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Speech Recognition 

Chapter 15.1 – 15.3, 23.5 

“Markov models and hidden Markov models:  A 

brief tutorial,” E. Fosler-Lussier, 1998 
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Introduction 

 Speech is a dominant form of communication 

between humans and is becoming one for humans 

and machines 

 

 Speech recognition: mapping an acoustic signal 

into a string of words 

 

 Speech understanding: mapping what is said 

to its meaning 
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Applications 

 Medical transcription 

 Vehicle control (e.g., fighter aircraft, helicopters) 

 Game control 

 Intelligent personal assistants (e.g., Siri) 

 Smartphone apps 

 HCI 

 Automatic translation 

 Telephony for the hearing impaired 

 Air traffic control 

 

 

Commercial Software 

 Nuance Dragon NaturallySpeaking 

 Microsoft Windows Speech Recognition 

 CMU’s Sphinx-4 (free) 

 and many more 
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Sphinx-4 Performance 

Test WER (%) RT 
Vocabulary 

Size 

Language 

Model 

TI46 0.168 .02 11 
isolated digits 

recognition 

TIDIGITS 0.549 0.05 11 
continuous 

digits 

AN4 1.192 0.20 79 trigram 

RM1 2.88 0.41 1,000 trigram 

WSJ5K 6.97 0.96 5,000 trigram 

HUB4 18.756 3.95 60,000 trigram 
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WER - Word error rate (%) (lower is better) 

RT - Real Time - Ratio of processing time to audio time - (lower is better) 
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Introduction 

 Human languages are limited to a set of about 40 to 50 

distinct sounds called phones, e.g., 

– [ey] bet 

– [ah] but 

– [oy] boy 

– [em] bottom 

– [en] button 

 Phonemes are equivalence classes of phones that can’t be 

distinguished from each other in a given language 

 These phones are characterized in terms of acoustic 

features, e.g., frequency and amplitude, that can be 

extracted from the sound waves 

International Phonetic Alphabet 
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•  http://www.yorku.ca/earmstro/ipa/consonants.html 

•  http://www.youtube.com/watch?v=Nz44WiTVJww&feature=fvw 

http://www.yorku.ca/earmstro/ipa/consonants.html
http://www.yorku.ca/earmstro/ipa/consonants.html
http://www.youtube.com/watch?v=Nz44WiTVJww&feature=fvw


3 

9 ©2001-02 C. R. Dyer and J. D. Skrentny 

Speech Recognition Architecture 

Goal:  Large vocabulary, continuous speech (words 

not separated), speaker-independent 

Speech 

Waveform 

Spectral 

Feature 

Vectors 

Phone 

Likelihoods 

P(o|q) 

Words 

Feature Extraction 

(Signal Processing) 

Phone Likelihood 

Estimation (Gaussians 

or Neural Networks) 

Decoding (Viterbi 

or Stack Decoder) 

Neural Net 

N-gram Grammar 

HMM Lexicon 

Spectrograph 
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“I can see you” 
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Speech  Recognition  Task 

Signal 

Processor 

Match 

Search 

Analog 

Speech 

Discrete 

Observations 

Word 

Sequence 

o1, o2, … w1, w2, … 
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Introduction 

 Why isn't this easy? 

– just develop a dictionary of pronunciation 

e.g., coat = [k] + [ow] + [t] = [kowt] 

– but “recognize speech”  “wreck a nice beach” 

 Problems: 

– Homophones: different fragments sound the same 
 e.g., “rec” and “wreck” 

– Segmentation: determining breaks between words 
 e.g., “nize speech” and “nice beach” 

– Signal processing problems 
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Hearing Speech with your Eyes 

 McGurk Effect:  An audio-

visual illusion – what you see 

affects what you hear 

 Is he saying “BA BA” or “DA 

DA”? 
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Hearing Speech with your Eyes 

 McGurk Effect:  An audio-

visual illusion – what you see 

affects what you hear 

 Is he saying “BA BA” or “DA 

DA”? 

 Most adults (98%) think they are 

hearing "DA" – a so called "fused 

response" – where the "D" is a 

result of an audio-visual illusion. 

In reality you are hearing the sound 

“BA,” while you are seeing the lip 

movements “GA.” 
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Signal Processing 

 Sound is an analog energy source resulting from 
pressure waves striking an eardrum or microphone 

 An analog-to-digital converter is used to capture the 
speech sounds 
– Sampling: the number of times per second that the 

sound level is measured 
– Quantization: the number of bits of precision for the 

sound level measurements 
 Telephone: 3 KHz (3000 times per second) 
 Speech recognizer: 8 KHz with 8 bits/sample 

so that 1 minute takes about 500K bytes 
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Signal Processing 

 Wave encoding 

– group into ~10 msec frames (larger blocks) that 

are analyzed individually 

– frames overlap to ensure important acoustical 

events at frame boundaries aren't lost 

– frames are analyzed in terms of features 
 amount of energy at various frequencies 

 total energy in a frame 

 differences from prior frame 

– vector quantization encodes signal by mapping 

frames into regions in n-dimensional feature space 
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Input  Sequence 

 Vector Quantization encodes each region as one of, 

say, 256 possible observation values (aka labels):  

C1, C2, …, C256 

 Uses k-Means Clustering for unsupervised learning 

of k = 256 “bins” 

 

 Input is a sequence such as 

C82, C44, C63, C44, C25, …   

=  o1, o2, o3, o4, o5, … 
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Signal Processing 

• Goal is speaker independence so that 

representation of sound is independent of a 

speaker's specific pitch, volume, speed, and other 

aspects such as dialect 

 Speaker identification does the opposite, i.e., the 

specific details are needed to decide who is 

speaking 

 A significant problem is dealing with background 

noise that is often other speakers 
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Speech Recognition Model 

 Bayes’s Rule is used break up the problem into manageable parts: 
 

 P (Words | Signal ) = P (Signal | Words ) P (Words ) 

                             P (Signal ) 
 

P (Words ): Language model 
 likelihood of words being heard 

 e.g., “recognize speech” more likely than “wreck a nice 

beach” 

P (Signal |Words ): Acoustic model 
 likelihood of a signal given word sequence 

 accounts for differences in pronunciation of words 

 e.g., given “nice,” likelihood that it is pronounced [nuys] 

• Signal  = observation sequence 

• Words  = sequence of words 

 

• Best match metric: probability 

 

 

• Bayes’s rule: 

 

 

 

   

                           observation likelihood prior probability 

                               (acoustic model)       (language model) 
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Language Model (LM) 

 P(Words) is the joint probability that a sequence 

of words = w1 w2 ... wn is likely for a specified natural 

language 

 This joint probability can be expressed using the chain rule 

(order reversed): 

 P (w1 w2 … wn ) = P (w1 ) P (w2 |w1 ) P (w3 |w1 w2 ) ... P (wn |w1 ... wn-1 ) 

 Collecting all these probabilities is too complex; it requires 

statistics for mn-1 starting sequences for a sequence of n 

words in a language of m words 

– Simplification is necessary! 
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Language Model (LM) 

 First-order Markov Assumption 

– Probability of a word depends only on the previous word:  

   P(wi | w1 ... wi-1 )  P(wi | wi-1) 

 

 The LM simplifies to 

  P (w1 w2 … wn) = P (w1 ) P (w2 |w1 ) P (w3 |w2 ) ... P (wn |wn-1 ) 

 

– called the bigram model 

– relates consecutive pairs of words 
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Language Model (LM) 

 More context could be used, such as the two words 
before, called the trigram model: 

  P(wi | w1 ... wi-1 )  P(wi | wi-1 wi-2) 

 A weighted sum of unigram, bigram, trigram models 
could also be used in combination: 

 P (w1 w2 … wn ) =  (c1 P (wi ) + c2 P (wi | wi-1 ) + c3  P (wi | wi-1 wi-2 )) 

 Bigram and trigram models account for 
– local context-sensitive effects 

 e.g., "bag of tricks" vs. "bottle of tricks" 

– some local grammar 
 e.g., "we was" vs. "we were" 
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Language Model (LM) 

 Probabilities are obtained by computing statistics of 

the frequency of all possible pairs of words in a large 

training set of word strings: 

– if "the" appears in training data 10,000 times 

and it's followed by "clock" 11 times then 

 P (clock | the) = 11/10000 = .0011 

 These probabilities are stored in 

– a probability table 

– a probabilistic finite state machine 
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Language Model (LM) 

 Probabilistic finite state 

machine: a (almost) fully 

connected directed graph: 

 nodes: all possible words and  

  a START state 

 arcs: labeled with a probability 

– from START to a word is the prior probability 

 of the destination word being the first word 

– from one word to another is the conditional 

probability of the destination word following a 

given source word 

START 

tomato 

attack 

the 

killer 

of 
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Language Model (LM) 

 Probabilistic finite state 

machine: a (almost) fully 

connected directed graph: 

– joint probability is estimated for the 

bigram model by starting at START 

and multiplying the probabilities of the 

arcs that are traversed for a given 

sentence: 

 
– P (“attack of the killer tomato” ) =  

 P (attack ) P (of | attack ) P (the | of ) P (killer | the ) P (tomato | killer ) 

START 

tomato 

attack 

the 

killer 

of 
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Acoustic Model (AM) 

• P(Signal | Words ) is the conditional probability that 

a signal is likely given a sequence of words for a 

particular natural language 

 

 This is divided into two probabilities: 
– P (phones | word ):  probability of a sequence of phones 

given word 

 

– P (signal | phone ):  probability of a sequence of vector 

quantization values from the acoustic signal given phone  
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Finding  Patterns 

 Speech is an example of a more general problem of finding 

patterns over time (or any discrete sequence) 

 Deterministic patterns have a fixed sequence of states, where 

the next state is dependent solely on the previous state 

European 

Stop light 
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 Bayesian Network structure for a sequence of states 

from {Red (R), Red-Amber (RA), Green (G), Amber (A)}.  

Each qi is a random variable indicating the state of the 

stoplight at time i.   

Modeling a Sequence of States 

29 

q2=RA q1=R q3=G q4=A q5=R … 

Markov Property 

 The 1st order Markov assumption called the “Markov 

property:” 

 State qt+1 is conditionally independent of {qt-1, qt-2, … q1} 

given qt.  In other words:  

 

    P(qt+1 = sj | qt = si ) = P(qt+1 = sj | qt = si , qt-1 = sk , …, q1 = sl ) 
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Non-Deterministic  Patterns 

 Assume a discrete set of states, but can’t model the sequence 

deterministically 

 Example:  Predicting the weather 

– States:  Sunny, Cloudy, Rainy 

– Arcs:  Probability, called the state transition probability, of 

moving from one state to another 

 Nth-order Markov assumption:  Today’s weather can be 

predicted solely given knowledge of the last N days’ 

weather 

 1st-order Markov assumption:  Today’s weather can be 

predicted solely given knowledge of yesterday’s weather 
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1st-Order  Markov  Model 

 Markov process is a process that moves from state to 

state probabilistically based on a state transition 

matrix, A, associated with a graph of the possible states 

 Sum of values in each row is 1 

 1st-order Markov model for weather prediction: 

 

0.375 
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Matrix Properties 

 Sum of values in row = 1 because these are the 

probabilities of all outgoing arcs from a state 

 Sum of values in a column does NOT necessarily equal 

1 because this is the sum of probabilities on all 

incoming arcs to a state 

.9 
.15 

.075 

.025 

.25 

.8 

.05 

.25 

.5 34 

1st-Order  Markov  Model 

 To initialize the process, also need the prior 

probabilities of the initial state at time t=0, called π.  
For example, if we know the first day was sunny, then 

π  is a vector = 

 

 

 

 

 For simplicity, we will often assume a single, given 
state is the start state 
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1st-Order  Markov  Model 

 Markov Model M = (A, ) consists of 

 

– Discrete set of states, s1, s2, …, sN 

 

– π vector, where i = P(q1=si) 

 

– State transition matrix, A = {aij} where aij = P(qt+1 = sj | qt = si ) 

 

 The state transition matrix is fixed for all times and describes 

probabilities associated with a (completely-connected) graph of the 

states 
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Example:  Using a Markov Model for 
Weather Prediction 

 = 

Given that today is sunny, what is the probability of the 

next two days being sunny and rainy, respectively? 

A = 
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Weather Prediction Example (cont.) 

• P(q2= Sun, q3=Rain | q1=Sun) = ? 

 

 

 

• P(q3=Rain | q1=Cloudy) = ? 
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Weather Prediction Example (cont.) 

• P(q2= Sun, q3=Rain | q1=Sun) 

= P(q3=Rain | q2= Sun, q1=Sun) P(q2= Sun | q1=Sun) 

= P(q3=Rain | q2= Sun) P(q2= Sun | q1=Sun) 

= (.25)(.5) 

= 0.125 

 

• P(q3=Rain | q1=Cloudy) 

= P(q2= Sun, q3=Rain | q1=Cloudy) 

 + P(q2= Cloudy, q3=Rain | q1=Cloudy) 

 + P(q2= Rain, q3=Rain | q1=Cloudy)  

conditionalized chain rule 

1st order Markov assumption 

(conditional independence) 
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Acoustic Model (AM) 

 P(phones |word ) can be specified as a Markov model, 
which is a way of describing a process that goes 
through a sequence of states, e.g., “tomato” 

 Nodes: correspond to the production of a phone 

– sound slurring (coarticulation), e,g., due to quickly 

pronouncing a word 

– variation in pronunciation of words, e.g., due to dialects 

 Arcs: probability of transitioning from current state to another 

[t] 

[ow] 

[ah] 

[m] 

[ey] 

[aa] 

[t] [ow] 

.6 

.4 

.2 

.8 

1 

1 

1 

1 

1 
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Acoustic Model 

 P(phones |word ) can be specified as a Markov model, 
which is a way of describing a process that goes 
through a sequence of states, e.g., “tomato:” 

 P(phones | word) is a path through the diagram, i.e., 

– P ([towmeytow] | tomato ) = 0.2 * 1 * 0.6 * 1 * 1 = 0.12 

– P ([towmaatow] | tomato ) = 0.2 * 1 * 0.4 * 1 * 1 = 0.08 

– P ([tahmeytow] | tomato ) = 0.8 * 1 * 0.6 * 1 * 1 = 0.48 

– P ([tahmaatow] | tomato ) = 0.8 * 1 * 0.4 * 1 * 1 = 0.32 

[t] 

[ow] 

[ah] 

[m] 

[ey] 

[aa] 

[t] [ow] 

.6 

.4 

.2 

.8 

1 

1 

1 

1 

1 
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 Look at probabilities of various phones as we listen: 
– In corpus “need” always starts with "n" sound 
– What are the possibilities for the next sound? With probability 1, we 

know that next sound will be "iy" 
– What are possibilities for next sound? 11% of the time, “d” sound will 

be omitted  
– Probability of transitioning from "iy" to the "d" sound is .89 

 Circles represent two things—states and observations 

 In real world, state is hidden: For sound [iy], we don't know whether 
we are at second phone of the word “knee” or the second phone of 
the word “need” 

44 

Acoustic Model for “Need” 

45 

Problem 

 We don’t know the sequence of phones, we only 

have the observation sequence o1, o2, o3, … 

 

 How do we relate the given input sequence to 

phone sequences? 
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Hidden  Markov  Models  (HMMs) 

 Sometimes the states we want to predict are not 

directly observable;  only observations available are 

indirect evidence 

 Example:  A CS major does not have direct access to 

the weather, but can only observe the state of a piece 

of corn (dry, dryish, damp, soggy) 

 Example:  In speech recognition we can observe 

features of the changing sound, i.e., o1, o2, …, but 

there is no direct evidence of the words being spoken 
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HMMs 

 Hidden States: The states of real interest, e.g., the 

true weather or the sequence of words spoken;  

represented as a 1st-order Markov model 

 

 Observable Values:  A discrete set of observable 

values;  the number of observable values is not, in 

general, equal to the number of hidden states.  The 

observable values are related somehow to the hidden 

states (i.e., not 1-to-1 correspondence) 
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Hidden  Markov  Model 
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Arcs  and  Probabilities  in  HMMs 

 Arcs connecting hidden states and observable values represent 

the probability of generating an observed value given that the 

Markov process is in a hidden state 

 Observation Likelihood matrix, B, (aka output probability 

distribution) stores probabilities associated with arcs from hidden 

states to observable values, i.e., P(Obs | Hidden) 

 corn 
Encodes semantic  

variations, sensor  

noise, etc.  
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HMM  Summary 

 An HMM contains 2 types of information: 
– Hidden states:  s1, s2, s3, … 
– Observable values 

• In speech recognition, the vector quantization values in the 
input sequence O = o1, o2, o3, … 

 

 An HMM,  = (A, B, π), contains 3 sets of probabilities 

– π vector, π = (i) 
 

– State transition matrix, A = (aij) where aij = P(qt = si | qt-1 = sj) 
 

– Observation likelihood, B = bj(ok) = P(yt = ok | qt = sj) 
 

HMM  Summary 

 Markov property says observation oi is conditionally 

independent of hidden states qi-1 , qi-2 , …, q0 given 

qi 

 

 In other words: 

 P(Ot = X | qt = si ) = 

 P(Ot = X | qt = si , any earlier history) 
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Example:  An HMM 

start0 n1 d3 end4 iy2 

a01 a12 a23 a34 

a11 a22 a33 

a24 

o1 o2 o3 o4 o5 o6 

b1(o1) b1(o2) 
b2(o3) b2(o5) 

b2(o4) 
b3(o6) 

… … 

Word Model 

Observation 

Sequence 

Example:  An  HMM  Word  Model 

58 

Acoustic Model (AM) 

 P(Signal | Phone) can be specified as an HMM, e.g., 

phone model for [m]: 

– nodes: probability distribution over a set of vector quantization 

values 

– arcs: probability of transitioning from current hidden state to 

next hidden state 

Onset Mid End FINAL 
0.6 0.1 0.7 

0.3 0.9 0.4 

o1: 0.5 

o2: 0.2 

o3: 0.3 

o3: 0.2 

o4: 0.7 

o5: 0.1 

o4: 0.1 

o6: 0.5 

o7: 0.4 

Possible 

outputs: 

59 

Generating HMM Observations 

 Choose an initial hidden state, q1 = si , based on  

 For t = 1 to T do 

1. Choose output/observation value zt = ok 

according to the symbol probability distribution in 

hidden state si,  bi(k) 

 

2. Transition to a new hidden state qt+1 = sj 

according to the state transition probability 

distribution for state si,  aij 

 So, transition to new state and then output value 

at the new state 
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 Bayesian Network structure for a sequence of hidden 

states from {R, S, C}.  Each qi is a “latent” random 

variable indicating the state of the weather on day i.  

Each oi is the observed state of the corn on day i. 

Modeling a Sequence of States 

60 

q2=S q1=R q3=S q4=C q5=R … 

o2=Damp o3=Dry o4=Dryish o5=Soggy o1=Damp 

Each horizontal arc has A matrix probs. 

Each vertical arc 

has B matrix probs. 61 

Acoustic Model (AM) 

 P(Signal | Phone) can be specified as an HMM, e.g., 

phone model for [m]: 

 P(Signal | Phone) is a path through the states, i.e., 

– P([o1,o4,o6] | [m])  =  (1)(.5)(.7)(.7)(.1)(.5)(.6) =  0.00735 

– P([o1,o4,o4,o6] | [m])  =  (1)(.5)(.7)(.7)(.9)(.7)(.1)(.5)(.6) 

+  (1)(.5)(.7)(.7)(.1)(.1)(.4)(.5)(.6) =  0.0049245 

• Model allows for variation in speed of pronunciation 

Onset Mid End FINAL 
0.6 0.1 0.7 

0.3 0.9 0.4 

o1: 0.5 

o2: 0.2 

o3: 0.3 

o3: 0.2 

o4: 0.7 

o5: 0.1 

o4: 0.1 

o6: 0.5 

o7: 0.4 

1 
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Combining Models 

START 

tomato 

attack 

the 

killer 

of 

tomato 

[t] 

[ow] 

[ah] 

[m] 

[ey] 

[aa] 

[t] [ow] 

.5 

.5 

.2 

.8 

1 

1 

1 

1 

1 

Onset Mid End FINAL 
0.6 0.1 0.7 

0.3 0.9 0.4 

o1: 0.5 

o2: 0.2 

o3: 0.3 

o3: 0.2 

o4: 0.7 

o5: 0.1 

o4: 0.1 

o6: 0.5 

o7: 0.4 

[m] 

Create one large HMM 

3 Common Tasks using HMMs 

 Evaluation problem 

 Decoding problem 

 Learning problem 
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Evaluation  Problem: P(O | ) 

 Find the probability of an observed sequence given an 

HMM.  For example, given several HMMs such as a 

“summer HMM” and a “winter HMM” and a sequence of 

corn observations, which HMM most likely generated 

the given sequence? 

 In speech recognition, use one HMM for each word, 

and an observation sequence from a spoken word.  

Compute P(O|).  Recognize the word by identifying the 

most probable HMM. 

 Use Forward algorithm 

65 

Decoding  Problem 

 

 Find the most probable sequence (i.e., path) of hidden 

states given an observation sequence 

 Compute  Q* = argmaxQ P(Q | O) 

 Use Viterbi algorithm 

66 

Learning  Problem 

 

 Generate an HMM given a sequence of observations 
and a set of known hidden states 

 Learn the most probable HMM 

 Compute * = argmax P(O | ) 

 Use Forward-Backward algorithm or Expectation-
Maximization (EM) algorithm 
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Evaluation Problem 

 P(O | ) = ?  where O = o1, o2, …, oT is the observation 
sequence and  is an HMM model 

 Let Q = q1, q2, …, qT be a specific hidden state sequence 

  P(O | ) =  P(O | Q, ) P(Q | )    by Conditioning rule 

 

  P(O | Q, ) =  P(ot | qt, ) = bq1
(o1 ) bq2

(o2 ) … bqT
(oT ) 

 

  P(Q | ) = q1
 aq1q2

 … aqT-1qT 

  So, P(O|) =  q1
 bq1

(o1) aqoq1 
bq2

(o2) aq1q2 
bq3

(o3) ··· aqT-1qT bqT
(oT) 

 

 (, A, B) known for given HMM  

Q 

t=1 

T 

Q 
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Example:  An HMM P(q1 =Happy, q2=Sad | HMM) = ? 

P(q1 = H, q2=S | HMM) = ? 

)()|(),( 11221 HqPHqSqPSqHqP 

14.0)7)(.2(. 

(by Chain rule) 

P(q2=Happy | HMM) = ? 
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P(q2=Happy | HMM) = ? 

)()|(

)()|()(

112

1122

SqPSqHqP

HqPHqHqPHqP





62.0)3)(.2(.)7)(.8(. 

(by Conditioning rule) 

P(q3=Happy | HMM) = ? 

P(q3=Happy | HMM) = ? 

rule)Chain (by                                                                

...)()|()|(                  

...),()|(                  

rule) ngConditioni(by      cases more 2                          

),(),|(                        

),(),|()(

11223

2123

21213

212133











HqPHqHqPHqHqP

HqHqPHqHqP

SqHqPSqHqHqP

HqHqPHqHqHqPHqP

)2)(.8)(.3(.)8)(.2)(.3(.)2)(.2)(.7(.)8)(.8)(.7(. 

P(o1=Laugh, o2=Frown | q1=H, q2=S) = ? 
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P(o1=Laugh, o2=Frown | q1=H, q2=S) = ? 
 
 

1.0)5)(.2(.

property Markovby   )|()|(

rulechain by   ),|(),,|(

2211

2122121







SqFoPHqLoP

SqHqFoPSqHqFoLoP

P(o1=Laugh, o2=Frown | HMM) = ? 
 
(Evaluation Problem) 

P(o1=Laugh, o2=Frown | HMM) = ? 

...)|()|()|()(

property Markovby                                            

...)()|()|()|(

ruleChain  lizedConditionaby                                            

...),(),|(),,|(

rule ngConditioniby                                            

),(),|,(                      

),(),|,(                      

),(),|,(                      

),(),|,(),(

2212111

1122211

212122121

212121

212121

212121

21212121















HqFoPHqHqPHqLoPHqP

HqPHqHqPHqFoPHqLoP

HqHqPHqHqFoPHqHqFoLoP

SqSqPSqSqFoLoP

HqSqPHqSqFoLoP

SqHqPSqHqFoLoP

HqHqPHqHqFoLoPFoLoP

...)1)(.8)(.2)(.7(. 

P(o1=L, o2=F, q1=H, q2=S) = ? 
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P(o1=L, o2=F, q1=H, q2=S) = ? 
 
 

)7)(.2)(.5)(.2(.

)()|()|()|( 1122211



 HqPSqHqPSqFoPHqLoP

by chain rule plus Markov property 

82 

Computation of P(O | ) 

 Since there are NT sequences (N hidden states and T 

observations), O(T NT ) calculations required! 

 

 For N=5, T=100    1072 computations!! 

P(q1=S | o1=F) = ? 
 
(State Estimation Problem) 

Most Probable Path Problem:  Find q1, q2 such that  

 P(q1=X, q2=Y | o1=L, o2=F) is a maximum over all 

 possible values of X and Y, and give the values of 

 X and Y 

Needed as part of solving the “Decoding Problem:” 

P(q1=S | o1=F) = ? 

)7)(.1(.)3)(.5(.

)3)(.5(.

)()|()()|(

(.5)(.3)

rule sBayes'by    
)(

)()|(
)|(

111111

1

111
11












HqPHqFoPSqPSqFoP

FoP

SqPSqFoP
FoSqP
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P(q3=H | o1=F, o2=L, o3=Y)=? 
 
(Decoding Problem) 

P(q3=H | o1=F,o2=L,o3=Y)=? 

...)|,,(

...)|,,(

...)|,,(

...)|,,(),,|(

123

123

123

1233213

SqSqHqP

HqSqHqP

SqHqHqP

HqHqHqPYoLoFoHqP









),,(

)()|()|()|()|()|(

rule sBayes'by                             

),,(

),,(),,|,,(
        

),,|,,(

321

11223332211

321

321321321

321123

YoLoFoP

HqPHqHqPHqHqPHqYoPHqLoPHqFoP

YoLoFoP

HqHqHqPHqHqHqYoLoFoP

YoLoFoHqHqHqP













where 

P(q2 = H | q1 = S, o2=F) = ?   

88 

)(/)2)(.1(.

)(/)|()|(

)()(/)()|()|(

)()(/),()|(

)()(/),(),|(

)(/)|,(

)|(/)|,(

2

21222

2111222

212122

2121212

1212

21212

FoP

FoPSqHqPHqFoP

FoPSqPSqPSqHqPHqFoP

FoPSqPHqSqPHqFoP

FoPSqPHqSqPHqSqFoP

SqPFoSqHqP

FoSqPFoSqHqP













 by cond. chain rule 

by independence of q1 and o2 

Bayes rule 

Markov assump. 

Product rule 

How to Solve HMM Problems Efficiently? 
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Evaluation  using  Exhaustive  Search 

 Given observation sequence (dry, damp, soggy), 

“unroll” the hidden state sequence as a “trellis” 

(matrix): 

93 

Evaluation  using  Exhaustive  Search 

 Each column in the trellis (matrix) shows a possible state of the 

weather 

 Each state in a column is connected to each state in the adjacent 

columns 

 Sum the probabilities of each possible sequence of the hidden 

states;  here, 33 = 27 possible weather sequences 

 P(dry,damp,soggy | HMM ) = 

  P(dry,damp,soggy | sunny,sunny,sunny) +  

  P(dry,damp,soggy | sunny,sunny,cloudy) + ··· + 

 P(dry,damp,soggy | rainy,rainy,rainy) 

 Not practical since the number of paths is O(NT) where N is the 

number of hidden states and T is number of observations 

 Idea: compute and cache values t(i) representing probability of 
being in state i after seeing first t observations, o1, o2, ..., ot 

 Each cell expresses the probability   
  t(i) = P(qt=i | o1, o2, ..., ot) 

 qt = i means "the probability that the tth state in the sequence of 
hidden states is state i 

 Compute  by summing over extensions of all paths leading to 
current cell 

 An extension of a path from a state i at time t-1 to state j at t is 
computed by multiplying together:  
i. previous path probability from the previous cell t-1(i) 

 ii. transition probability aij from previous state i to current state j  
iii. observation likelihood bjt that current state j matches observation 
symbol t 

94 

Forward Algorithm Intuition 

95 

Evaluation  using  Forward  Algorithm 

 Compute probability of reaching each intermediate 

hidden state in the trellis given observation sequence           

O = o1, o2, …, oT    That is, P(qt = si | O) 

 Example:  Given O = (dry, damp, soggy),                                        

compute P(O, q2=cloudy | HMM ) 

 2(cloudy) =  

    P(O | q2=cloudy)   

    P(all paths to q2=cloudy) 
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Forward  Algorithm  (cont.) 

 P(O, qT=sj | ) = sum of all possible paths through the 

trellis 
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Forward  Algorithm  (cont.) 

 Compute  recursively: 

 
– 1(j) = j bj(o1)   for all states j 

 
– t(j) = P(O, qt= sj | ) 

 
–        = [ t-1(i)aij] bj(ot)    for t > 0 

 

 P(O | ) =  T(sj) 

 

 O(N2T) computation time  (i.e., linear in T, the length of 
the sequence) 

i=0 

N 

j=1 

N 
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Decoding  Problem 

 Most probable sequence of hidden states is the state 

sequence Q that maximizes P(O,Q | ) 

 Similar to the Forward Algorithm except uses MAX 

instead of SUM, thereby computing the probability of 

the most probable path to each state in the trellis 
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Decoding  using  Viterbi  Algorithm 

 For each state qi and time t, compute recursively t(i) = 

maximum probability of all sequences ending at state 

qi and time t, and the best path to that state 

 Assumption: Dynamic Programming invariant: 

 If ultimate best path for O includes state qi  

   then it includes the best path up to and including qi 
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Viterbi Algorithm 

 Variant of forward algorithm that considers all words 
simultaneously and computes most likely path   

 A type of dynamic programming algorithm 

 Input is sequence of observations, and an HMM 

 Output is most probable state sequence Q = q1, q2, q3, 
q4, ..., qT  together with its probability 

 Works by computing max of previous paths instead of  
sum 

 Looks at the whole sequence before deciding on the 
best final state and then follows back pointers to recover 
the best path 

 Linear time and linear space algorithm in T 
 

10
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Viterbi  Algorithm 

 By the 1st-order Markov assumption: 

  P(X, t) = max { P(i, t-1) × P(X | i) × P(ot | X) } 

 

 Hence, t(i) = max { t-1(j) aji bj(ot) } 

 

 Record back pointer to best previous state; use this to 

obtain best path by tracing back from final state 

 

 Linear time and linear space in t 

 

i=A,B,C 

j 

10
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Summary  of  Viterbi  Algorithm 

 Given an HMM, the Viterbi algorithm finds the most 
probable sequence of hidden states given a sequence 
of observed values 

 Exploits time invariance of the probabilities to avoid 
examining every possible path through the trellis 

 Looks at the whole sequence before deciding on the 
best final state and then follows back pointers to 
recover the best path 

 Uses entire context to make its decision and is 
therefore robust with respect to noise (e.g., a bad 
observation value in the middle of the sequence) 

10
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Summary 

 Speech recognition systems work best if 

– high SNR (low noise and background sounds) 

– small vocabulary 

– good language model 

– pauses between words 

– trained to a specific speaker 

 Current systems 

– vocabulary of ~200,000 words for single speaker 

– vocabulary of ~5,000 words for multiple speakers 

– accuracy depends on the task 
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Error Rates:  Machine vs. Human* 

Digits (10) 0.72% 0.009% 

Letters (26) 5.0% 1.6% 

Transactional speech 

(1,000) 

3.6% 0.1% 

Sentences read from 

WSJ (5,000) 

12.8 - 7.2% 1.1 - 0.9% 

Telephone speech 

(14,000) 

43.0% 

(19.3% in 2000) 

4.0% 

Task Machine Human 

* R. Lippmann, Speech Comm. 22(1), 1997 

How Siri Works 

 Apple’s Siri Personal Assistant consists of: 

1. Voice recognition 
Limited vocabulary 

2. Grammar analysis 
Search for key phrases and use them to build a simple model 

of what user wants to do; integrated with other info on phone 

such as address book, nicknames, birthdays, GPS 

3. Web service providers 
Tools for mapping to external APIs for Yelp, Zagat, Wikipedia 

 Limited domains:  restaurants, sports, 

movies, travel, weather, … 

Siri Topics for Limited Domains 

 Ask for a reminder 

 Send a text message 

 Ask about the weather 

 Make a dinner reservation 

 Ask for information (e.g., from Wikipedia) 

 Set a meeting 

 Send e-mail 

 Get directions 

 Get a telephone number or make a call 

 and a few more 

 

Limited Set of “Active Ontologies” 

 Restaurant/Dining Ontology includes restaurant 

databases and review services (e.g., Yelp and 

Zagat) 

 Dining-related vocabulary database 

 Model of actions that people usually perform when 

they decide on dining choices 

 Domain-specific dialog for interaction with user 

 Access to online reservation services, e.g., Open 

Table, and rules for making reservation through it, 

and entering result into user’s calendar 
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Restaurant Ontology 

12

0 

Other Applications of HMMs 

 Probabilistic robotics 

– SLAM:  Simultaneous Localization And Mapping 

– Robot control learning 

 Tracking objects in video 

 Spam deobfuscation (mis-spelling words) 

 Human Genome Project 

 Consumer decision modeling 

 Economics & Finance 

 And many more … 


