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Reasoning with Uncertainty

I There are two identical-looking envelopes
I one has a red coin (worth $100) and a black coin (worth $0)
I the other has two black coins

I You randomly grab an envelope and randomly pick out one
coin - it’s black

I You’re then given the chance to switch envelopes:
Should you?
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I Random Variables

I Axioms of Probability

I Conditional Probability

I Probabilistic Inference: Bayes Rule
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I Conditional Independence
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Uncertainty

I Randomness
I Is our world random?

I Uncertainty
I Ignorance (practical and theoretical)

I Will my coin flip end in heads?
I Will a pandemic flu strike tomorrow?

I Probability is the language of uncertainty
I A central pillar of modern day A.I.
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Sample Space

I A space of Events that we assign probabilities to

I Events can be binary, multi-valued or continuous

I Events are mutually exclusive

I Examples:
I Coin flip: {head,tail}
I Die roll: {1,2,3,4,5,6}
I English words: a dictionary
I Temperature tomorrow: R+ (kelvin)
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Random Variable

I A variable X,
whose domain is the sample space,

and whose value is somewhat uncertain

I Examples:
I X = coin flip outcome
I X = first word in tomorrow’s headline news
I X = tomorrow’s temperature

I Kind of like x = rand()
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Probability for Discrete Events

I Probability P (X = a) is the fraction of times X takes value a

I Often written as P (a)

I There are other definitions of prob. and philosophical debates,
but we’ll set those aside for now

I Examples:
I P (head) = P (tail) = 0.5 : a fair coin
I P (head) = 0.51, P (tail) = 0.49 : a slightly biased coin
I P (head) = 1, P (tail) = 0 : Jerry’s coin
I P (first word = “the” when flip to random page in R&N) =?

I Demo: bookofodds
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Prob. for Discrete Events (cont.) : Probability Table

I Example: Weather

sunny cloudy rainy

200/365 100/365 65/365

I P (Weather = sunny) = P (sunny) = 200
365

I P (Weather) =
{
200
365 ,

100
365 ,

65
365

}
I (For now, we’ll be satisfied with just using counted frequency

of data to obtain probabilities . . . )
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Prob. for Discrete Events (cont.)

I Probability for more complex events : we’ll call it event A

I P (A = “head or tail”) =? (for a fair coin?)

I P (A = “even number”) =? (for a fair 6-sided die?)

I P (A = “two dice rolls sum to 2”) =?
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Prob. for Discrete Events (cont.)

I Probability for more complex events : we’ll call it event A

I P (A = “head or tail”) = 1
2 + 1

2 = 1 (fair coin)

I P (A = “even number”) = 1
6 + 1

6 + 1
6 = 1

2 (fair 6-sided die)

I P (A = “two dice rolls sum to 2”) = 1
6 ·

1
6 = 1

36
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The Axioms of Probability

I P (A) ∈ [0, 1]

I P (true) = 1, P (false) = 0

I P (A ∨B) = P (A) + P (B)− P (A ∧B)
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The Axioms of Probability (cont.)

I P (A) ∈ [0, 1]

Sample Space

No fraction of A
can be smaller than 0
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The Axioms of Probability (cont.)

I P (A) ∈ [0, 1]

Sample Space

No fraction of A
can be bigger than 1
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The Axioms of Probability (cont.)

I P (true) = 1, P (false) = 0

Sample Space

Valid sentence: e.g. “x = head OR x = tail”
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The Axioms of Probability (cont.)

I P (true) = 1, P (false) = 0

Sample Space

Invalid sentence: e.g. “x = head AND x = tail”
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The Axioms of Probability (cont.)

I P (A ∨B) = P (A) + P (B)− P (A ∧B)

Sample Space

A B
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Some Theorems Derived from Axioms

I P (¬A) = 1− P (A) A

I If A can take k different values a1, . . . , ak:

P (A = a1) + . . .+ P (A = ak) = 1

I If A is a binary event:

P (B) = P (B ∧ ¬A) + P (B ∧A)

I If A can take k values:

P (B) =
∑
i=1..k

P (B ∧A = ai)
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Joint Probability

I Joint Probability:
P (A = a,B = b), shorthand for P (A = a ∧B = b),
is the probability of both A = a and B = b happening

A B

P (A = a): e.g. P (1st word = “San”) = 0.001

P (B = b): e.g. P (2nd word = “Francisco”) = 0.0008

P (A = a,B = b): e.g. P (1st = “San”, 2nd = “Francisco”) = 0.0007
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Joint Probability Table

Weather
sunny cloudy rainy

Temp
hot 150/365 40/365 5/365
cold 50/365 60/365 60/365

I P (Temp = hot,Weather = rainy) = P (hot, rainy) = 5/365

I The full joint probability table between N variables,
each taking k values, has kN entries!
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Marginal Probability

I Marginalize = Sum over “other” variables

I For example, marginalize over/out Temp:

Weather
sunny cloudy rainy

Temp
hot 150/365 40/365 5/365
cold 50/365 60/365 60/365∑

200/365 100/365 65/365

P (Weather) =
{
200
365 ,

100
365 ,

65
365

}
I “Marginalize” comes from old practice of writing sums in margin

20 / 35



Marginal Probability (cont.)

I Marginalize = Sum over “other” variables

I Now marginalize over Weather:

Weather
sunny cloudy rainy

∑
Temp

hot 150/365 40/365 5/365 195/365
cold 50/365 60/365 60/365 170/365

P (Temp) =
{
195
365 ,

170
365

}
I This is nothing but P (B) =

∑
i=1..k P (B ∧A = ai)

if A can take k values
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Conditional Probability

I P (A = a | B = b) : fraction of times A=a within the region
that B=b, or given that B=b

A B

P (A = a): e.g. P (1st word = “San”) = 0.001

P (B = b): e.g. P (2nd word = “Francisco”) = 0.0008

P (A = a | B = b): e.g. P (1st = “San” | 2nd = “Francisco”) = 0.875

Although both “San” and “Fransisco” are rare,

given “Francisco”, “San” quite likely!
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Conditional Probability (cont.)

I In general, conditional probability is defined

P (A = a | B) =
P (A = a,B)

P (B)
=

P (A = a,B)∑
all ai

P (A = ai, B)

I We can have everything conditioned on some other events C,
to get a conditional version of conditional probability:

P (A | B,C) =
P (A,B | C)

P (B | C)

This should be read as P (A | (B,C))
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The Chain Rule

I From the definition of conditional probability we get
the chain rule:

P (A,B) = P (A | B) P (B)

= P (B | A) P (A)

I It works for more than two items too:

P (A1, A2, . . . , An) =

P (A1) P (A2 | A1) P (A3 | A1, A2) . . . P (An | A1, A2, . . . , An−1)
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Reasoning

I How do we use probabilities in A.I.?
I Example:

I You wake up with a headache
I Do you have the flue?
I H = headache, F = flu

I Logical Inference: if H then F . (world often not this clear)

I Statistical Inference: compute probability of a query given
(or conditioned on) evidence, i.e. P (F | H)
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Inference with Bayes’ Rule: Example 1

I Inference: compute the probability of a query given evidence

I H = have headache, F = have flu

I You know that:

P (H) = 0.1 “1 in 10 people has a headache”
P (F ) = 0.01 “1 in 100 people has the flu”
P (H | F ) = 0.9 “90% of people who have flu have headache”

I How likely is it that you have the flu?
I 0.9?
I 0.01?
I . . . ?
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Inference with Bayes’ Rule: Example 1 (cont.)

Bayes Rule
in Essay Towards Solving a Problem in the Doctrine of Chances (1764)

P (F | H) =
P (F,H)

P (H)
=

P (H | F )P (F )

P (H)

Using:

P (H) = 0.1 “1 in 10 people has a headache”
P (F ) = 0.01 “1 in 100 people has the flu”
P (H | F ) = 0.9 “90% of people who have flu have headache”

We find:

P (F |H) =
0.9 ∗ 0.01

0.1
= 0.09

I So there’s a 9% chance you have the flu – much less than 90%

I But it’s higher than P (F ) = 1%, since you have a headache
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Inference with Bayes’ Rule (cont.)

I Bayes Rule

P (A | B) =
P (A,B)

P (B)
=

P (B | A)P (A)

P (B)

I Why make things so complicated?
I Often P (B | A), P (A) and P (B) are easier to get

I Some terms:
I prior P (A): probability before any evidence
I likelihood P (B | A): assuming A, how likely is evidence
I posterior P (A | B): conditional prob. after knowing evidence
I inference: deriving unknown probs. from known ones

I In general, if we have full joint prob. table, we can simply do:

P (A | B) =
P (A,B)

P (B)
more on this later . . .
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Inference with Bayes’ Rule: Example 2

I There are two identical-looking envelopes
I one has a red coin (worth $100) and a black coin (worth $0)
I the other has two black coins

I You randomly grab an envelope and randomly pick out one
coin - it’s black

I You’re then given the chance to switch envelopes:
Should you?
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Inference with Bayes’ Rule: Example 2 (cont.)

I E: envelope, 1=(R,B), 2=(B,B)

I B: event of drawing a black coin

P (E | B) =
P (B | E)P (E)

P (B)

I We want to compare P (E = 1 | B) vs. P (E = 2 | B)

I P (B | E = 1) = 0.5, P (B | E = 2) = 1

I P (E = 1) = P (E = 2) = 0.5

I P (B) = 3
4 (and in fact we don’t need this for the comparison)

I P (E = 1 | B) = 1
3 , P (E = 2 | B) = 2

3

I After seeing a black coin, the posterior probability of the this
envelope being 1 (worth $100) is smaller than it being 2

I You should switch!
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Independence

I Two events A, B are independent if: (the following are equivalent)

I P (A,B) = P (A) · P (B)
I P (A | B) = P (A)
I P (B | A) = P (B)

I For a fair 4-sided die, let
I A = outcome is small {1,2}
I B = outcome is even {2,4}
I Are A and B independent?

I How about for a fair 6-sided die?
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Independence (cont.)

I Independence can be domain knowledge

I If A, B are independent, the joint probability table is simple:
I it has k2 cells, but only 2k − 2 parameters

This is good news – more on this later . . .

I Example: P (burglary) = 0.001, P (earthquake) = 0.002.
I Let’s say they are independent.
I The full joint probability table = ?
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Independence Misused

A famous statistician would never travel by airplane, because he
had studied air travel and estimated that the probability of there
being a bomb on any given flight was one in a million, and he was
not prepared to accept these odds.

One day, a colleague met him at a conference far from home.
”How did you get here, by train?”

”No, I flew”

”What about the possibility of a bomb?”

”Well, I began thinking that if the odds of one bomb are 1:million,
then the odds of two bombs are (1/1,000,000) x (1/1,000,000).
This is a very, very small probability, which I can accept. So now I
bring my own bomb along!”

An old math joke
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Conditional Independence

I Random variables can be dependent,
but still conditionally independent

I Example: Your house has an alarm
I Neighbor John will call when he hears the alarm
I Neighbor Mary will call when she hears the alarm
I Assume John and Mary don’t talk to each other

I Is JohnCall independent of MaryCall?

I No – if John calls, it’s likely that the alarm went off,
which increases the likelihood that Mary will call

I P (MaryCall | JohnCall) 6= P (MaryCall)
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Conditional Independence (cont.)

I But, if we know status of the alarm,
JohnCall won’t affect MaryCall

I P (MaryCall | JohnCall,Alarm) = P (MaryCall | Alarm)

I We say JohnCall and MaryCall are
conditionally independent, given Alarm

I In general A, B are conditionally independent given C if:
I P (A,B | C) = P (A | C) · P (B | C), or
I P (A | B,C) = P (A | C), or
I P (B | A,C) = P (B | C)
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