
slide 1

Propositional Logic

Reading: Chapter 7.1, 7.3 – 7.5

[Based on slides from Jerry Zhu, Louis Oliphant and Andrew Moore]

 slide 3

Logic

• If the rules of the world are presented formally, then a
decision maker can use logical reasoning to make
rational decisions

• Several types of logic:

 Propositional Logic (Boolean logic)‏

 First-Order Logic (aka first-order predicate calculus)‏

 Non-Monotonic Logic

 Markov Logic

• A logic includes:

 syntax: what is a correctly-formed sentence?

 semantics: what is the meaning of a sentence?

 Inference procedure (reasoning, entailment): what

sentence logically follows given knowledge?

slide 4

Propositional Logic

• A symbol in PL is a symbolic variable whose value

must be either True or False, and which stands for a

natural language statement that could be either true

or false

 A = “Smith has chest pain”

 B = “Smith is depressed”

 C = “It is raining”

 slide 5

P  ((True  R)  Q))  S) well formed (“wff” or “sentence”)

P  Q)   S) not well formed

Propositional Logic Syntax

Sentence  AtomicSentence | ComplexSentence

AtomicSentence  True | False | Symbol

Symbol  P | Q | R | . . .

ComplexSentence   Sentence

| (Sentence  Sentence)‏

| (Sentence  Sentence)‏

| (Sentence  Sentence)‏

| (Sentence  Sentence)‏
BNF (Backus-Naur Form) grammar in propositional logic

slide 6

P  ((True  R)  Q))  S)‏

Means True

Means‏“Not”

Means‏“Or”‏--‏disjunction

Means‏“And”‏--‏conjunction

Means‏“iff”‏--‏biconditional

Means‏“if-then”‏‏

implication

() control the order of operations

Propositional symbols must be specified

Propositional Logic Syntax

 slide 7

Propositional Logic Syntax

• Precedence (from highest to lowest):

    

• If the order is clear, you can leave off parentheses

P  True  RQ  S ok

P  Q  S not ok

slide 8

Semantics

• An interpretation is a complete True / False assignment to
all propositional symbols

 Example symbols: P means “It is hot”, Q means “It is

humid”, R means “It is raining”

 There are 8 interpretations (TTT, ..., FFF)‏

• The semantics (meaning) of a sentence is the set of

interpretations in which the sentence evaluates to True

• Example: the semantics of the sentence P  Q is the set of

6 interpretations:

 P=True, Q=True, R=True or False

 P=True, Q=False, R=True or False

 P=False, Q=True, R=True or False

• A model of a set of sentences is an interpretation in which

all the sentences are true

 slide 9

Evaluating a Sentence under an Interpretation

• Calculated using the definitions of all the connectives,
recursively

• Pay attention to 

 “5 is even implies 6 is odd” is True!

 If P is False, regardless of Q, PQ is True

 No causality needed: “5 is odd implies the Sun is a

star” is True

slide 10

Understanding “”

• This is an operator. Although we call it “implies” or

“implication,” do not try to understand its semantic

form from the name. We could have called it “foo”

instead and still defined its semantics the same way.

• A  B “means” A is sufficient but not necessary to

make B true

• Example:

 Let A be “has a cold” and B be “drink water”

 A  B can be interpreted as “should drink water”

when “has a cold.”

 However, you can drink water even when you do

not have a cold. Thus A  B is still true when A is

not true.

 slide 11

Example

P  Q  R  Q

slide 12

Example

P  Q  R  Q

P Q R ~P Q^R ~PvQ^R ~PvQ^R->Q
0 0 0 1 0 1 0
0 0 1 1 0 1 0
0 1 0 1 0 1 1
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 1 0 0 0 1
1 1 0 0 0 0 1
1 1 1 0 1 1 1

Satisfiable: a sentence that is true under some interpretations

Deciding satisfiability of a sentence is NP-complete‏

 slide 13

Example

(P  R  Q)  P  R   Q

slide 14

Example

(P  R  Q)  P  R   Q

Unsatisfiable: a sentence that is false under all interpretations

Also called inconsistent or a contradiction

P Q R ~Q R^~Q P^R^~Q P^R P^R->Q final
0 0 0 1 0 0 0 1 0
0 0 1 1 1 0 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 1 1 1 1 1 0 0
1 1 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 0

 slide 15

Example

(P  Q)  P   Q

slide 16

Example

(P  Q)  P   Q

Valid: a sentence that is true under all interpretations

Also called a tautology

P Q R ~Q P->Q P^~Q (P->Q)vP^~Q
0 0 0 1 1 0 1
0 0 1 1 1 0 1
0 1 0 0 1 0 1
0 1 1 0 1 0 1
1 0 0 1 0 1 1
1 0 1 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 1 0 1

 slide 17

Knowledge Base (KB)

• A knowledge base, KB, is a set of sentences.
Example KB:

 TomGivingLecture  (TodayIsTuesday 

TodayIsThursday)‏

  TomGivingLecture

• It is equivalent to a single long sentence: the

conjunction of all sentences

 (TomGivingLecture  (TodayIsTuesday 

TodayIsThursday))   TomGivingLecture

• A model of a KB is an interpretation in which all

sentences in KB are true

slide 18

Entailment

• Entailment is the relation of a sentence  logically
following from other sentences  (e.g., KB)

 |= 

•  |=  if and only if, in every interpretation in which  is

true,  is also true; whenever  is true, so is ; all

models of  and also models of 

• Deduction theorem:  |=  if and only if    is

valid (always true)‏

• Proof by contradiction (refutation, reductio ad

absurdum):  |=  if and only if    is

unsatisfiable

• There are 2n interpretations to check, if KB has n

symbols

 slide 19

All interpretations

Entailment

• Entailment is the relation of a sentence  logically
following from other sentences  (e.g., the KB)

 |= 

•  |=  if and only if, in every interpretation in which 

is true,  is also true

 is true

 is true

slide 20

Deductive Inference

• Let’s say you write an algorithm which, according to
you, proves whether a sentence  is entailed by 

• The thing your algorithm does is called deductive
inference

• We don’t trust your inference algorithm (yet), so we

write things your algorithm finds as

 |- 

• It reads “ is derived from  by your algorithm”

• What properties should your algorithm have?

 Soundness: the inference algorithm only derives

entailed sentences. That is, if  |-  then  |= 

 Completeness: all entailment can be inferred.

That is, if  |=  then  |- 

 slide 21

Soundness and Completeness

• Soundness says that any wff that follows deductively

from a set of axioms, KB, is valid (i.e., true in all

models)

• Completeness says that all valid sentences (i.e.,

true in all models of KB), can be proved from KB and

hence are theorems

slide 22 22

Method 1: Inference by Enumeration

LET: KB = A  C, B  C α = A  B

QUERY: KB ╞ α ?

 A B C

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

NOTE: The computer doesn't

know the meaning

of the proposition symbols

So, all logically distinct cases

must be checked to prove that

a sentence can be derived

from KB

Also called Model Checking or Truth Table Enumeration

 slide 23 23

Inference by Enumeration

LET: KB = A  C, B  C α = A  B

QUERY: KB ╞ α ?

AC B C KB

false true false

true false false

false true false

true true true

true true true

true false false

true true true

true true true

Rows where all of
sentences in KB

are true are the
models of KB

 A B C

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

slide 24 24

Inference by Enumeration

LET: KB = A  C, B  C α = A  B

QUERY: KB ╞ α ?

AC B C KB

false true false

true false false

false true false

true true true

true true true

true false false

true true true

true true true

α is entailed by KB

if all models of KB

are models of α,

i.e., all rows
where KB is true,

α is also true

 A B C

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

AB

false

false

true

true

true

true

true

true

YES!

In other words:
KB α is valid

KBα

 true

 true

 true

 true

 true

 true

 true

 true

 slide 25

Inference by Enumeration

• Using inference by enumeration to build a complete

truth table in order to determine if a sentence is

entailed by KB is a complete inference algorithm for

Propositional Logic

• But very slow: takes exponential time

slide 26

Method 2: Natural Deduction using
Sound Inference Rules

Goal: Define a more efficient algorithm than
enumeration that uses a set of inference rules
to incrementally deduce new sentences that are
true given the initial set of sentences in KB plus
uses all logical equivalences

 slide 27

Logical Equivalences

You can use these equivalences to derive or modify
sentences

slide 28

Sound Inference Rules

• Modus Ponens (Latin: mode that affirms)‏

• And-Elimination

   



  



Note: Prove that an inference rule

is sound by using a truth table

P Q P PQ
P 

(PQ)
Q

(P 

(PQ))

 Q

T T T T T T T

T F T F F F T

F T F T F T T

F F F T F F T slide 29 29

Some Sound Inference Rules

• Implication-Elimination, IE

(Modus Ponens, MP)
α  β, α

β

 And-Elimination, AE

 And-Introduction, AI

 Or-Introduction, OI

α1  α2  …  αn
αi

α1, α2, … , αn
α1  α2  …  αn

αi
α1  α2  …  αn

 Double-Negation Elimination,

DNE

 α

α

slide 30

Inference Rules

• Each inference rule formalizes the idea that “A infers

B” (A |- B) in terms of “logically follows” (A |= B)

• Doesn’t say anything about deducibility – just says

for each interpretation that makes A true, that

interpretation also makes B true

 slide 31

Question

What’s the difference between

 (logical equivalence)

|= (entailment)

|- (derived from)

slide 32

Natural Deduction = Constructing a Proof

• A Proof is a sequence of inference steps that leads
from  (i.e., KB) to 

• This is a search problem!

KB:

1. (P  Q)  R

2. (S  T)  Q

3. S

4. T

5. P

:

 R

 slide 33

Proof by Natural Deduction

1. S Premise (in KB)

2. T Premise

3. S  T Conjunction(1, 2) (And-Introduction)

4. (S  T)  Q Premise

5. Q Modus Ponens(3, 4)

6. P Premise

7. P  Q Conjunction(5, 6)

8. (P  Q)  R Premise

9. R Modus Ponens(7, 8) Last line is query sentence 

slide 34

Monotonicity Property

• Note that natural deduction relies on the

monotonicity property of Propositional Logic:

• Deriving a new sentence and adding it to KB does

NOT affect what can be entailed from the original KB

• Hence we can incrementally add new true

sentences that are derived in any order

• Once something is proved true, it will remain true

 slide 37

Method 3: Resolution

• Your algorithm can use all the logical equivalences,
Modus Ponens, And-Elimination to derive new
sentences

• Resolution rule: a single inference rule

 Sound: only derives entailed sentences

 Complete: can derive any entailed sentence

• Resolution is only refutation complete:

if KB |= , then KB    |- False.

 But the sentences need to be preprocessed into a

special form

 But all sentences can be converted into this form

slide 38

Resolution

• Take any two clauses where one contains some
symbol, and the other contains its complement
(negative)‏

P  Q  R Q  S  T

• Merge (resolve) them, throw away the symbol and its

complement

P  R  S  T

• If two clauses resolve and there’s no symbol left, you

have derived the empty clause (False), so KB |= 

• If no new clauses can be added, KB does not entail 

 slide 39

Resolution Rule of Inference

• Show KB |=  by proving that KB   is

unsatsifiable, i.e., deducing False from KB  

• Resolution Rule of Inference

• Examples

 A

B B,A 

FEDCB

FEA D,CBA





γα

γβ β,α





called‏“unit‏resolution”

slide 40

Resolution Refutation Algorithm

1. Add negation of query to KB

2. Pick 2 sentences that haven’t been used before and

can be used with the Resolution Rule of inference

3. If none, halt and answer that the query is NOT

entailed by KB

4. Compute resolvent and add it to KB

5. If False in KB

 Then halt and answer that the query IS entailed

by KB

 Else Goto 2

 slide 41

Conjunctive Normal Form (CNF)‏

A  B  C)  (B  A)  C  A)‏

– Replace all  using iff/biconditional elimination

–     (  )  (  )

– Replace all  using implication elimination

–       

– Move all negations inward using

– double-negation elimination

– ()  

- de Morgan's rule

– (  )    

– (  )    

– Apply distributivity of  over 

–   (  )  (  )  (  ) + 1 more

slide 42

Convert Sentence into CNF

A  (B  C) starting sentence

(A  (B  C))  ((B  C)  A) iff/biconditional elimination

A  B  C)  ((B  C)  A) implication elimination

A  B  C)  ((B  C)  A) move negations inward

A  B  C)  (B  A)  C  A) distribute  over 

called‏a‏“clause”

 slide 43

Resolution Steps

• Given KB and  (query)

• Add   to KB, and convert all sentences to CNF

• Show this leads to False (aka “empty clause”). Proof

by contradiction‏

• Example KB:

 A  (B  C)‏

 A

• Example query: B

slide 44

Resolution Preprocessing

• Add   to KB, and convert to CNF:

a1: A  B  C

a2: B  A

a3: C  A

b: A

c: B

• Want to reach goal: False (empty clause)

 slide 45

Resolution Example

a1: A  B  C

a2: B  A

a3: C  A

b: A

c: B

slide 46

Resolution Example

a1: A  B  C

a2: B  A

a3: C  A

b: A

c: B

Step 1: resolve a2, c: A

Step 2: resolve above and b: empty

 slide 47

Example

• Given:

 P  Q

 P  R

 Q  R

• Prove: R

slide 48

Example

• Given:

 (P  Q)  Q

 (P  P)  R

 (R  S)  (S  Q)

• Prove: R

 slide 49

Example

• Given:

 P

 P

• Prove: R

slide 50

Efficiency of the Resolution Algorithm

• Run time can be exponential in the worst case

 Often much faster

• Factoring: if a new clause contains duplicates of the

same symbol, delete the duplicates

P  R  P  T  P  R  T

• If a clause contains a symbol and its complement, the

clause is a tautology and is useless; it can be thrown

away

a1: A  B  C)‏

a2: (B  A)‏

Resolvent of a1 and a2 is: B  C

 B

Which is valid, so throw it away

 slide 51

Method 4: Chaining with Horn Clauses

• Resolution is more powerful than we need for many
practical situations

• A weaker form: Horn clauses

 Disjunction of literals with at most one positive

R  P  Q no

R   P  Q yes

 KB = conjunction of Horn clauses

 What’s the big deal?

R   P  Q

 R  P)  Q

 ?

slide 52

Horn Clauses

R   P  Q

 R  P)  Q

 (R  P)  Q Every rule in KB is in this form

P (special case, no negative literals): fact

R   P (special case, no positive literal): goal clause

• The big deal:

 KB easy for humans to read

 Natural forward chaining and backward chaining

algorithms; proof easy for humans to read

 Can decide entailment with Horn clauses in time

linear with KB size

• But …

 Can only ask atomic queries

 slide 53

Horn Clauses

• Only 1 rule of inference needed

• Generalized Modus Ponens:

P, Q, (P  Q)  R

 R

slide 54

Forward Chaining

• “Apply” any rule whose premises are satisfied in the KB

• Add its conclusion to the KB until query is derived

KB:

query: Q

• Forward chaining with Horn clause KB is complete

 slide 55

Forward Chaining

1. P  Q

2. L  M  P

3. B  L  M

4. A  P  L
5. A  B  L

6. A
7. B

8. L GMP(5,6,7)
9. M GMP(3,7,8)
10. P GMP(2,8,9)
11. Q GMP(1,10)

slide 65

Backward Chaining

• Forward chaining problem: can generate a lot of
irrelevant conclusions

 Search forward, start state = KB, goal test = state

contains query

• Backward chaining

 Work backwards from goal to premises

 Find all implications of the form

(…)  query

 Prove all the premises of one of these implications

 Avoid loops: check if new subgoal is already on

the goal stack

 Avoid repeated work: check if new subgoal

1. Has already been proved true, or

2. Has already failed
 slide 66

Backward Chaining

1. P  Q

2. L  M  P
3. B  L  M
4. A  P  L

5. A  B  L
6. A

7. B
8. Q Goal
9. P Subgoal(1,8)
10. L  M Subgoal(2,9)
11. L Subgoal(10)
12. A  B Subgoal(5,11)
13. A True(6)
14. B True(7)
15. L True(5,13,14)
16. M True(14,15)
17. P True(15,16)
18. Q True(1,17)

slide 67

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

 slide 68

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

slide 69

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

 slide 70

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

slide 71

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

 slide 72

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

slide 73

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

 slide 74

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

slide 75

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

 slide 76

Backward Chaining

P  Q

L  M  P

B  L  M

A  P  L

A  B  L

A

B

slide 77

Forward vs. Backward Chaining

• Forward chaining is data-driven

 May perform lots of work irrelevant to the goal

• Backward chaining is goal-driven

 Appropriate for problem solving

 Time complexity can be much less than linear in

size of KB

• Some form of bi-directional search may be even

better

 slide 78

Problems with Propositional Logic

• Consider the game “minesweeper” on a 10x10 field

with only one land mine

• How do you express the knowledge, with Propositional

Logic, that the squares adjacent to the land mine will

display the number 1?

slide 79

Problems with Propositional Logic

• Consider the game “minesweeper” on a 10x10 field

with only one land mine

• How do you express the knowledge, with Propositional

Logic, that the squares adjacent to the land mine will

display the number 1?

• Intuitively with a rule like

Landmine(x,y)  Number1(Neighbors(x,y))‏

 but Propositional Logic cannot do this

 slide 80

Problems with Propositional Logic

• Propositional Logic has to say, e.g. for cell (3,4):

 Landmine_3_4  Number1_2_3

 Landmine_3_4  Number1_2_4

 Landmine_3_4  Number1_2_5

 Landmine_3_4  Number1_3_3

 Landmine_3_4  Number1_3_5

 Landmine_3_4  Number1_4_3

 Landmine_3_4  Number1_4_4

 Landmine_3_4  Number1_4_5

 And similarly for each of Landmine_1_1,

Landmine_1_2, Landmine_1_3, …, Landmine_10_10

• Difficult to express large domains concisely

• Don’t have objects and relations

• First-Order Logic is a powerful upgrade

slide 82

What You Should Know

• A lot of terms

• Use truth tables (inference by enumeration)

• Natural deduction proofs

• Conjuctive Normal Form (CNF)

• Resolution Refutation algorithm and proofs

• Horn clauses

• Forward chaining algorithm

• Backward chaining algorithm

