learning Algorithm

1. Initialize the weights in the network
(usually with random values)

2. Repeat until all examples correctly classified
or some other stopping criterion is met

 foreach example, e, in training-set do

a. O = neural_net_output(network, e)

b. T = desired output, i.e., Target or Teacher's output

c. update_weights(e, O, T)

• Each pass through all of the training examples
is called an epoch

Perceptron Learning Rule

 How should the weights be updated?

• Determining how to update the weights is an
instance of the credit assignment problem

Perceptron Learning Rule:

• wi = wi + Dwi

• where Dwi = a xi (T - O)

– where xi is the input associated with ith input unit

– a is a real-valued constant between 0.0 and 1.0
called the learning rate

Perceptron Learning Rule (PLR)

• Dwi = a xi (T - O) doesn't depend on wi

• no change in weight (i.e., Dwi = 0) if:
– correct output, i.e., T = O gives a  xi  0 = 0

– zero input, i.e., xi = 0 gives a  0  (T - O) = 0

• If T=1 and O=0, increase the weight

 so that maybe next time the result will exceed the output unit's
threshold, causing it to be 1

• If T=0 and O=1, decrease the weight

 so that maybe next time the result won't exceed the output unit's
threshold, causing it to be 0

5

Example: Learning OR

• Dwi = a(T – O)xi = 0.2(T – O)xi

• Initial network:

0.1 0.5

0.8

x1 x2

w1 = 0.1
w2 = 0.5

w3 = -0.8

x1 x2 1

0 LTU LTU

Example: Learning OR

x1 x2 t a Dw1 w1 Dw2 w2 Dw3 w3

0.1 0.5 -0.8

0 0 0 0 0 0.1 0 0.5 0 -0.8

0 1 1 0 0 0.1 0.2 0.7 0.2 -0.6

1 0 1 0 0.2 0.3 0 0.7 0.2 -0.4

1 1 1 1 0 0.3 0 0.7 0 -0.4

0 0 0 0 0 0.3 0 0.7 0 -0.4

0 1 1 1 0 0.3 0 0.7 0 -0.4

1 0 1 0 0.2 0.5 0 0.7 0.2 -0.2

1 1 1 1 0 0.5 0 0.7 0 -0.2

0 0 0 0 0 0.5 0 0.7 0 -0.2

0 1 1 1 0 0.5 0 0.7 0 -0.2

1 0 1 1 0 0.5 0 0.7 0 -0.2

1 1 1 1 0 0.5 0 0.7 0 -0.2

bias

T O

Perceptron Learning Rule (PLR)

• PLR is a “local" learning rule in that only local
information in the network is needed to update a
weight

• PLR performs gradient descent (hill-climbing) in
"weight space“

• Iteratively adjusts all weights so that for each
training example the error decreases (more
correctly, error is monotonically non-increasing)

Perceptron Learning Rule (PLR)

Perceptron Convergence Theorem
• If a set of examples are learnable, then PLR will

find an appropriate set of weights
– in a finite number of steps
– independent of the initial weights
– with sufficiently small a

• This theorem says that if a solution exists,
PLR's gradient descent is guaranteed to find an
optimal solution (i.e., 100% correct
classification) for any 1-layer neural network

6

Limits of Perceptron Learning

What Can be Learned by a Perceptron?

• Perceptron's output is determined by the
separating hyperplane defined by
(w1  x1) + (w2  x2) + ... + (wn  xn) = t

• So, Perceptrons can only learn functions
that are linearly separable (in input space)

Limits of Perceptron Learning

• “XOR” Perceptron?
– inputs are 0 or 1
– output is 1 when

x1 is 1 and x2 is 0 or
x1 is 0 and x2 is 1

???

 2D input space with

4 possible data points
1

0

1 0

x1

x2

a

.5

.5

x1

x2

1

 How do you separate

 + from – using a

straight line?

Perceptron Learning Summary

 In general, the goal of learning in a Perceptron

 is to adjust the separating hyperplane that
divides an n-dimensional space, where n is the
number of input units (+ 1), by modifying the
weights (and biases) until all of the examples
with target value 1 are on one side of the
hyperplane, and all of the examples with
target value 0 are on the other side of the
hyperplane

Beyond Perceptrons

• Perceptrons are too weak a computing model
because they can only learn linearly-
separable functions

• General NN's can have multiple layers of
units, which enhance their computational
ability; the challenge is to find a learning rule
that works for multi-layered networks

7

Beyond Perceptrons

• A feed-forward multi-layered network computes a
function of the inputs and the weights

• Input units
– Input values are given by the environment

• Output units
– activation is the output result

• Hidden units (between input and output units)
– cannot observe directly

• Perceptrons have input units followed
by one layer of output units, i.e., no hidden units

Beyond Perceptrons

• NN's with one hidden layer of a sufficient number
of units, can compute functions associated with
convex classification regions in input space

• NN's with two hidden layers are universal

computing devices, although the complexity
of the function is limited by the number of units
– If too few, the network will be unable to represent

the function
– If too many, the network can memorize examples and

is subject to “overfitting”

Two-Layer, Feed-Forward
Neural Network

I1

I2

I3

I4

I5

I6

a1 = O1

a2 = O2

Input Units
ai=Ii

Hidden Units

Output Units

Weights on links

from input to hidden

wi,j

Weights on links

from hidden to output

wj,k aj

Network Activations

ak

Two-Layer, Feed-Forward
Neural Network

ai=Ii

a1 = O1

I1

I2

I3

I4

I5

I6

a2 = O2

Feed-Forward:

each unit in a layer

connects forward to all of

the units in the next layer

aj wi,j wj,k

Two Layers:

count layers with units

computing an activation

Layer 1 Layer 2

no cycles
 - links within the same layer

 - links to prior layers

no skipping layers

ak

8

XOR Example

• XOR Perceptron?:
– inputs are 0 or 1
– output is 1 when

I1 is 1 and I2 is 0 or
I1 is 0 and I2 is 1

 Each unit in hidden layer

acts like a Perceptron

learning a separating line
1

0

1 0

I1

I2

a

.5

-.5

.75

I1

I2

.5

.5

.5

.5

.25

– top hidden unit acts like

an OR Perceptron

OR

– bottom hidden unit acts like

an AND Perceptron

AND

XOR Example

• XOR Perceptron?:
– inputs are 0 or 1
– output is 1 when

I1 is 1 and I2 is 0 or
I1 is 0 and I2 is 1

 To classify an example each

unit in output layer combines

these separating lines by

intersecting the "half-planes"

defined by the separating lines

a

.5

-.5

.75

I1

I2

.5

.5

.5

.5

.25

OR

AND

when OR is 1 and AND is 0

then output a, is 1

1

0

1 0

I1

I2

Learning in Multi-Layer, Feed-Forward
Neural Nets

• PLR doesn't work in multi-layered feed-
forward nets because the desired values for
hidden units aren't known

• Must again solve the Credit Assignment
Problem
– determine which weights to credit/blame for the

output error in the network

– determine which weights in the network should
be updated and how to update them

Learning in Multi-Layer, Feed-Forward
Neural Nets

• Back-Propogation
– method for learning weights in these networks
– generalizes PLR
– Rumelhart, Hinton and Williams, 1986

• Approach
– gradient-descent algorithm to minimize the error on

the training data
– errors are propagated through the network starting

at the output units and working backwards towards
the input units

9

Back-Propagation Algorithm

1. Initialize the weights in the network (usually random values)

2. Repeat until all examples correctly classified or other
stopping criterion is met

 foreach example, e, in training set do

a. forward pass: O = neural_net_output(network, e)

b. T = desired output, i.e., Target or Teacher's output

c. calculate error (T - O) at the output units

d. backward pass:
i. compute Dwj,k for all weights from hidden to output layer

ii. compute Dwi,j for all weights from inputs to hidden layer

e. update_weights(network, Dwj,k, Dwi,j)

Computing Change in Weights

• Back-Propagation performs a gradient descent
search in “weight space” to learn the network
weights

• Given a network with n weights:
– each configuration of weights is a vector, W, of length

n that defines an instance of the network

– W can be considered a point in an n-dimensional
weight space, where each dimension is associated
with one of the connections in the network

Computing Change in Weights

• Given a training set of m examples:
– each network defined by the vector W has an

associated total error, E, on all of training data
– E the sum of the squared error (SSE) is defined as

 E = E1 + E2 + ... + Em
where each Ei is the squared error of the network
on the ith training example

• Given n output units in the network:
 Ei = ((T1 - O1)

2 + (T2 - O2)
2 + ... + (Tn - On)

2) / 2
– Ti is the target value for the ith example
– Oi is the network output value for the ith example

Computing Change in Weights

E

w2

w1

Visualized as a 2D error surface in weight space

 Each point in w1 w2 plane

is a weight configuration

 Each point has a total error E

 Goal is to find a lower point on

the error surface (local minima)

 2D surface represents errors

for all weight configurations

.8

.3  Gradient descent follows the

direction of the steepest descent,

i.e., where E decreases the most

10

Computing Change in Weights

• The gradient is defined as
Gradient_E = [E/w1, E/w2, ..., E/wn]

• Then change the ith weight by
Dwi = -a E/wi

• To compute the derivatives for calculating the
gradient direction requires an activation function
that is continuous, differentiable, non-decreasing
and easily computed
– can't use the Step function as in LTU's

– instead use the Sigmoid function

• The problem with LTU: step function is

discontinuous, so cannot do gradient descent

• Solution: Replace with Sigmoid function (aka

Logistic function):

gw(x) = 1 / (1 + exp(-wx))

• Note: g(x)= g(x) (1 - g(x))

Sigmoid Activation Function

g(x)

First Derivative of Sigmoid Function Updating the Weights

k

j

i

output unit

hidden unit

input unit

Ok

aj

ai

Tk

11

Updating Weights for
2-Layer Neural Network

• For weights between hidden and output units,
generalized PLR for sigmoid activation is

 Dwj,k = -a E/wj,k

 = -a -aj (Tk - Ok) g'(ink)

 = a aj (Tk - Ok) Ok (1 - Ok)

 = a aj Dk
 wj,k weight on link from hidden unit j to output unit k

 a learning rate parameter

 aj activation (i.e. output) of hidden unit j

 Tk teacher output for output unit k

 Ok actual output of output unit k

 g' derivative of sigmoid activation function, which is g' = g(1 - g)

Updating Weights for
2-Layer Neural Network

• For weights between input and hidden units:
– we don't have teacher-supplied correct output values

– infer the error at these units by "back-propagating"

– error at an output units is "distributed" back to each
of the hidden units in proportion to the weight of the
connection between them

– total error is distributed to all of the hidden units that
contributed to that error

• Each hidden unit accumulates some error from
each of the output units to which it is connected

Updating Weights for
2-Layer Neural Network

• For weights between inputs and hidden units:
 Dwi,j = -a E/wi,j

 = -a -ai g'(inj)  wj,k (Tk - Ok) g'(ink)

 = a ai aj (1 - aj)  wj,k (Tk - Ok) Ok (1 - Ok)

 = a ai Dj where Dj = g'(inj)  wj,k Dk
 wi,j weight on link from input i to hidden unit j
 wj,k weight on link from hidden unit j to output unit k

 a learning rate parameter
 aj activation (i.e. output) of hidden unit j
 Tk teacher output for output unit k

 Ok actual output of output unit k
 ai input value i
 g' derivative of sigmoid activation function, which is g' = g(1-g)

Back-Propagation Algorithm

1. Initialize the weights in the network (usually random values)

2. Repeat until all examples correctly classified or other stopping criterion

 foreach example e in training set do

a. forward pass: O = neural_net_output(network, e)

b. T = desired output, i.e., Target or Teacher's output

c. calculate error (T - O) at the output units

d. backward pass:

i. compute Dwj,k = a aj Dk = a aj (Tk - Ok) Ok (1 - Ok)

ii. compute Dwi,j = a ai Dj = a ai aj(1-aj)  wj,k (Tk - Ok) Ok (1- Ok)

e. update_weights(network, Dwj,k, Dwi,j)

12

Learning Hidden Layer Representation

Can this be learned?

Slide by Guoping Qiu

Learning Hidden Layer Representation

Training

The evolving sum of squared errors for each of the eight

output units

Slide by Guoping Qiu

weight updates

Learning Hidden Layer Representation

Learned hidden layer representation

Slide by Guoping Qiu

Multi-Layer Feedforward Networks

• Every Boolean function can be represented by
a network with 1 hidden layer, but it might
require an exponential number of hidden
units

• Back-propagation algorithm performs gradient
descent over “weight space” of entire network

• Will in general find a local, not global, error
minimum

• Training can take thousands of epochs

13

Other Issues

• How should a network's
performance be estimated?

• How should the learning rate
parameter, a, be set?

 Use a tuning set to train using several candidate
values for a, and then select the value that gives
the lowest error on the test set

Other Issues

• How many hidden layers should be in
the network?
– usually just one hidden layer is used

• How many hidden units should be in a
layer?
– too few and the concept can't be learn
– too many:

• examples just memorized
• overfitting, poor generalization

– Use a tuning set or cross-validation to
determine experimentally the number of units
that minimizes error

Setting Parameters

• some learning algorithms require setting
learning parameters

• they must be set without looking at the test
data

• one approach: use a tuning set

Using Data

• Training set is used to learn a “model” (e.g., a
neural network’s weights)

• Tuning set is used to judge and select
parameters (e.g., learning rate and number of
hidden units)

• Testing set is used to judge in a fair manner
the model’s accuracy

• All 3 datasets should be disjoint

14

Setting Parameters

Use a Tuning set for setting parameters:
1. Partition training examples into TRAIN, TUNE, and TEST

sets

2. For each candidate parameter value, learn a neural
network using the TRAIN set

3. Use TUNE set to evaluate error rates and determine which
parameter value is best

4. Compute new neural network using selected parameter
values and both TRAIN and TUNE sets

5. Use TEST set to compute performance accuracy

Other Issues

• How many examples should be in the
training set?
– the larger the better, but training is longer

To obtain 1 – e correct classification on testing set:
– training set should be of size approximately n/e:

• n is the number of weights in the network
• e is test set error fraction between 0 and 1

– train to classify 1 - e/2 of the training set correctly
e.g., if n = 80 and e = 0.1 (i.e. 10% error on test set)
– training set of size is 800
– train until 95% correct classification
– should produce ~90% correct classification on test set

Other Issues

• When should training stop?
– too soon and the concept isn't learned

– too late:

• overfitting, poor generalization

• error rate will go up on the testing set

• Train the network until the error rate on a
tuning set begins increasing rather than
training until the error (i.e., SSE) is
minimized

Tuning Sets

training set

Training time (epochs)

E
rr

o
r

ra
te

test set
tuning set

15

Summary

• Advantages
– parallel processing architecture
– robust with respect to node failure
– fine-grained, distributed representation of

knowledge
– robust with respect to noisy data
– incremental algorithm (i.e., learn as you go)
– simple computations
– empirically shown to work well for many problem

domains

Summary

• Disadvantages
– slow training (i.e., takes many epochs)

– poor semantic interpretability

– ad hoc network topologies (i.e., layouts)

– hard to debug

– may converge to local, not global, minimum of error

– hard to describe a problem in terms of features with
numerical values

– not known how to model higher-level cognitive
mechanisms with NN model

Applications

• NETtalk (Sejnowski & Rosenberg, 1987)
learns to say text by mapping character strings to

phonemes

• Neurogammon (Tesauro & Sejnowski, 1989)
learns to play backgammon

• Speech recognition (Waibel, 1989)
learns to convert spoken words to text

• Character recognition (Le Cun et al., 1989)
learns to convert page image to text

Application: Autonomous Driving

• ALVINN (Pomerleau, 1988)
learns to control vehicle steering to stay in the
middle of its lane

• Topology: 2-layer, feed-forward network
using back-propagation learning

– Input layer: 480  512 image @ 15 frames per second

• color image is preprocessed to obtain a 30  32 image

• each pixel is one byte, an integer from 0 to 255
corresponding to the brightness of the image

• networks has 960 input units (= 30  32)

16

ALVINN

[Pomerleau, 1995]

steering direction

ALVINN

• Topology: Output layer
– output is one of 30 discrete steering positions

• output unit 1 means sharp left
• output unit 30 means sharp right

– target output is a set of 30 values

• Gaussian distribution with a variance of 10 centered

on the desired steering direction: Oi = e[-(i-d)
2
/10]

– actual output for steering determined by
• compute a least-squares best fit of output units' values

to a Gaussian distribution with a variance of 10
• peak of this distribution is taken as the steering direction

– error for learning is: target output - actual output

ALVINN

• Topology: Hidden layer

– only 4 hidden units with complete connectivity
from

• 960 input units to 4 hidden units

• 4 hidden units to 30 output units

ALVINN’s 2-Layer Network

[Pomerleau, 1995]

17

ALVINN

• Learning
– continuously learns on the fly by observing

• human driver (takes ~5 minutes from random initial weights)

• itself (do an epoch of training every 2 seconds there after)

– problem with using real continuous data:
• there aren't negative examples

• network may overfit data in recent images (e.g., straight road)
at the expense of past images (e.g., road with curves)

– solutions
• generate negative examples by synthesizing

views of the road that are incorrect for current steering

• maintain a buffer of 200 real and synthesized images that
keeps some images in many different steering directions

ALVINN

• Results

– drove at speeds up to 70 mph

– drove continuously for distances up to 90 miles

– drove across the U.S. during different times of the
day and with different traffic conditions

– drove on:

• single lane roads and highways

• multi-lane highways

• paved bike paths

• dirt roads

ALVINN Demo Application: Face Detection

18

Canon Powershot

Face Detection in Most Digital Cameras

Also, smile and blink detection too in some cameras

Application: Face Detection

NN

Classifier

2 Classes:

Face/

Non-Face

• Input = 20 x 20 pixel window, outputs a value ranging from –1 to +1
signifying the presence or absence of a face in the region

• The window is positioned at every location of the image

• To detect faces larger than 20 x 20 pixel, the image is repeatedly reduced
in size

2-Layer Network

Application: Face Detection

– 2-layer feed-forward neural network

– Three types of hidden units

• 4 look at 10 x 10 subregions

• 16 look at 5 x 5 subregions

• 6 look at 20 x 5 horizontal stripes of pixels

– Training set

• 1,050 initial face images. More face examples
generated from this set by rotation and scaling.
Desired output: +1

• Non-face training samples: 8,000 non-face training
samples from 146,212,178 subimage regions!
Desired output: -1

19

Face Detection Results

Results

• Notice detection at multiple scales

Results Face Detection Demos
(but not using neural nets)

• http://flashfacedetection.com/

• http://flashfacedetection.com/camdemo2.html

http://flashfacedetection.com/
http://flashfacedetection.com/camdemo2.html

20

Evaluating Performance

How might the performance be evaluated?

• Predictive accuracy of classifier

• Speed of learner

• Speed of classifier

• Space requirements

Training Set Error

• For each example in the training set, use the
classifier to see what class it predicts

For what number of examples does the classifier’s
prediction disagree with the teacher value in the
database?

• This quantity is called the training set error.
The smaller the better.

• But why are we doing learning anyway?

– More important to assess how well the classifier
predicts output for future data

Test Set Error

• Suppose we are forward thinking

• We hide some data away when we learn the
classifier

• But once learned, we see how well the
classifier predicts that data

• This is a good simulation of what happens
when we try to predict future data

• Called the Test Set Error

Evaluating Classifiers

• During training

– Train a classifier from a training set (x1,y1), (x2,y2), …, (xn,yn)

• During testing

– For new test data, xn+1, …, xn+m, your classifier generates
predicted labels y’n+1, …, y’n+m

• Test set accuracy:

– You need to know the true test labels: yn+1, …, yn+m

– Test set accuracy:

– Test set error rate = 1 – acc







mn

ni

yy iim
acc

1

'1
1

21

Evaluating Performance Accuracy

• Use separate test examples to estimate
accuracy

1. randomly partition training examples into:

TRAIN set (~70% of all training examples)

TEST set (~30% of all training examples)

2. generate decision tree using the TRAIN set

3. use TEST set to evaluate accuracy
accuracy = #correct / #total

A Regression Problem

x

y

y = f(x) + noise

Can we learn f from this

data?

Which is Best?

x

y

x

y

Linear f Quadratic f Piecewise Linear f

Fits the
data best,
including
the noise!

What we really want: Fit that will

give the best results on future data

(drawn from the same distribution)

The Overfitting Problem
Example: Predicting US Population

• We have some
training data
(n=11)

• What will the
population be
in 2010?

 x=Year y=Million
 1900 75.99
 1910 91.97
 1920 105.71
 1930 123.2
 1940 131.67
 1950 150.7
 1960 179.32
 1970 203.21
 1980 226.51
 1990 249.63
 2000 281.42

22

Regression: Polynomial Fit

• The degree d (complexity of the model) is
important

• Fit (= learn) coefficients cd, … c0 to minimize
Mean Squared Error (MSE) on training data

01

1

1)(cxcxcxcxf d

d

d

d  

 

 



n

i

ii xfy
n

MSE
1

2
)(

1

Overfitting

• As d increases, MSE on training data improves,
but prediction outside training data worsens

degree=0 MSE=4181.451643
degree=1 MSE=79.600506
degree=2 MSE=9.346899
degree=3 MSE=9.289570
degree=4 MSE=7.420147
degree=5 MSE=5.310130
degree=6 MSE=2.493168
degree=7 MSE=2.278311
degree=8 MSE=1.257978
degree=9 MSE=0.001433
degree=10 MSE=0.000000

2010 pop: 308.75

Experimental Evaluation of Performance

Test Set Method

1. Randomly choose say 30% of the data to be the
test set, and the remaining 70% is the training
set

2. Build classifier using the training set

3. Estimate future performance using the test set

Test Set Method

x

y

1. Randomly choose

30% of the data to be in

a test set

2. The remainder is a

training set

23

Test Set Method

x

y

1. Randomly choose

30% of the data to be in

a test set

2. The remainder is a

training set

3. Perform your

regression on the

training set

(Linear regression example)

Test Set Method

x

y

1. Randomly choose

30% of the data to be in

a test set

2. The remainder is a

training set

3. Perform your

regression on the

training set

4. Estimate your future

performance with the

test set (Linear regression example)

Mean Squared Error = 2.4

Test Set Method

x

y

1. Randomly choose

30% of the data to be in

a test set

2. The remainder is a

training set

3. Perform your

regression on the

training set

4. Estimate your future

performance with the

test set (Quadratic regression example)

Mean Squared Error = 0.9

Test Set Method

x

y

1. Randomly choose

30% of the data to be in

a test set

2. The remainder is a

training set

3. Perform your

regression on the

training set

4. Estimate your future

performance with the

test set (Join the dots example)

Mean Squared Error = 2.2

24

Test Set Method

• Strengths

– Very simple

• Weaknesses

– Wastes data because test set is not used to
construct the best classifier

– If we don’t have much data, our test set might be
lucky or unlucky in terms of what’s in it, making
the results on the test set a “high variance”
estimator of the real performance

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth

record

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth

record

2. Temporarily remove

(xk,yk) from the dataset

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth

record

2. Temporarily remove

(xk,yk) from the dataset

3. Train on the remaining R-

1 datapoints

25

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth

record

2. Temporarily remove

(xk,yk) from the dataset

3. Train on the remaining R-

1 datapoints

4. Note your error (xk,yk)

x

y

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth

record

2. Temporarily remove

(xk,yk) from the dataset

3. Train on the remaining R-

1 datapoints

4. Note your error (xk,yk)

When you’ve done all points,

report the mean error.
x

y

LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be

the kth

record

2. Temporarily
remove

(xk,yk)

from the

dataset

3. Train on the
remaining

R-1

datapoints

4. Note your

error
(xk,yk)

When you’ve

done all points,

report the mean

error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOC

V = 2.12

LOOCV for Quadratic Regression
For k=1 to R

1. Let (xk,yk) be

the kth

record

2. Temporarily
remove

(xk,yk)

from the

dataset

3. Train on the
remaining

R-1

datapoints

4. Note your

error
(xk,yk)

When you’ve

done all points,

report the mean

error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOC

V=0.962

26

LOOCV for Join The Dots
For k=1 to R

1. Let (xk,yk) be

the kth

record

2. Temporarily
remove

(xk,yk)

from the

dataset

3. Train on the
remaining

R-1

datapoints

4. Note your

error
(xk,yk)

When you’ve

done all points,

report the mean

error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOC

V=3.33

Experimental Evaluation of Performance

• Leave-One-Out Cross Validation

For i = 1 to N do // N = number of examples

1. Let (xi, yi) be the ith example

2. Remove (xi, yi) from the dataset

3. Train on the remaining N-1 examples

4. Compute error on ith example

• Accuracy = mean accuracy on all N runs

• Doesn’t waste data but is expensive

• Use when you have a small dataset

Experimental Evaluation of Performance

• Cross-Validation Method

1. divide all examples into K disjoint subsets
E = E1, E2, ..., EK

2. for each i = 1, ..., K
• let TEST set = Ei and TRAIN set = E - Ei

• compute decision tree using TRAIN set

• determine accuracy PAi using TEST set

3. compute K-fold cross-validation estimate of
performance = mean error =

 (PA1 + PA2 + ... + PAK)/K

Often use
K = 3 or 10

k-fold Cross
Validation

x

y

Randomly break the dataset into k

partitions (in our example we’ll have

k=3 partitions colored Red, Green

and Blue)

27

k-fold Cross
Validation

x

y

Randomly break the dataset into k

partitions (in our example we’ll have

k=3 partitions colored Red, Green

and Blue)

For the red partition: Train on all the

points not in the red partition.

Find the test-set sum of errors on

the red points.

k-fold Cross
Validation

x

y

Randomly break the dataset into k

partitions (in our example we’ll have

k=3 partitions colored Red, Green

and Blue)

For the red partition: Train on all the

points not in the red partition.

Find the test-set sum of errors on

the red points.

For the green partition: Train on all

the points not in the green

partition. Find the test-set sum of

errors on the green points.

k-fold Cross
Validation

x

y

Randomly break the dataset into k

partitions (in our example we’ll have

k=3 partitions colored Red, Green

and Blue)

For the red partition: Train on all the

points not in the red partition.

Find the test-set sum of errors on

the red points.

For the green partition: Train on all

the points not in the green

partition. Find the test-set sum of

errors on the green points.

For the blue partition: Train on all

the points not in the blue

partition. Find the test-set sum of

errors on the blue points.

k-fold Cross
Validation

x

y

Randomly break the dataset into k

partitions (in our example we’ll have

k=3 partitions colored Red, Green

and Blue)

For the red partition: Train on all the

points not in the red partition.

Find the test-set sum of errors on

the red points.

For the green partition: Train on all

the points not in the green

partition. Find the test-set sum of

errors on the green points.

For the blue partition: Train on all

the points not in the blue

partition. Find the test-set sum of

errors on the blue points.

Then report the mean error Linear Regression

MSE3FOLD=2.05

28

k-fold Cross
Validation

x

y

Randomly break the dataset into k

partitions (in our example we’ll have

k=3 partitions colored Red, Green

and Blue)

For the red partition: Train on all the

points not in the red partition.

Find the test-set sum of errors on

the red points.

For the green partition: Train on all

the points not in the green

partition. Find the test-set sum of

errors on the green points.

For the blue partition: Train on all

the points not in the blue

partition. Find the test-set sum of

errors on the blue points.

Then report the mean error Quadratic Regression

MSE3FOLD=1.11

k-fold Cross
Validation

x

y

Randomly break the dataset into k

partitions (in our example we’ll have

k=3 partitions colored Red, Green

and Blue)

For the red partition: Train on all the

points not in the red partition.

Find the test-set sum of errors on

the red points.

For the green partition: Train on all

the points not in the green

partition. Find the test-set sum of

errors on the green points.

For the blue partition: Train on all

the points not in the blue

partition. Find the test-set sum of

errors on the blue points.

Then report the mean error Joint-the-dots

MSE3FOLD=2.93

