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Neural Networks 

Chapter 18.6.3, 18.6.4 and 18.7 

Introduction 

 

• Known as: 
– Neural Networks (NNs) 

– Artificial Neural Networks (ANNs) 

– Connectionist Models 

– Parallel Distributed Processing (PDP) Models 

 

• Neural Networks are a fine-grained, 
parallel, distributed, computing model 

Introduction 

• Attractions of NN approach 
– massively parallel 

• from a large collection of simple processing elements 
emerges interesting complex global behavior 

– can do complex tasks 
• pattern recognition (handwriting, facial expressions) 
• forecasting (stock prices, power grid demand) 
• adaptive control (autonomous vehicle control, robot 

control) 

– robust computation 
• can handle noisy and incomplete data due to fine-

grained, distributed and continuous knowledge 
representation 

Introduction 

• Attractions of NN approach 
– fault tolerant 

• ok to have faulty elements and bad connections 

• isn't dependent on a fixed set of elements and 
connections 

– degrades gracefully 
• continues to function, at a lower level of performance, 

when portions of the network are faulty 

– uses inductive learning 
• useful for a wide variety of high-performance apps 
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Basics of NN 

• Neural network composition: 
– large number of units 

• simple neuron-like processing elements 

– connected by a large number of links 
• directed from one unit to another 

– with a weight associate with each link 
• positive or negative real values 
• means of long term storage 
• adjusted by learning 

– and an activation level associated with each unit 
• result of the unit's processing 
• unit's output 

Basics of NN 

• Neural network 
configurations: 
– represent as a graph 

• nodes: units 

– multi-layered 

Layer 1 

Layer 3 

Layer 2 

– feedback 

– layer skipping 

– fully connected? 
 N2 links 

– single layered 

 arcs: links 

Basics of NN 

• Unit composition: 

– set of input links 

• from other units or sensors of the environment 

– set of output links 

• to other units or effectors of the environment 

– and an activation function 

• computes the output activation value using a simple 
function of the linear combination of its inputs 

Basics of NN 

• Given n inputs, the unit's activation (i.e., output) 
is defined by: 

a = g(w1x1 + w2x2 + ... + wnxn) = g(wixi) = g(in) 

where: 

–  wi  are the weights 

–  xi  are the input values 

–  g( ) is a simple, non-linear function, commonly: 

• step:       activation flips from 0 to 1 when in  threshold 

• sign:       activation flips from –1 to 1 when in  0 

• sigmoid / logistic:  g(in) = 1 / (1 + exp(- in)) 



3 

Perceptrons 

• Studied in the 1950s, mainly as simple networks for 
which there was an effective learning algorithm 

• “1-layer network”:  one or more output units 
• “Input units” don’t count because they don’t 

compute anything 
• Output units are all linear threshold units (LTUs) 

– a unit's inputs, xi, are weighted, wi, and linearly 
combined 

– step function computes binary output activation value, a 

 t 

w1 

wn 

x1 

xn 

xi 
a 

Perceptrons, 
Linear Threshold Units (LTU) 

• Threshold is just another weight (called the bias): 
(w1  x1) + (w2  x2) + ... + (wn  xn)   t 

 is equivalent to 

(w1  x1) + (w2  x2) + ... + (wn  xn) + (t  -1)   0 

a 

w1 

wn 

x1 

xn 

+1 

t 

Use +1 
instead of -1, 

however  

Perceptron Examples 

• “AND” Perceptron: 
– inputs are 0 or 1 
– output is 1 when 

both x1 and x2 are 1 
a 

.5 

.5 

x1 

x2 

1 

-.75 

 2D input space 

1 

0 

1 0 

x1 

x2 

– 4 possible 

data points 

– threshold 

is like a separating line 

.5*0+.5*0-.75*1 

=-.75 output = 0 

.5*1+.5*1-.75*1 

=.25 output = 1 
.5*1+.5*0-.75*1 

=-.25 output = 0 

Perceptron Examples 

• “OR” Perceptron: 
– inputs are 0 or 1 
– output is 1 when 

either x1 or x2 are 1 

??? 
-.25 

 2D input space 

1 

0 

1 0 

x1 

x2 

– 4 possible 

data points 

– threshold 

is like a separating line 

.5*0+.5*0-.25*1 

=-.25 output = 0 

.5*1+.5*1-.25*1 

=.75 output = 1 
.5*1+.5*0-.25*1 

=.25 output = 1 

a 
.5 

.5 

x1 

x2 

1 
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Perceptron Learning 

 How are weights learned by a Perceptron? 

• Programmer specifies: 
– numbers of units in each layer 

– connectivity between units 

– so the only unknown is the set of weights 

• Learning of weights is supervised 
– for each training example 

list of values for input into the input units of the network 

– the correct output is given 
list of values for the desired output of output units 

Perceptron Learning Algorithm 

1. Initialize the weights in the network 
(usually with random values)  

2. Repeat until all examples correctly classified 
or some other stopping criterion is met 

 foreach example, e, in training-set do  

a. O = neural_net_output(network, e)  

b. T  = desired output, i.e., Target or Teacher's output 

c. update_weights(e, O, T)  
 

• Each pass through all of the training examples 
is called an epoch 

Perceptron Learning Rule 

 How should the weights be updated?  

• Determining how to update the weights is an 
instance of the credit assignment problem 

 

Perceptron Learning Rule: 

• wi = wi + Dwi 

• where Dwi = a xi (T - O) 

–  where xi is the input associated with ith input unit 

–  a is a real-valued constant between 0.0 and 1.0 
called the learning rate 

Perceptron Learning Rule (PLR) 

• Dwi = a xi (T - O)  doesn't depend on wi  

• no change in weight (i.e.,  Dwi = 0) if: 
– correct output, i.e.,  T = O gives a  xi  0 = 0 

– zero input, i.e.,  xi = 0 gives a  0  (T - O) = 0 

• If T=1 and O=0, increase the weight 

 so that maybe next time the result will exceed the output unit's 
threshold, causing it to be 1 

• If T=0 and O=1, decrease the weight 

 so that maybe next time the result won't exceed the output unit's 
threshold, causing it to be 0 
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Example:  Learning OR 

• Dwi = a(T – O)xi  = 0.2(T – O)xi 

• Initial network: 

0.1 0.5 

0.8 

x1 x2 

w1 = 0.1 
w2 = 0.5 

w3 = -0.8 

x1 x2 1 

0 LTU LTU 

Example:  Learning OR 

x1 x2 t a Dw1 w1 Dw2 w2 Dw3 w3 

0.1 0.5 -0.8 

0 0 0 0 0 0.1 0 0.5 0 -0.8 

0 1 1 0 0 0.1 0.2 0.7 0.2 -0.6 

1 0 1 0 0.2 0.3 0 0.7 0.2 -0.4 

1 1 1 1 0 0.3 0 0.7 0 -0.4 

0 0 0 0 0 0.3 0 0.7 0 -0.4 

0 1 1 1 0 0.3 0 0.7 0 -0.4 

1 0 1 0 0.2 0.5 0 0.7 0.2 -0.2 

1 1 1 1 0 0.5 0 0.7 0 -0.2 

0 0 0 0 0 0.5 0 0.7 0 -0.2 

0 1 1 1 0 0.5 0 0.7 0 -0.2 

1 0 1 1 0 0.5 0 0.7 0 -0.2 

1 1 1 1 0 0.5 0 0.7 0 -0.2 

bias 

T O 

Perceptron Learning Rule (PLR) 

• PLR is a “local" learning rule in that only local 
information in the network is needed to update a 
weight 

 

• PLR performs gradient descent (hill-climbing) in 
"weight space“ 

 

• Iteratively adjusts all weights so that for each 
training example the error decreases (more 
correctly, error is monotonically non-increasing)  

Perceptron Learning Rule (PLR) 

Perceptron Convergence Theorem 
• If a set of examples are learnable, then PLR will 

find an appropriate set of weights 
– in a finite number of steps 
– independent of the initial weights 
– with sufficiently small a 

 

• This theorem says that if a solution exists, 
PLR's gradient descent is guaranteed to find an 
optimal solution (i.e., 100% correct 
classification) for any 1-layer neural network 
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Limits of Perceptron Learning 

What Can be Learned by a Perceptron? 

 

• Perceptron's output is determined by the 
separating hyperplane defined by 
(w1  x1) + (w2  x2) + ... + (wn  xn)  =  t 

 

• So, Perceptrons can only learn functions 
that are linearly separable (in input space) 

Limits of Perceptron Learning 

• “XOR” Perceptron? 
– inputs are 0 or 1 
– output is 1 when 

x1 is 1 and x2 is 0 or 
x1 is 0 and x2 is 1 

??? 

 2D input space with 

4 possible data points 
1 

0 

1 0 

x1 

x2 

a 

.5 

.5 

x1 

x2 

1 

 How do you separate 

 +   from   –  using a 

straight line? 

Perceptron Learning Summary 

 In general, the goal of learning in a Perceptron 

 is to adjust the separating hyperplane that 
divides an n-dimensional space, where n is the 
number of input units (+ 1), by modifying the 
weights (and biases) until all of the examples 
with target value 1 are on one side of the 
hyperplane, and all of the examples with 
target value 0 are on the other side of the 
hyperplane 

Beyond Perceptrons 

• Perceptrons are too weak a computing model 
because they can only learn linearly-
separable functions 

 

• General NN's can have multiple layers of 
units, which enhance their computational 
ability; the challenge is to find a learning rule 
that works for multi-layered networks 
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Beyond Perceptrons 

• A feed-forward multi-layered network computes a 
function of the inputs and the weights 

• Input units 
– Input values are given by the environment 

• Output units 
– activation is the output result 

• Hidden units (between input and output units) 
– cannot observe directly 

• Perceptrons have input units followed 
by one layer of output units, i.e., no hidden units 

Beyond Perceptrons 

• NN's with one hidden layer of a sufficient number 
of units, can compute functions associated with 
convex classification regions in input space 

 
• NN's with two hidden layers are universal 

computing devices, although the complexity 
of the function is limited by the number of units 
– If too few, the network will be unable to represent 

the function 
– If too many, the network can memorize examples and 

is subject to “overfitting” 

Two-Layer, Feed-Forward 
Neural Network 

I1 

I2 

I3 

I4 

I5 

I6 

a1 = O1 

a2 = O2 

Input Units  
ai=Ii 

Hidden Units 

Output Units 

 

Weights on links 

from input to hidden 

wi,j 

Weights on links 

from hidden to output 

wj,k aj 

Network Activations 

ak 

Two-Layer, Feed-Forward 
Neural Network 

ai=Ii 

a1 = O1 

I1 

I2 

I3 

I4 

I5 

I6 

a2 = O2 

Feed-Forward: 

each unit in a layer 

connects forward to all of 

the units in the next layer 

aj wi,j wj,k 

Two Layers: 

count layers with units 

computing an activation 

Layer 1 Layer 2 

no cycles 
 - links within the same layer 

 - links to prior layers 

no skipping layers 

ak 
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XOR Example 

• XOR Perceptron?: 
– inputs are 0 or 1 
– output is 1 when 

I1 is 1 and I2 is 0 or 
I1 is 0 and I2 is 1 

 Each unit in hidden layer 

acts like a Perceptron 

learning a separating line 
1 

0 

1 0 

I1 

I2 

a 

.5 

-.5 

.75 

I1 

I2 

.5 

.5 

.5 

.5 

.25 

– top hidden unit acts like 

an OR Perceptron 

OR 

– bottom hidden unit acts like 

an AND Perceptron 

AND 

XOR Example 

• XOR Perceptron?: 
– inputs are 0 or 1 
– output is 1 when 

I1 is 1 and I2 is 0 or 
I1 is 0 and I2 is 1 

 To classify an example each 

unit in output layer combines 

these separating lines by 

intersecting the "half-planes" 

defined by the separating lines 

a 

.5 

-.5 

.75 

I1 

I2 

.5 

.5 

.5 

.5 

.25 

OR 

AND 

when OR is 1 and  AND is 0 

then output a, is 1 

1 

0 

1 0 

I1 

I2 

Learning in Multi-Layer, Feed-Forward 
Neural Nets 

• PLR doesn't work in multi-layered feed-
forward nets because the desired values for 
hidden units aren't known 

 

• Must again solve the Credit Assignment 
Problem 
– determine which weights to credit/blame for the 

output error in the network 

– determine which weights in the network should 
be updated and how to update them 

Learning in Multi-Layer, Feed-Forward 
Neural Nets 

• Back-Propogation 
– method for learning weights in these networks 
– generalizes PLR 
– Rumelhart, Hinton and Williams, 1986 
 

• Approach 
– gradient-descent algorithm to minimize the error on 

the training data 
– errors are propagated through the network starting 

at the output units and working backwards towards 
the input units  
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Back-Propagation Algorithm 

1. Initialize the weights in the network (usually random values)  

2. Repeat until all examples correctly classified or other 
stopping criterion is met 

 foreach example, e, in training set do  

a.  forward pass: O = neural_net_output(network, e) 

b.  T  = desired output, i.e., Target or Teacher's output 

c.  calculate error (T - O) at the output units 

d.  backward pass: 
i. compute Dwj,k for all weights from hidden to output layer 

ii. compute Dwi,j for all weights from inputs to hidden layer 

e.  update_weights(network,  Dwj,k,  Dwi,j ) 

 

Computing Change in Weights 

• Back-Propagation performs a gradient descent 
search in “weight space” to learn the network 
weights 

 

• Given a network with n weights: 
– each configuration of weights is a vector, W, of length 

n that defines an instance of the network 

– W can be considered a point in an n-dimensional 
weight space, where each dimension is associated 
with one of the connections in the network 

Computing Change in Weights 

• Given a training set of m examples: 
– each network defined by the vector W has an 

associated total error, E, on all of training data 
– E the sum of the squared error (SSE) is defined as 

  E = E1 + E2 + ... + Em 
where each Ei is the squared error of the network 
on the ith training example 

• Given n output units in the network: 
     Ei = ((T1 - O1)

2 + (T2 - O2)
2 + ... + (Tn - On)

2) / 2 
– Ti is the target value for the ith example 
– Oi is the network output value for the ith example 

Computing Change in Weights 

E 

w2 

w1 

Visualized as a 2D error surface in weight space 

 Each point in w1 w2  plane 

is a weight configuration 

 Each point has a total error E 

 Goal is to find a lower point on 

the error surface (local minima) 

 2D surface represents errors 

for all weight configurations  

.8 

.3  Gradient descent follows the 

direction of the steepest descent, 

i.e., where E decreases the most 
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Computing Change in Weights 

• The gradient is defined as 
Gradient_E = [E/w1, E/w2, ..., E/wn] 

• Then change the ith weight by 
Dwi = -a E/wi 

• To compute the derivatives for calculating the 
gradient direction requires an activation function 
that is continuous, differentiable, non-decreasing 
and easily computed 
– can't use the Step function as in LTU's 

– instead use the Sigmoid function 

• The problem with LTU: step function is 

discontinuous, so cannot do gradient descent 

• Solution:  Replace with Sigmoid function (aka 

Logistic function):  

gw(x) = 1 / (1 + exp(-wx)) 

• Note:  g(x)= g(x) (1 - g(x)) 

 

 

 

Sigmoid Activation Function 

 

g(x)   

 

First Derivative of Sigmoid Function Updating the Weights 

k 

j 

i 

output unit 

hidden unit 

input unit 

Ok 

aj 

ai 

Tk 
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Updating Weights for 
2-Layer Neural Network 

• For weights between hidden and output units, 
generalized PLR for sigmoid activation is 

 Dwj,k  = -a E/wj,k 

          = -a -aj (Tk - Ok) g'(ink) 

          = a aj (Tk - Ok) Ok (1 - Ok) 

     =  a aj Dk 
 wj,k   weight on link from hidden unit j to output unit k 

 a       learning rate parameter 

 aj      activation (i.e. output) of hidden unit j 

 Tk     teacher output for output unit k 

 Ok     actual output of output unit k 

 g'      derivative of sigmoid activation function, which is g' = g(1 - g) 

Updating Weights for 
2-Layer Neural Network 

• For weights between input and hidden units: 
– we don't have teacher-supplied correct output values 

– infer the error at these units by "back-propagating" 

– error at an output units is "distributed" back to each 
of the hidden units in proportion to the weight of the 
connection between them 

– total error is distributed to all of the hidden units that 
contributed to that error 

• Each hidden unit accumulates some error from 
each of the output units to which it is connected 

Updating Weights for 
2-Layer Neural Network 

• For weights between inputs and hidden units: 
 Dwi,j  = -a E/wi,j 

           = -a -ai g'(inj)  wj,k (Tk - Ok) g'(ink) 

           = a ai aj (1 - aj)  wj,k (Tk - Ok) Ok (1 - Ok) 

               = a ai  Dj    where Dj = g'(inj)  wj,k Dk 
 wi,j   weight on link from input i to hidden unit j 
 wj,k   weight on link from hidden unit j to output unit k 

 a      learning rate parameter 
 aj      activation (i.e. output) of hidden unit j 
 Tk     teacher output for output unit k 

 Ok    actual output of output unit k 
 ai      input value i 
 g'     derivative of sigmoid activation function, which is g' = g(1-g) 

Back-Propagation Algorithm 

1. Initialize the weights in the network (usually random values)  

2. Repeat until all examples correctly classified or other stopping criterion 

 foreach example e in training set do  

a.  forward pass: O = neural_net_output(network, e) 

b.  T  = desired output, i.e., Target or Teacher's output 

c.  calculate error (T - O) at the output units 

d.  backward pass: 

i. compute Dwj,k = a aj Dk  =  a aj (Tk - Ok) Ok (1 - Ok) 

ii. compute Dwi,j  = a ai  Dj   =  a ai aj(1-aj)  wj,k (Tk - Ok) Ok  (1- Ok) 

e.  update_weights(network,  Dwj,k,  Dwi,j ) 
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Learning Hidden Layer Representation 

Can this be learned? 

Slide by Guoping Qiu 

Learning Hidden Layer Representation 

Training 

The evolving sum of squared errors for each of the eight 

output units  

Slide by Guoping Qiu 

# weight updates 

Learning Hidden Layer Representation 

Learned hidden layer representation 

Slide by Guoping Qiu 

Multi-Layer Feedforward Networks 

• Every Boolean function can be represented by 
a network with 1 hidden layer, but it might 
require an exponential number of hidden 
units 

• Back-propagation algorithm performs gradient 
descent over “weight space” of entire network 

• Will in general find a local, not global, error 
minimum 

• Training can take thousands of epochs 
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Other Issues 

• How should a network's 
performance be estimated? 

  

• How should the learning rate 
parameter, a, be set? 

 Use a tuning set to train using several candidate 
values for a, and then select the value that gives 
the lowest error on the test set 

Other Issues 

• How many hidden layers should be in 
the network? 
–  usually just one hidden layer is used 
 

• How many hidden units should be in a 
layer? 
– too few and the concept can't be learn 
– too many: 

• examples just memorized 
• overfitting, poor generalization 

– Use a tuning set or cross-validation to 
determine experimentally the number of units 
that minimizes error 

Setting Parameters 

• some learning algorithms require setting 
learning parameters 

• they must be set without looking at the test 
data 

• one approach: use a tuning set 

Using Data 

• Training set is used to learn a “model” (e.g., a 
neural network’s weights) 

• Tuning set is used to judge and select 
parameters (e.g., learning rate and number of 
hidden units) 

• Testing set is used to judge in a fair manner 
the model’s accuracy 

• All 3 datasets should be disjoint 
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Setting Parameters 

Use a Tuning set for setting parameters: 
1. Partition training examples into TRAIN, TUNE, and TEST 

sets 

2. For each candidate parameter value, learn a neural 
network using the TRAIN set 

3. Use TUNE set to evaluate error rates and determine which 
parameter value is best 

4. Compute new neural network using selected parameter 
values and both TRAIN and TUNE sets 

5. Use TEST set to compute performance accuracy 

Other Issues 

• How many examples should be in the 
training set? 
– the larger the better, but training is longer 
 

To obtain 1 – e correct classification on testing set: 
– training set should be of size approximately n/e: 

• n is the number of weights in the network 
• e is test set error fraction between 0 and 1 

– train to classify 1 - e/2 of the training set correctly 
e.g., if n = 80 and e = 0.1 (i.e. 10% error on test set) 
– training set of size is 800 
– train until 95% correct classification 
– should produce ~90% correct classification on test set 

Other Issues 

• When should training stop? 
– too soon and the concept isn't learned 

– too late: 

• overfitting, poor generalization 

• error rate will go up on the testing set 

• Train the network until the error rate on a 
tuning set begins increasing rather than 
training until the error (i.e., SSE) is 
minimized 

Tuning Sets 

training set 

Training time (epochs) 

E
rr

o
r 

ra
te

 

test set 
tuning set 
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Summary 

• Advantages 
– parallel processing architecture 
– robust with respect to node failure 
– fine-grained, distributed representation of 

knowledge 
– robust with respect to noisy data 
– incremental algorithm (i.e., learn as you go) 
– simple computations 
– empirically shown to work well for many problem 

domains 

Summary 

• Disadvantages 
– slow training (i.e., takes many epochs) 

– poor semantic interpretability 

– ad hoc network topologies (i.e., layouts) 

– hard to debug 

– may converge to local, not global, minimum of error  

– hard to describe a problem in terms of features with 
numerical values  

– not known how to model higher-level cognitive 
mechanisms with NN model 

Applications 

• NETtalk (Sejnowski & Rosenberg, 1987) 
learns to say text by mapping character strings to 

phonemes 

• Neurogammon (Tesauro & Sejnowski, 1989)  
learns to play backgammon 

• Speech recognition (Waibel, 1989)  
learns to convert spoken words to text 

• Character recognition (Le Cun et al., 1989)  
learns to convert page image to text 

Application:  Autonomous Driving 

• ALVINN  (Pomerleau, 1988)  
learns to control vehicle steering to stay in the 
middle of its lane 

• Topology:  2-layer, feed-forward network 
using back-propagation learning 

– Input layer:  480  512 image @ 15 frames per second 

• color image is preprocessed to obtain a 30  32 image 

• each pixel is one byte, an integer from 0 to 255 
corresponding to the brightness of the image 

• networks has 960 input units (= 30  32) 
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ALVINN 

[Pomerleau, 1995] 

steering direction 

ALVINN 

• Topology:  Output layer 
– output is one of 30 discrete steering positions 

• output unit 1 means sharp left 
• output unit 30 means sharp right 

– target output is a set of 30 values 

• Gaussian distribution with a variance of 10 centered 

on the desired steering direction:  Oi = e[-(i-d)
2
/10] 

– actual output for steering determined by 
• compute a least-squares best fit of output units' values 

to a Gaussian distribution with a variance of 10 
• peak of this distribution is taken as the steering direction 

– error for learning is: target output - actual output 

ALVINN 

• Topology:  Hidden layer 

– only 4 hidden units with complete connectivity 
from 

• 960 input units to 4 hidden units 

• 4 hidden units to 30 output units 

ALVINN’s 2-Layer Network 

[Pomerleau, 1995] 
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ALVINN 

• Learning 
– continuously learns on the fly by observing 

• human driver (takes ~5 minutes from random initial weights) 

• itself (do an epoch of training every 2 seconds there after) 

– problem with using real continuous data: 
• there aren't negative examples  

• network may overfit data in recent images (e.g., straight road) 
at the expense of past images (e.g., road with curves) 

– solutions 
• generate negative examples by synthesizing 

views of the road that are incorrect for current steering 

• maintain a buffer of 200 real and synthesized images that 
keeps some images in many different steering directions 

ALVINN 

• Results 

– drove at speeds up to 70 mph 

– drove continuously for distances up to 90 miles 

– drove across the U.S. during different times of the 
day and with different traffic conditions 

– drove on: 

• single lane roads and highways 

• multi-lane highways 

• paved bike paths 

• dirt roads 

ALVINN Demo Application:  Face Detection 
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Canon Powershot 

Face Detection in Most Digital Cameras 

Also, smile and blink detection too in some cameras 

Application:  Face Detection 

NN  

Classifier 

2 Classes: 

Face/ 

Non-Face 

• Input = 20 x 20 pixel window, outputs a value ranging from –1 to +1 
signifying the presence or absence of a face in the region 

• The window is positioned at every location of the image 

• To detect faces larger than 20 x 20 pixel, the image is repeatedly reduced 
in size 

2-Layer Network 

 

Application:  Face Detection 
 

– 2-layer feed-forward neural network 

– Three types of hidden units 

• 4 look at 10 x 10 subregions 

• 16 look at 5 x 5 subregions 

• 6 look at 20 x 5 horizontal stripes of pixels 
 

– Training set 

• 1,050 initial face images. More face examples 
generated from this set by rotation and scaling. 
Desired output:  +1 

• Non-face training samples:  8,000 non-face training 
samples from 146,212,178 subimage regions! 
Desired output:  -1 
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Face Detection Results 

 

Results 

• Notice detection at multiple scales  

Results Face Detection Demos 
(but not using neural nets) 

 

• http://flashfacedetection.com/ 

 

• http://flashfacedetection.com/camdemo2.html 

http://flashfacedetection.com/
http://flashfacedetection.com/camdemo2.html
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Evaluating Performance 

 

How might the performance be evaluated? 

• Predictive accuracy of classifier 

• Speed of learner 

• Speed of classifier 

• Space requirements 

Training Set Error 

• For each example in the training set, use the 
classifier to see what class it predicts 

For what number of examples does the classifier’s 
prediction disagree with the teacher value in the 
database? 

• This quantity is called the training set error. 
The smaller the better. 

• But why are we doing learning anyway? 

– More important to assess how well the classifier 
predicts output for future data 

Test Set Error 

• Suppose we are forward thinking 

• We hide some data away when we learn the 
classifier 

• But once learned, we see how well the 
classifier predicts that data 

• This is a good simulation of what happens 
when we try to predict future data 

• Called the Test Set Error 

Evaluating Classifiers 

• During training 

– Train a classifier from a training set (x1,y1), (x2,y2), …, (xn,yn) 

• During testing 

– For new test data, xn+1, …, xn+m, your classifier generates 
predicted labels y’n+1, …, y’n+m

 

• Test set accuracy: 

– You need to know the true test labels:  yn+1, …, yn+m  

 

– Test set accuracy: 

 

– Test set error rate = 1 – acc 





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mn

ni
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Evaluating Performance Accuracy 

• Use separate test examples to estimate 
accuracy 

 

1. randomly partition training examples into: 

TRAIN set (~70% of all training examples)  

TEST  set (~30% of all training examples)  

2. generate decision tree using the TRAIN set 

3. use TEST set to evaluate accuracy 
accuracy = #correct / #total 

A Regression Problem 

x 

y 

y = f(x) + noise 

Can we learn f from this 

data? 

Which is Best? 

x 

y 

x 

y 

Linear f Quadratic f Piecewise Linear f 

Fits the 
data best, 
including 
the noise! 

What we really want:  Fit that will 

give the best results on future data 

(drawn from the same distribution) 

The Overfitting Problem 
Example:  Predicting US Population 

• We have some 
training data 
(n=11) 

• What will the 
population be 
in 2010? 

         x=Year      y=Million 
         1900         75.99 
         1910         91.97 
         1920       105.71 
         1930       123.2 
         1940       131.67 
         1950       150.7 
         1960       179.32 
         1970       203.21 
         1980       226.51 
         1990       249.63 
         2000       281.42 
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Regression: Polynomial Fit 

• The degree d (complexity of the model) is 
important 

 

• Fit (= learn) coefficients cd, … c0 to minimize 
Mean Squared Error (MSE) on training data 
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1

1)( cxcxcxcxf d

d

d
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Overfitting 

• As d increases, MSE on training data improves, 
but prediction outside training data worsens 

degree=0 MSE=4181.451643 
degree=1 MSE=79.600506 
degree=2 MSE=9.346899 
degree=3 MSE=9.289570 
degree=4 MSE=7.420147 
degree=5 MSE=5.310130 
degree=6 MSE=2.493168 
degree=7 MSE=2.278311 
degree=8 MSE=1.257978 
degree=9 MSE=0.001433 
degree=10 MSE=0.000000 

2010 pop:  308.75 

Experimental Evaluation of Performance 

Test Set Method 

1. Randomly choose say 30% of the data to be the 
test set, and the remaining 70% is the training 
set 

2. Build classifier using the training set 

3. Estimate future performance using the test set 

Test Set Method 

x 

y 

1. Randomly choose 

30% of the data to be in 

a test set 

2. The remainder is a 

training set 



23 

Test Set Method 

x 

y 

1. Randomly choose 

30% of the data to be in 

a test set 

2. The remainder is a 

training set 

3. Perform your 

regression on the 

training set 

(Linear regression example) 

Test Set Method 

x 

y 

1. Randomly choose 

30% of the data to be in 

a test set 

2. The remainder is a 

training set 

3. Perform your 

regression on the 

training set 

4. Estimate your future 

performance with the 

test set (Linear regression example) 

Mean Squared Error = 2.4 

Test Set Method 

x 

y 

1. Randomly choose 

30% of the data to be in 

a test set 

2. The remainder is a 

training set 

3. Perform your 

regression on the 

training set 

4. Estimate your future 

performance with the 

test set (Quadratic regression example) 

Mean Squared Error = 0.9 

Test Set Method 

x 

y 

1. Randomly choose 

30% of the data to be in 

a test set 

2. The remainder is a 

training set 

3. Perform your 

regression on the 

training set 

4. Estimate your future 

performance with the 

test set (Join the dots example) 

Mean Squared Error = 2.2 



24 

Test Set Method 

• Strengths 

– Very simple 

• Weaknesses 

– Wastes data because test set is not used to 
construct the best classifier 

– If we don’t have much data, our test set might be 
lucky or unlucky in terms of what’s in it, making 
the results on the test set a “high variance” 
estimator of the real performance 

LOOCV (Leave-one-out Cross Validation) 

x 

y 

For k=1 to R 

1. Let (xk,yk) be the kth 

record 

LOOCV (Leave-one-out Cross Validation) 

x 

y 

For k=1 to R 

1. Let (xk,yk) be the kth 

record 

2. Temporarily remove 

(xk,yk) from the dataset 

LOOCV (Leave-one-out Cross Validation) 

x 

y 

For k=1 to R 

1. Let (xk,yk) be the kth 

record 

2. Temporarily remove 

(xk,yk) from the dataset 

3. Train on the remaining R-

1 datapoints 



25 

LOOCV (Leave-one-out Cross Validation) 

For k=1 to R 

1. Let (xk,yk) be the kth 

record 

2. Temporarily remove 

(xk,yk) from the dataset 

3. Train on the remaining R-

1 datapoints 

4. Note your error (xk,yk)  

x 

y 

LOOCV (Leave-one-out Cross Validation) 

For k=1 to R 

1. Let (xk,yk) be the kth 

record 

2. Temporarily remove 

(xk,yk) from the dataset 

3. Train on the remaining R-

1 datapoints 

4. Note your error (xk,yk)  

When you’ve done all points, 

report the mean error. 
x 

y 

LOOCV (Leave-one-out Cross Validation) 
For k=1 to R 

1. Let (xk,yk) be 

the kth 

record 

2. Temporarily 
remove 

(xk,yk) 

from the 

dataset 

3. Train on the 
remaining 

R-1 

datapoints 

4. Note your 

error 
(xk,yk)  

When you’ve 

done all points, 

report the mean 

error. 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

MSELOOC

V = 2.12 

LOOCV for Quadratic Regression 
For k=1 to R 

1. Let (xk,yk) be 

the kth 

record 

2. Temporarily 
remove 

(xk,yk) 

from the 

dataset 

3. Train on the 
remaining 

R-1 

datapoints 

4. Note your 

error 
(xk,yk)  

When you’ve 

done all points, 

report the mean 

error. 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

MSELOOC

V=0.962 
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LOOCV for Join The Dots 
For k=1 to R 

1. Let (xk,yk) be 

the kth 

record 

2. Temporarily 
remove 

(xk,yk) 

from the 

dataset 

3. Train on the 
remaining 

R-1 

datapoints 

4. Note your 

error 
(xk,yk)  

When you’ve 

done all points, 

report the mean 

error. 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

MSELOOC

V=3.33 

Experimental Evaluation of Performance 

• Leave-One-Out Cross Validation 

For i = 1 to N do  //  N = number of examples 

1. Let (xi, yi) be the ith example 

2. Remove (xi, yi) from the dataset 

3. Train on the remaining N-1 examples 

4. Compute error on ith example 

 

• Accuracy = mean accuracy on all N runs 

• Doesn’t waste data but is expensive 

• Use when you have a small dataset 

Experimental Evaluation of Performance 
 

• Cross-Validation Method 
 

1. divide all examples into K disjoint subsets 
E = E1, E2, ..., EK 

2. for each i = 1, ..., K 
• let TEST set = Ei and TRAIN set = E - Ei 

• compute decision tree using TRAIN set  

• determine accuracy PAi using TEST set  

3. compute K-fold cross-validation estimate of 
performance = mean error =  

 (PA1 + PA2 + ... + PAK)/K  

Often use 
K = 3 or 10 

k-fold Cross 
Validation 

x 

y 

Randomly break the dataset into k 

partitions (in our example we’ll have 

k=3 partitions colored Red, Green 

and Blue) 
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k-fold Cross 
Validation 

x 

y 

Randomly break the dataset into k 

partitions (in our example we’ll have 

k=3 partitions colored Red, Green 

and Blue) 

For the red partition: Train on all the 

points not in the red partition. 

Find the test-set sum of errors on 

the red points. 

k-fold Cross 
Validation 

x 

y 

Randomly break the dataset into k 

partitions (in our example we’ll have 

k=3 partitions colored Red, Green 

and Blue) 

For the red partition: Train on all the 

points not in the red partition. 

Find the test-set sum of errors on 

the red points. 

For the green partition: Train on all 

the points not in the green 

partition. Find the test-set sum of 

errors on the green points. 

k-fold Cross 
Validation 

x 

y 

Randomly break the dataset into k 

partitions (in our example we’ll have 

k=3 partitions colored Red, Green 

and Blue) 

For the red partition: Train on all the 

points not in the red partition. 

Find the test-set sum of errors on 

the red points. 

For the green partition: Train on all 

the points not in the green 

partition. Find the test-set sum of 

errors on the green points. 

For the blue partition: Train on all 

the points not in the blue 

partition. Find the test-set sum of 

errors on the blue points. 

k-fold Cross 
Validation 

x 

y 

Randomly break the dataset into k 

partitions (in our example we’ll have 

k=3 partitions colored Red, Green 

and Blue) 

For the red partition: Train on all the 

points not in the red partition. 

Find the test-set sum of errors on 

the red points. 

For the green partition: Train on all 

the points not in the green 

partition. Find the test-set sum of 

errors on the green points. 

For the blue partition: Train on all 

the points not in the blue 

partition. Find the test-set sum of 

errors on the blue points. 

Then report the mean error Linear Regression 

MSE3FOLD=2.05 
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k-fold Cross 
Validation 

x 

y 

Randomly break the dataset into k 

partitions (in our example we’ll have 

k=3 partitions colored Red, Green 

and Blue) 

For the red partition: Train on all the 

points not in the red partition. 

Find the test-set sum of errors on 

the red points. 

For the green partition: Train on all 

the points not in the green 

partition. Find the test-set sum of 

errors on the green points. 

For the blue partition: Train on all 

the points not in the blue 

partition. Find the test-set sum of 

errors on the blue points. 

Then report the mean error Quadratic Regression 

MSE3FOLD=1.11 

k-fold Cross 
Validation 

x 

y 

Randomly break the dataset into k 

partitions (in our example we’ll have 

k=3 partitions colored Red, Green 

and Blue) 

For the red partition: Train on all the 

points not in the red partition. 

Find the test-set sum of errors on 

the red points. 

For the green partition: Train on all 

the points not in the green 

partition. Find the test-set sum of 

errors on the green points. 

For the blue partition: Train on all 

the points not in the blue 

partition. Find the test-set sum of 

errors on the blue points. 

Then report the mean error Joint-the-dots 

MSE3FOLD=2.93 


