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Propositional Logic 
 

Reading:  Chapter 7.1, 7.3 – 7.5 

[Based on slides from Jerry Zhu, Louis Oliphant and Andrew Moore] 
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Logic 

• If the rules of the world are presented formally, then a 
decision maker can use logical reasoning to make 
rational decisions 

• Several types of logic: 

 Propositional Logic (Boolean logic)‏ 

 First-Order Logic (aka first-order predicate calculus)‏ 

 Non-Monotonic Logic 

 Markov Logic 

• A logic includes: 

 syntax: what is a correctly-formed sentence? 

 semantics: what is the meaning of a sentence? 

 Inference procedure (reasoning, entailment): what 

sentence logically follows given knowledge? 
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Propositional Logic 

• A symbol in PL is a symbolic variable whose value 

must be either True or False, and which stands for a 

natural language statement that could be either true 

or false 

 A = “Smith has chest pain” 

 B = “Smith is depressed” 

 C = “It is raining” 
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P  ((True  R)  Q))  S)   well formed (“wff” or “sentence”) 

P  Q)    S)                not well formed 

 

Propositional Logic Syntax 

Sentence  AtomicSentence | ComplexSentence 

AtomicSentence  True | False | Symbol 

Symbol  P | Q | R | . . . 

ComplexSentence    Sentence 

|  ( Sentence  Sentence )‏ 

| ( Sentence  Sentence )‏ 

| ( Sentence  Sentence )‏ 

| ( Sentence  Sentence )‏ 
BNF (Backus-Naur Form) grammar in propositional logic 
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P  ((True  R)  Q))  S)‏ 

 

Means True

Means‏“Not”

Means‏“Or”‏--‏disjunction

Means‏“And”‏--‏conjunction

Means‏“iff”‏--‏biconditional

Means‏“if-then”‏‏

implication

() control the order of operations

Propositional symbols must be specified

Propositional Logic Syntax 
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Propositional Logic Syntax 

• Precedence (from highest to lowest): 

     

• If the order is clear, you can leave off parentheses 

 

P  True  RQ  S ok 

P  Q  S   not ok 
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Semantics 

• An interpretation is a complete True / False assignment to 
all propositional symbols 

 Example symbols: P means “It is hot”, Q means “It is 

humid”, R means “It is raining” 

 There are 8 interpretations (TTT, ..., FFF)‏ 

• The semantics (meaning) of a sentence is the set of 

interpretations in which the sentence evaluates to True 

• Example:  the semantics of the sentence P  Q is the set of 

6 interpretations:  

 P=True, Q=True, R=True or False 

 P=True, Q=False,  R=True or False 

 P=False, Q=True,  R=True or False 

• A model of a set of sentences is an interpretation in which 

all the sentences are true 
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Evaluating a Sentence under an Interpretation 

• Calculated using the definitions of all the connectives, 
recursively 

 

 

 

 

 

• Pay attention to  

 “5 is even implies 6 is odd” is True! 

 If P is False, regardless of Q, PQ is True 

 No causality needed: “5 is odd implies the Sun is a 

star” is True 
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Understanding “” 

• This is an operator.  Although we call it “implies” or 

“implication,” do not try to understand its semantic 

form from the name.  We could have called it “foo” 

instead and still defined its semantics the same way. 

• A  B “means” A is sufficient but not necessary to 

make B true 

• Example: 

 Let A be “has a cold” and B be “drink water” 

 A  B can be interpreted as “should drink water” 

when “has a cold.” 

 However, you can drink water even when you do 

not have a cold.  Thus A  B is still true when A is 

not true. 
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Example 

P  Q  R  Q 
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Example 

P  Q  R  Q 

P Q R ~P Q^R ~PvQ^R ~PvQ^R->Q
0 0 0 1 0 1 0
0 0 1 1 0 1 0
0 1 0 1 0 1 1
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 1 0 0 0 1
1 1 0 0 0 0 1
1 1 1 0 1 1 1

Satisfiable: a sentence that is true under some interpretations 

 

Deciding satisfiability of a sentence is NP-complete‏ 
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Example 

(P  R  Q)  P  R   Q 
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Example 

(P  R  Q)  P  R   Q 

Unsatisfiable: a sentence that is false under all interpretations 
 
Also called  inconsistent or a contradiction 

P Q R ~Q R^~Q P^R^~Q P^R P^R->Q final
0 0 0 1 0 0 0 1 0
0 0 1 1 1 0 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 1 1 1 1 1 0 0
1 1 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 0
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Example 

(P  Q)   P   Q 
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Example 

(P  Q)   P   Q 

Valid: a sentence that is true under all interpretations 

 

Also called a tautology 

P Q R ~Q P->Q P^~Q (P->Q)vP^~Q
0 0 0 1 1 0 1
0 0 1 1 1 0 1
0 1 0 0 1 0 1
0 1 1 0 1 0 1
1 0 0 1 0 1 1
1 0 1 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 1 0 1
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Knowledge Base (KB) 

• A knowledge base, KB, is a set of sentences.  
Example KB: 

 TomGivingLecture  (TodayIsTuesday  

TodayIsThursday)‏ 

  TomGivingLecture  

• It is equivalent to a single long sentence: the 

conjunction of all sentences 

 ( TomGivingLecture  (TodayIsTuesday  

TodayIsThursday) )   TomGivingLecture 

 

• A model of a KB is an interpretation in which all 

sentences in KB are true  
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Entailment 

• Entailment is the relation of a sentence  logically 
following from other sentences  (e.g., KB) 

 |=  

•  |=  if and only if, in every interpretation in which  is 

true,  is also true; whenever  is true, so is ; all 

models of  and also models of  

• Deduction theorem:  |=  if and only if    is 

valid (always true)‏ 

• Proof by contradiction (refutation, reductio ad 

absurdum):  |=  if and only if    is 

unsatisfiable  

• There are 2n interpretations to check, if KB has n 

symbols 
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All interpretations 

 

 

 

 

 

Entailment 

• Entailment is the relation of a sentence  logically 
following from other sentences  (e.g., the KB) 

 |=  

•  |=  if and only if, in every interpretation in which  

is true,  is also true 

 is true 

 is true 
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Deductive  Inference 

• Let’s say you write an algorithm which, according to 
you, proves whether a sentence  is entailed by  

• The thing your algorithm does is called deductive 
inference 

• We don’t trust your inference algorithm (yet), so we 

write things your algorithm finds as 

 |-  

• It reads “ is derived from  by your algorithm” 

• What properties should your algorithm have? 

 Soundness:  the inference algorithm only derives 

entailed sentences.   That is, if   |-   then   |=  

 Completeness:  all entailment can be inferred.     

That is, if   |=   then   |-  
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Soundness and Completeness 

• Soundness says that any wff that follows deductively 

from a set of axioms, KB, is valid (i.e., true in all 

models) 

• Completeness says that all valid sentences (i.e., 

true in all models of KB), can be proved from KB and 

hence are theorems 
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Method 1:  Inference by Enumeration 

LET:     KB = A  C, B  C       α = A  B 

QUERY:  KB ╞ α ? 

 A  B  C 

false false false 

false false true 

false true false 

false true true 

true false false 

true false true 

true true false 

true true true 

NOTE: The computer doesn't 

know the meaning 

of the proposition symbols 

So, all logically distinct cases 

must be checked to prove that 

a sentence can be derived 

from KB 

Also called  Model Checking or Truth Table Enumeration 
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Inference by Enumeration 

LET:     KB = A  C, B  C       α = A  B 

QUERY:  KB ╞ α ? 

AC B C KB 

false true false 

true false false 

false true false 

true true true 

true true true 

true false false 

true true true 

true true true 

Rows where all of 
sentences in KB 

are true are the 
models of KB 

 A  B  C 

false false false 

false false true 

false true false 

false true true 

true false false 

true false true 

true true false 

true true true 
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Inference by Enumeration 

LET:     KB = A  C, B  C       α = A  B 

QUERY:  KB ╞ α ? 

AC B C KB 

false true false 

true false false 

false true false 

true true true 

true true true 

true false false 

true true true 

true true true 

α is entailed by KB 

if all models of KB 

are models of α, 

i.e., all rows 
where KB is true, 

α is also true 

 A  B  C 

false false false 

false false true 

false true false 

false true true 

true false false 

true false true 

true true false 

true true true 

AB 

false 

false 

true 

true 

true 

true 

true 

true 

YES! 

In other words: 
KB α is valid 

KBα  

 true 

 true 

 true 

 true 

 true 

 true 

 true 

 true 
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Inference by Enumeration 

• Using inference by enumeration to build a complete 

truth table in order to determine if a sentence is 

entailed by KB is a complete inference algorithm for 

Propositional Logic 

• But very slow:  takes exponential time 
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Method 2: Natural Deduction using 
Sound Inference Rules 

Goal:  Define a more efficient algorithm than 
enumeration that uses a set of inference rules 
to incrementally deduce new sentences that are 
true given the initial set of sentences in KB plus 
uses all logical equivalences 
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Logical Equivalences 

You can use these equivalences to derive or modify 
sentences 
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Sound Inference Rules 

• Modus Ponens (Latin: mode that affirms)‏ 

 

 

 

• And-Elimination 

    

 

   

 

Note:  Prove that an inference rule 

is sound by using a truth table 

P Q P PQ 
P  

(PQ) 
Q 

(P  

(PQ)) 

 Q 

T T T T T T T 

T F T F F F T 

F T F T F T T 

F F F T F F T slide 29 29 

Some Sound Inference Rules 

• Implication-Elimination, IE 

(Modus Ponens, MP) 
α  β,  α 

β 

 And-Elimination, AE 

 And-Introduction, AI 

 Or-Introduction, OI 

α1  α2  …  αn 
αi 

α1, α2, … , αn 
α1  α2  …  αn 

αi 
α1  α2  …  αn 

 Double-Negation Elimination, 

DNE 

 α 

α 
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Inference Rules 

• Each inference rule formalizes the idea that “A infers 

B” (A |- B) in terms of “logically follows” (A |= B) 

 

• Doesn’t say anything about deducibility – just says 

for each interpretation that makes A true, that 

interpretation also makes B true 
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Question 

What’s the difference between 

    (logical equivalence) 

|=    (entailment) 

|-     (derived from) 
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Natural Deduction = Constructing a Proof 

• A Proof is a sequence of inference steps that leads 
from  (i.e., KB) to   

• This is a search problem! 

KB:  

1. (P  Q)  R 

2. (S  T)  Q 

3. S 

4. T 

5. P  

 

: 

     R 
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Proof  by  Natural  Deduction 

1. S  Premise (in KB) 

2. T  Premise 

3. S  T Conjunction(1, 2)  (And-Introduction) 

4. (S  T)  Q  Premise 

5. Q  Modus Ponens(3, 4) 

6. P  Premise 

7. P  Q Conjunction(5, 6) 

8. (P  Q)  R  Premise 

9. R  Modus Ponens(7, 8) Last line is query sentence  
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Monotonicity Property 

• Note that natural deduction relies on the 

monotonicity property of Propositional Logic: 

• Deriving a new sentence and adding it to KB does 

NOT affect what can be entailed from the original KB 

• Hence we can incrementally add new true 

sentences that are derived in any order 

• Once something is proved true, it will remain true 
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Method 3:  Resolution 

• Your algorithm can use all the logical equivalences, 
Modus Ponens, And-Elimination to derive new 
sentences 

• Resolution rule: a single inference rule 

 Sound: only derives entailed sentences 

 Complete: can derive any entailed sentence 

• Resolution is only refutation complete:              

if KB |= , then KB    |- False.   

 But the sentences need to be preprocessed into a 

special form   

 But all sentences can be converted into this form 

              

slide 38 

Resolution 

• Take any two clauses where one contains some 
symbol, and the other contains its complement 
(negative)‏ 

P  Q  R   Q  S  T 

• Merge (resolve) them, throw away the symbol and its 

complement 

P  R  S  T 

• If two clauses resolve and there’s no symbol left, you 

have derived the empty clause (False), so  KB |=  

• If no new clauses can be added, KB does not entail  
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Resolution Rule of Inference 

• Show KB |=  by proving that KB   is 

unsatsifiable, i.e., deducing False from KB    

• Resolution Rule of Inference 

 

 

 

• Examples 

 

 

 A

B B,A 

FEDCB

FEA D,CBA





γα

γβ β,α





called‏“unit‏resolution” 
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Resolution Refutation Algorithm 

1. Add negation of query to KB 

2. Pick 2 sentences that haven’t been used before and 

can be used with the  Resolution Rule of inference 

3. If none, halt and answer that the query is NOT 

entailed by KB 

4. Compute resolvent and add it to KB 

5. If False in KB 

 Then halt and answer that the query IS entailed 

by KB 

 Else Goto 2 
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Conjunctive Normal Form (CNF)‏ 

A  B  C)  (B  A)  C  A)‏ 

 

– Replace all  using iff/biconditional elimination 

–        (  )  (  ) 

– Replace all  using implication elimination 

–          

– Move all negations inward using 

– double-negation elimination 

– ()     

- de Morgan's rule 

– (  )       

– (  )       

– Apply distributivity of  over   

–   (  )    (  )  (  )    + 1 more 
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Convert Sentence into CNF 

A  (B  C)        starting sentence 

 

(A  (B  C))  ((B  C)  A )   iff/biconditional elimination 

 

A  B  C)  ((B  C)  A )   implication elimination 

 

A  B  C)  ((B  C)  A )  move negations inward 

 

A  B  C)  (B  A)  C  A) distribute  over  

 

called‏a‏“clause” 
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Resolution Steps 

• Given KB and  (query)  

• Add   to KB, and convert all sentences to CNF 

• Show this leads to False (aka “empty clause”).  Proof 

by contradiction‏ 

• Example KB: 

 A  (B  C)‏ 

 A
 

• Example query: B
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Resolution Preprocessing 

• Add   to KB, and convert to CNF: 

 

a1:  A  B  C 

a2:  B  A 

a3:  C  A 

b:  A
 

c:  B
 

 

• Want to reach goal:  False  (empty clause) 
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Resolution Example 

a1:  A  B  C 

a2:  B  A 

a3:  C  A 

b:  A
 

c:  B
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Resolution Example 

a1:  A  B  C 

a2:  B  A 

a3:  C  A 

b:  A
 

c:  B
 

 

Step 1: resolve a2, c:  A
 

 

Step 2: resolve above and b:  empty 
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Example 

• Given: 

 P  Q 

 P  R 

 Q  R 

 

• Prove:     R 
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Example 

• Given: 

 (P  Q)  Q 

 (P  P)  R 

 (R  S)  (S  Q) 

 

• Prove:     R 
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Example 

• Given: 

 P 

 P 

 

• Prove:   R  
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Efficiency of the Resolution Algorithm 

• Run time can be exponential in the worst case 

 Often much faster 

• Factoring: if a new clause contains duplicates of the 

same symbol, delete the duplicates 

P  R  P  T    P  R  T 

• If a clause contains a symbol and its complement, the 

clause is a tautology and is useless; it can be thrown 

away 

a1: A  B  C)‏ 

a2: (B  A)‏ 

Resolvent of a1 and a2 is:  B  C
 
 B 

Which is valid, so throw it away 
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Method 4:  Chaining with Horn Clauses 

• Resolution is more powerful than we need for many 
practical situations 

• A weaker form:  Horn clauses 

 Disjunction of literals with at most one positive 

R  P  Q  no 

R   P  Q yes 

 

 KB = conjunction of Horn clauses 

 What’s the big deal? 

R   P  Q 

 R  P)  Q 

 ? 
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Horn Clauses 

R   P  Q 

 R  P)  Q 

 (R  P)  Q  Every rule in KB is in this form 

P   (special case, no negative literals): fact 

R   P  (special case, no positive literal): goal clause 

• The big deal: 

 KB easy for humans to read 

 Natural forward chaining and backward chaining 

algorithms; proof easy for humans to read 

 Can decide entailment with Horn clauses in time 

linear with KB size 

• But … 

 Can only ask atomic queries 
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Horn  Clauses 

• Only 1 rule of inference needed 

 

• Generalized Modus Ponens: 

 

P, Q, (P  Q)  R 

           R 
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Forward Chaining 

• “Apply” any rule whose premises are satisfied in the KB 

• Add its conclusion to the KB until query is derived 

KB: 

query:  Q 

                                  

                                 

                                 

                                

                                

                                   

                                  

 

• Forward chaining with Horn clause KB is complete 
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Forward  Chaining 

1. P  Q 

2. L  M  P 

3. B  L  M 

4. A  P  L 
5. A  B  L 

6. A 
7. B 

8. L  GMP(5,6,7) 
9. M  GMP(3,7,8) 
10. P  GMP(2,8,9) 
11. Q  GMP(1,10) 
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Backward Chaining 

• Forward chaining problem: can generate a lot of 
irrelevant conclusions 

 Search forward, start state = KB, goal test = state 

contains query 

• Backward chaining 

 Work backwards from goal to premises 

 Find all implications of the form  

(…)  query 

 Prove all the premises of one of these implications 

 Avoid loops:  check if new subgoal is already on 

the goal stack 

 Avoid repeated work:  check if new subgoal 

1. Has already been proved true, or 

2. Has already failed 
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Backward  Chaining 

1. P  Q 

2. L  M  P 
3. B  L  M 
4. A  P  L 

5. A  B  L 
6. A 

7. B 
8. Q  Goal 
9. P  Subgoal(1,8) 
10. L  M Subgoal(2,9) 
11. L  Subgoal(10) 
12. A  B Subgoal(5,11) 
13. A  True(6) 
14. B  True(7) 
15. L  True(5,13,14) 
16. M  True(14,15) 
17. P  True(15,16) 
18. Q  True(1,17) 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Backward Chaining 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 
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Forward vs. Backward Chaining 

• Forward chaining is data-driven 

 May perform lots of work irrelevant to the goal 

• Backward chaining is goal-driven 

 Appropriate for problem solving 

 Time complexity can be much less than linear in 

size of KB 

• Some form of bi-directional search may be even 

better 
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Problems with Propositional Logic 

• Consider the game “minesweeper” on a 10x10 field 

with only one land mine 

 

 

 

 

 

 

• How do you express the knowledge, with Propositional 

Logic, that the squares adjacent to the land mine will 

display the number 1? 
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Problems with Propositional Logic 

• Consider the game “minesweeper” on a 10x10 field 

with only one land mine 

 

 

 

• How do you express the knowledge, with Propositional 

Logic, that the squares adjacent to the land mine will 

display the number 1? 

• Intuitively with a rule like  

Landmine(x,y)  Number1(Neighbors(x,y))‏ 

 but Propositional Logic cannot do this 
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Problems with Propositional Logic 

• Propositional Logic has to say, e.g. for cell (3,4): 

 Landmine_3_4   Number1_2_3 

 Landmine_3_4   Number1_2_4 

 Landmine_3_4   Number1_2_5 

 Landmine_3_4   Number1_3_3 

 Landmine_3_4   Number1_3_5 

 Landmine_3_4   Number1_4_3 

 Landmine_3_4   Number1_4_4 

 Landmine_3_4   Number1_4_5 

 And similarly for each of Landmine_1_1, 

Landmine_1_2, Landmine_1_3, …, Landmine_10_10 

• Difficult to express large domains concisely 

• Don’t have objects and relations 

• First-Order Logic is a powerful upgrade 
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What You Should Know 

• A lot of terms 

• Use truth tables (inference by enumeration) 

• Natural deduction proofs 

• Conjuctive Normal Form (CNF) 

• Resolution Refutation algorithm and proofs 

• Horn clauses 

• Forward chaining algorithm 

• Backward chaining algorithm 

              


