Basic Probability and Statistics

CS540 Bryan R Gibson University of Wisconsin-Madison

Slides adapted from those used by Prof. Jerry Zhu, CS540-1

Reasoning with Uncertainty

- There are two identical-looking envelopes
 - one has a red coin (worth \$100) and a black coin (worth \$0)
 - the other has two black coins

- You randomly grab an envelope and randomly pick out one coin - it's black
- You're then given the chance to switch envelopes: Should you?

Outline

Probability:

- Sample Space
- Random Variables
- Axioms of Probability
- Conditional Probability
- Probabilistic Inference: Bayes Rule
- Independence
- Conditional Independence

Uncertainty

Randomness

Is our world random?

Uncertainty

- Ignorance (practical and theoretical)
 - Will my coin flip end in heads?
 - Will a pandemic flu strike tomorrow?
- Probability is the language of uncertainty
 - A central pillar of modern day A.I.

Sample Space

- A space of Events that we assign probabilities to
- Events can be binary, multi-valued or continuous
- Events are mutually exclusive
- Examples:
 - Coin flip: {head,tail}
 - ▶ Die roll: {1,2,3,4,5,6}
 - English words: a dictionary
 - Temperature tomorrow: \mathbb{R}^+ (kelvin)

Random Variable

► A variable X,

whose domain is the sample space, and whose value is somewhat uncertain

Examples:

- X = coin flip outcome
- X = first word in tomorrow's headline news
- ► X = tomorrow's temperature
- Kind of like x = rand()

Probability for Discrete Events

- Probability P(X = a) is the fraction of times X takes value a
- Often written as P(a)
- There are other definitions of prob. and philosophical debates, but we'll set those aside for now
- Examples:
 - P(head) = P(tail) = 0.5 : a fair coin
 - ▶ P(head) = 0.51, P(tail) = 0.49 : a slightly biased coin
 - P(head) = 1, P(tail) = 0: Jerry's coin
 - ▶ *P*(first word = "the" when flip to random page in R&N) =?
- Demo: bookofodds

Prob. for Discrete Events (cont.) : Probability Table

Example: Weather

sunny	cloudy	rainy
200/365	100/365	65/365

•
$$P(Weather = sunny) = P(sunny) = \frac{200}{365}$$

•
$$P(\text{Weather}) = \left\{\frac{200}{365}, \frac{100}{365}, \frac{65}{365}\right\}$$

 (For now, we'll be satisfied with just using counted frequency of data to obtain probabilities ...) Prob. for Discrete Events (cont.)

 \blacktriangleright Probability for more complex events : we'll call it event A

▶
$$P(A = "even number") =?$$
 (for a fair 6-sided die?)

Prob. for Discrete Events (cont.)

 \blacktriangleright Probability for more complex events : we'll call it event A

•
$$P(A = \text{``head or tail''}) = \frac{1}{2} + \frac{1}{2} = 1$$
 (fair coin)

▶
$$P(A = \text{"even number"}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$
 (fair 6-sided die)

•
$$P(A = \text{``two dice rolls sum to 2''}) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

The Axioms of Probability

▶ $P(A) \in [0,1]$

$$\blacktriangleright P(true) = 1, \ P(false) = 0$$

 $\blacktriangleright P(A \lor B) = P(A) + P(B) - P(A \land B)$

▶ $P(A) \in [0,1]$

$$\blacktriangleright P(true) = 1, \ P(false) = 0$$

$$\blacktriangleright P(true) = 1, \ P(false) = 0$$

$$\blacktriangleright P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Some Theorems Derived from Axioms

$$\blacktriangleright P(\neg A) = 1 - P(A)$$

• If A can take k different values a_1, \ldots, a_k :

$$P(A = a_1) + \ldots + P(A = a_k) = 1$$

▶ If A is a binary event:

$$P(B) = P(B \land \neg A) + P(B \land A)$$

▶ If A can take k values:

$$P(B) = \sum_{i=1..k} P(B \land A = a_i)$$

Joint Probability

Joint Probability Table

		Weather		
		sunny	cloudy	rainy
Temp	hot	150/365	40/365	5/365
	cold	50/365	60/365	60/365

- ▶ P(Temp = hot, Weather = rainy) = P(hot, rainy) = 5/365
- The full joint probability table between N variables, each taking k values, has k^N entries!

Marginal Probability

- Marginalize = Sum over "other" variables
- ► For example, marginalize over/out Temp:

		Weather			
		sunny	cloudy	rainy	
Temp	hot	150/365	40/365	5/365	
	cold	50/365	60/365	60/365	
	Σ	200/365	100/365	65/365	
$P(Weather) = \left\{ \frac{200}{365}, \frac{100}{365}, \frac{65}{365} \right\}$					

"Marginalize" comes from old practice of writing sums in margin

Marginal Probability (cont.)

- Marginalize = Sum over "other" variables
- Now marginalize over Weather:

			reaction		
		sunny	cloudy	rainy	\sum
Tomp	hot	150/365	40/365	5/365	195/365
Temp	cold	50/365	60/365	60/365	170/365

Westher

 $P(\mathsf{Temp}) = \left\{ \frac{195}{365}, \frac{170}{365} \right\}$

▶ This is nothing but $P(B) = \sum_{i=1..k} P(B \land A = a_i)$ if A can take k values

Conditional Probability

► P(A = a | B = b) : fraction of times A=a within the region that B=b, or given that B=b

P(A = a): e.g. P(1st word = "San") = 0.001P(B = b): e.g. P(2nd word = "Francisco") = 0.0008 $P(A = a \mid B \neq b)$: e.g. $P(1st = "San" \mid 2nd = "Francisco") = 0.875$ Although both "San" and "Fransisco" are rare, given "Francisco", "San" quite likely!

Conditional Probability (cont.)

In general, conditional probability is defined

$$P(A = a \mid B) = \frac{P(A = a, B)}{P(B)} = \frac{P(A = a, B)}{\sum_{\mathsf{all } a_i} P(A = a_i, B)}$$

We can have everything conditioned on some other events C, to get a conditional version of conditional probability:

$$P(A \mid B, C) = \frac{P(A, B \mid C)}{P(B \mid C)}$$
 This should be read as $P(A \mid (B, C))$

The Chain Rule

From the definition of conditional probability we get the chain rule:

$$P(A, B) = P(A \mid B) P(B)$$
$$= P(B \mid A) P(A)$$

It works for more than two items too:

$$P(A_1, A_2, \dots, A_n) =$$

$$P(A_1) \ P(A_2 \mid A_1) \ P(A_3 \mid A_1, A_2) \ \dots \ P(A_n \mid A_1, A_2, \dots, A_{n-1})$$

Reasoning

- How do we use probabilities in A.I.?
- Example:
 - You wake up with a headache
 - Do you have the flue?
 - H = headache, F = flu

- Logical Inference: if H then F. (world often not this clear)
- ► Statistical Inference: compute probability of a query given (or conditioned on) evidence, i.e. P(F | H)

Inference with Bayes' Rule: Example 1

- Inference: compute the probability of a query given evidence
- H = have headache, F = have flu
- You know that:

 $\begin{array}{ll} P(H)=0.1 & \text{``1 in 10 people has a headache''} \\ P(F)=0.01 & \text{``1 in 100 people has the flu''} \\ P(H\mid F)=0.9 & \text{``90\% of people who have flu have headache''} \end{array}$

- How likely is it that you have the flu?
 - ▶ 0.9?
 - ▶ 0.01?
 - ► ...?

Inference with Bayes' Rule: Example 1 (cont.)

Bayes Rule

in Essay Towards Solving a Problem in the Doctrine of Chances (1764)

$$P(F \mid H) = \frac{P(F,H)}{P(H)} = \frac{P(H \mid F)P(F)}{P(H)}$$

Using:

 $\begin{array}{ll} P(H)=0.1 & \text{``1 in 10 people has a headache''} \\ P(F)=0.01 & \text{``1 in 100 people has the flu''} \\ P(H\mid F)=0.9 & \text{``90\% of people who have flu have headache''} \end{array}$

We find:

$$P(F|H) = \frac{0.9 * 0.01}{0.1} = 0.09$$

So there's a 9% chance you have the flu – much less than 90%

▶ But it's higher than P(F) = 1%, since you have a headache

Inference with Bayes' Rule (cont.)

Bayes Rule

$$P(A \mid B) = \frac{P(A, B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$$

Why make things so complicated?

▶ Often $P(B \mid A)$, P(A) and P(B) are easier to get

Some terms:

- prior P(A): probability before any evidence
- ▶ likelihood $P(B \mid A)$: assuming A, how likely is evidence
- ▶ posterior $P(A \mid B)$: conditional prob. after knowing evidence
- inference: deriving unknown probs. from known ones
- In general, if we have full joint prob. table, we can simply do:

$$P(A \mid B) = \frac{P(A, B)}{P(B)} \qquad \text{more on this later } . \, .$$

Inference with Bayes' Rule: Example 2

- There are two identical-looking envelopes
 - one has a red coin (worth \$100) and a black coin (worth \$0)
 - the other has two black coins

- You randomly grab an envelope and randomly pick out one coin - it's black
- You're then given the chance to switch envelopes: Should you?

Inference with Bayes' Rule: Example 2 (cont.)

- ► E: envelope, 1=(R,B), 2=(B,B)
- B: event of drawing a black coin

$$P(E \mid B) = \frac{P(B \mid E)P(E)}{P(B)}$$

▶ We want to compare $P(E = 1 \mid B)$ vs. $P(E = 2 \mid B)$

▶
$$P(B \mid E = 1) = 0.5$$
, $P(B \mid E = 2) = 1$

•
$$P(E=1) = P(E=2) = 0.5$$

▶ $P(B) = \frac{3}{4}$ (and in fact we don't need this for the comparison)

►
$$P(E = 1 \mid B) = \frac{1}{3}, \ P(E = 2 \mid B) = \frac{2}{3}$$

- After seeing a black coin, the posterior probability of the this envelope being 1 (worth \$100) is smaller than it being 2
- You should switch!

Independence

► Two events A, B are independent if: (the following are equivalent)

- $\blacktriangleright P(A,B) = P(A) \cdot P(B)$
- $\blacktriangleright P(A \mid B) = P(A)$
- $\blacktriangleright P(B \mid A) = P(B)$
- For a fair 4-sided die, let
 - A =outcome is small $\{1,2\}$
 - B =outcome is even $\{2,4\}$
 - Are A and B independent?
- How about for a fair 6-sided die?

Independence (cont.)

- Independence can be domain knowledge
- ▶ If A, B are independent, the joint probability table is simple:
 - ▶ it has k^2 cells, but only 2k 2 parameters This is good news – more on this later ...
- Example: P(burglary) = 0.001, P(earthquake) = 0.002.
 - Let's say they are independent.
 - The full joint probability table = ?

Independence Misused

A famous statistician would never travel by airplane, because he had studied air travel and estimated that the probability of there being a bomb on any given flight was one in a million, and he was not prepared to accept these odds.

One day, a colleague met him at a conference far from home. "How did you get here, by train?"

"No, I flew"

"What about the possibility of a bomb?"

"Well, I began thinking that if the odds of one bomb are 1:million, then the odds of two bombs are $(1/1,000,000) \times (1/1,000,000)$. This is a very, very small probability, which I can accept. So now I bring my own bomb along!"

An old math joke

Conditional Independence

- Random variables can be dependent, but still conditionally independent
- Example: Your house has an alarm
 - Neighbor John will call when he hears the alarm
 - Neighbor Mary will call when she hears the alarm
 - Assume John and Mary don't talk to each other
- Is JohnCall independent of MaryCall?
 - No if John calls, it's likely that the alarm went off, which increases the likelihood that Mary will call
 - $P(MaryCall | JohnCall) \neq P(MaryCall)$

Conditional Independence (cont.)

- But, if we know status of the alarm, JohnCall won't affect MaryCall
- ▶ P(MaryCall | JohnCall, Alarm) = P(MaryCall | Alarm)
- We say JohnCall and MaryCall are conditionally independent, given Alarm
- ▶ In general A, B are conditionally independent given C if:

•
$$P(A, B \mid C) = P(A \mid C) \cdot P(B \mid C)$$
, or

•
$$P(A \mid B, C) = P(A \mid C)$$
, or

 $\blacktriangleright P(B \mid A, C) = P(B \mid C)$