Support Vector Machines

Optimally defined decision surface
Typically nonlinear in the input space
Linear in a higher dimensional space
Implicitly defined by a kernel function

Acknowledgments: These slides combine and modify ones
provided by Andrew Moore (CMU), Jerry Zhu (Wisconsin), Glenn
Fung (Wisconsin), and Olvi Mangasarian (Wisconsin)

What are Support Vector Machines
Used For?

+ Classification
* Regression and data-fitting
 Supervised and unsupervised learning

Lake Mendota, Madison, WI

Lake Mendota, Wisconsin

Identify areas of land cover (land, ice,
water, snow) in a scene
e Two methods:
e Scientist manually-derived
e Support Vector Machine (SVM)

Classifier Expert SVM
Derived
cloud 45.7% 58.5%
ice 60.1% 80.4%
land 93.6% 94.0%
show 63.5% 71.6%
water 84.2% 89.1%
unclassified 45.7%
Visible Expert Expert Automated SVM

I Labeled Derived Rati
Courtesy of Steve Chien of NASA/JPL mage  Labeled Derive atio

Linear Classifiers
Xx—— f [y

f(x, w, b) = sign(w = x+ b)

° denotes +1
° denotes -1

. o ‘ How would you
: classify this data?




Linear Classifiers
(aka Linear Discriminant Functions)

¢ Definition
A function that is a linear combination of the
components of the input (column vector) x

m
f(x)=> wx; +b=w'x+b
j=1
where w is the weight (column vector) and bis
the bias
¢ A 2-class classifier then uses the rule:
Decide class ¢ if f(x) > 0 and class ¢ if f(x) < 0
< Decide ¢, if wix >-p and ¢ otherwise

w is the plane’s normal vector

b is the distance from the origin
Planar decision surface
in ddimensions is
parameterized by (w, b)

Linear Classifiers
X4’

f v

f(x, w, b) = signf(w * x+ b)

* denotes +1
° denotes -1

How would you
classify this data?

Linear Classifiers
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f(x, w, b) = sign(w = x+ b)

° denotes +1
° denotes -1

. 5 o : How would you
p classify this data?
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Linear Classifiers

X

* denotes +1
° denotes -1

f v

f(x, w, b) = signf(w * x+ b)

How would you
classify this data?

Linear Classifiers

X

* denotes +1
° denotes -1

f v

, b) = sign(w * x+ b)

Any of these

Classifier Margin

* denotes +1
° denotes -1

f v

f(x, w, b) = signf(w * x+ b)

Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point

would be fine ...
2 . butwhichis
best?
Maximum Margin
X f [—y

° denotes +1
° denotes -1

f(x, w, b) = sign(w = x+ b)

The maximum
margin linear
classifier is the
linear classifier
with the maximum
margin!

This is the
simplest kind of

SVM (Called an

e




Maximum Margin
X

Y

f(x, w, b) = signf(w * x+ b)

* denotes +1

° denotes -1 The maximum
margin linear
> classifier is the

linear classifier

Support Vecto< with the maximum
are those data i
points that the o ° margin
margin pushes up . °e This is the
inst - . .
agains o o simplest kind of

SVM (Called an

HY

Why Maximum Margin?

1. Intuitively this feels safest

2. If we've made a small error in the
* denotes +1

. location of the boundary (it's been
° denotes -1 .. jolted in its perpendicular direction)
° this gives us least chance of causing a
1 - : misclassification
A ° |3. Robust to outliers since the model is
Support Vectors J - ) immune to change/removal of any
are those data ° / non-support-vector data points
oints that the °
E1argin pushes 4. There's some theory (using “VC
up against oo dimension”) that is related to (but not
the same as) the proposition that this
is a good thing

5. Empirically it works very well

Specifying a Line and Margin
x*ﬂ Plus-Plane
Classifier Boundary

Minus-Plane

¢ How do we represent this mathematically?
e ... in dinput dimensions?
e An example x = (X, ..., Xg)"

Specifying a Line and Margin
x\" Plus-Plane
Classifier Boundary

Minus-Plane

o o Weight vector: w = (w; , ..., Wg)T
\“:ib/) Bias or threshold: b
e Plus-plane = W' ' x+ bH=+1 The dot product w™ - x
 Minus-plane = WT* x+ b=-1 ;Sngjgésioifﬁtlgr‘;v
Classify as  +1 if wi-x+5H>1
-1 if wh-x+5b<-1

? if -1<w''x+5b<1




Computing the Margin

\M = Margin (width)

~ A" How do we compute
Min terms of w
and b?

e Plus-plane = wx+ b6=+1
e Minus-plane= wx+ b=-1

Note: From now on,
transpose symbol on w
implied

Claim: The vector w is perpendicular to the Plus-Plane

Computing the Margin

1

How do we compute

A \o° i
e ed\c‘cld\‘" Min terms of w
W and b?
W
Plus-plane = wx+ b6=+1
Minus-plane = wx+ b=-1
The vector w is perpendicular to the Plus Plane —
i i Any location in
Let x- be any point on the minus plan R7: not
. necessarily a

Let x + be the closest plus-plane-point to x= data point

Computing the Margin

)(J\

How do we compute

o ~ O Min terms of w
W0 10(\
AN and b?
o
e Plus-plane = wx+ b=+1
e Minus-plane= wx+ bH=-1

¢ The vector w is perpendicular to the Plus Plane

¢ Let x- be any point on the minus plane

e Let x* be the closest plus-plane-point to x -

e Claim: x* = x- + 2w for some value of 2. Why?

Computing the Margin
035,74 < W \M = Margin

The line from x-to x* is
perpendicular to the
planes

So to get from x-to x+
travel some distance in
Plus-plane = wx+ b6=+1 direction w

Minus-plane = wx+ b=-1
The vector w is perpendicular to the Plus Plane
Let x- be any point on the minus plane

Let x + be the closest plus-plane-point to x-
Claim: x* = x- + 2w for some value of 1. Why?




What we know:

e wWxt+ H=+1

e Wx +b=-1

e Xt=x"+,wW

o llx*-x-||=M

It's now easy to get Min terms of w and b6

Computing the Margin
\as‘«*/(\:‘

ng\/ C\ase
“‘:*M“X oW (x-+Aw) + b=1
207
QOF
What we know: =
e WX*t+ bh=+1 WX +b+iww =1
ewx +bH=-1 =
¢ XTExTHAw 1+ ilww =1
“ llxt-x-ll=M
It's now easy to get M 2
in terms of w and 6 -~ A= T
W w

Computing the Margin

2
x> \M Margin =
W

=|w|=Jw-w
What we know:

L4 WX++b=+1 Z'WW 2
e WX+ b=-1 = =

W-wW wW-w
e Xt=Xx"+.1W \/
o |Ix*-x"||=M 2

:M = M, margin size

Learning the Maximum Margin Classifier

Given a guess of w and b we can
1. Compute whether all data points in the correct half-planes
2. Compute the width of the margin

So now we just need to write a program to search the space
of w’'s and /'s to find the widest margin that matches all
the data points. How?




SVM as Constrained Optimization

« Unknowns: w, b SVMs: More than Two Classes
» Objective function: maximize the margin

M=2/||w]| ¢ SVMs can only handle two-class problems
« Equivalent to minimizing ||w]| or ||w|]|2= w'w o N-class problem: Split the task into & binary

tasks and learn N SVMs:
e Class 1 vs. the rest (classes 2 — N)
e Class 2 vs. the rest (classes 1, 3 — N)

Assume N training points (x;, y4), yi=1or -1
Subject to each training point on the correct side
(the constraint), i.e.,
subject to y(wTx, + b) > 1 for all k e Class V vs. the rest
« Finally, pick the class that puts the point
farthest into the positive region

This is a Quadratic optimization problem, which
can be solved efficiently

SVM: Non Linearly-Separable Data

® Two solutions:
= Allow a few points on the wrong side (slack variables)

e What if the data are not linearly separable? = Map data to a higher dimensional space, and do linear
classification there (kernel trick)

SVM: Non Linearly-Separable Data




Non Linearly-Separable Data

e Approach 1: Allow a few points on the wrong
side (slack variables)

* denotes +1
° denotes -1

What should we do?

° denotes +1
° denotes -1

What should we do?
Idea 1:

Find minimum || w]|2 while
minimizing number of
training set errors

Problem: Two things to
minimize makes for an
ill-defined optimization

° denotes +1
° denotes -1

What should we do?
Idea 1.1:

Minimize

|| w]|2 + C(# train errors)

Tradeoff parameter

There’s a serious practical
problem with this approach




What should we do?
Idea 1.1:

* denotes +1 Minimize

> denotes -1 .
enoes [|w]|? + C(# train errors)

Tradeoff parameter

Can't be expressed as a Quadratic
Programming problem.

Solving it may be too slow.

(Also, doesn't distinguish between
disastrous errors and near misses)

What should we do?

Idea 2.0:
* denotes +1 Minimize
> denotes -1 [|w]|? + C(distance of

“error points”
to their correct
place)

Learning Maximum Margin with Noise
. ° M_E Given guess of w, b, we can
\ﬁ 1. Compute sum of distances
of points to their correct

¢ ° zones
Y o ° . .
@ o 2. Compute the margin width
X
wx«) . .- Assume N examples, each

(X¢, yi) where y, = +/- 1

What should our quadratic How many constraints will
optimization criterion be? we have?

What should they be?

Learning Maximum Margin with Noise
™ g M=2 Given guess of w, bwe can
\ml. Compute sum of distances
of points to their correct
° zones
2. Compute the margin width
Assume NV examples, each
(%, v where y, = +/-1

“slack variables”

What should our quadratic = How many constraints will we
optimization criterion be? have? N
1 i What should they be?
Minimize —W-W+C)» ¢
2 &7 yWTx+ b) > 1-¢ for all k




Learning Maximum Margiz=# input DiSE
. Given gt dimensions e can
"\ >f/ . Compute sum s, \distances
. Our original (n0|seless data) QP had d+1 |
B < variables: w,, w,, ... w, and b
g e dth
W A Our new (noisy data) QP has d+1+N
o variables: wy, W, ... Wy b, &, 1 on

K7 K7
What should our quadratic = How many constrairEN= PA—
optimization criterion be? have? N E

1 N What should they be?
Minimize EW W+C28k w'x,+bx1-¢g if y,=+1
k=1 WX+ b<-1+g if yo=-1

Learning Maximum Margin with Noise

M‘E Given guess of w, bwe can
\/ﬁl. Compute sum of distances
of points to their correct
Lt zones
2. Compute the margin width
Assume N examples, each

(x, v) where y, =+/-1

What should our quadratic = How many constraints will we
optimization criterion be? have? NV

1 N What should they be?
Minimize EW W+CZ£k w'x,+b>1-g if y=+1
k=t WX, + b< -1+g if y=-1

Learning MaX|mum Margin with Noise

Given guess of w, bwe can
\\/Tl Compute sum of distances
of points to their correct
Lt zones
2. Compute the margin width

Assume N examples, each
(x, v) where y, =+/- 1

What should our quadratic = How many constraints will we
optimization criterion be? have? 2N

1 N What should they be?
Minimize EW'W+C28k W X+ b>+1-g if y=+1
k=1 WX, +b<-1+¢ ify,=-1
g,> 0 for all

Non Linearly-Separable Data

e Approach 2: Map data to a higher
dimensional space, and do linear classification
there (kernel trick)

10



Suppose we're in 1 Dimension

What would
SVMs do with
this data?

o o o oo oo o

x=0

Suppose we're in 1 Dimension

S
o

Positive “plane Negative “plane”

Harder 1D Dataset:
Not Linearly-Separable

What can be done
about this?

Harder 1D Dataset

The Kernel Trick:
Preprocess the
data, mapping x
into a higher
dimensional
o space, O(x)

D(x) =(x ,x°)

Here, ® maps data from 1D to 2D

11



Harder 1D Dataset

The data /s lingarly
separable in the new
space, so use a linear
SVM in the new space

The Kernel Trick:
Preprocess the
data, mapping x
into a higher
dimensional
space, ©(x)

D(x) =(x ,x*)

wld(x)+b=+1

Another Example

(% %) = (X, X/ X, +X5)

Y :

X
3
hs

¢ Project examples into some higher dimensional space
where the data /s linearly separable, defined by z= ®(x)

¢ Can formulate optimization problem so that objective
function depends only on dot products of the form

O(x)" * @(x) where x;and x;are two data points
e Example:

D(x) = (X7, V2%,%,, %)
Define A(x, x) = ©(x)7 - O(x) = (x;* x))?

¢ Claim: Can compute kernel function K without explicitly
computing ®(x) or w

¢ Dimensionality of z space is generally much larger than
the dimensionality of input space x

What's Special about a Kernel?

e Say datais 2D: s = (s;, )
¢ We decide to use a particular mapping into 6D

space:

CD(S) = (5121 5221 \/2 51521 51! 521 1)

e Let another point be = (§, &)
e Then,

()T O(f) = s t2+ P2 L2 + 25,546 + sih + S5+ 1
® Let the kernel be A(s, &) = (s™-t+1)2 = (5,4, + S5, + 1)?
® K t)= ()" o(f)

® We save computation by using K

12



Some Commonly Used Kernels

e Linear kernel: K(x;, x;) = X x;
* Quadratic kernel: K(x;, x;) = (X x; +1)2
* Polynomial kernel: K(x;, x;) = (x7 x; +1)¢
¢ Radial Basis Function kernel:

Kx;, %) = exp(- | 1% -x;1|? / %)

¢ Many other kernels

¢ Hacking with SVMs: create various kernels, hope their
space @ is meaningful, plug them into SVM, pick one
with good classification accuracy

* Kernel can be combined with slack variables

Example Application:
The Federalist Papers Dispute

» Written in 1787-1788 by Alexander Hamilton, John
Jay, and James Madison to persuade the citizens of
New York to ratify the U.S. Constitution

« Papers consisted of short essays, 900 to 3500 words
in length

« Authorship of 12 of those papers have been in
dispute ( Madison or Hamilton); these papers are
referred to as the disputed Federalist papers

Description of the Data
» For every paper:

» Machine readable text was created using a scanner

» Computed relative frequencies of 70 words that
Mosteller-Wallace identified as good candidates for
author-attribution studies

» Each document is represented as a vector containing the
70 real numbers corresponding to the 70 word
frequencies

 The dataset consists of 118 papers:
« 50 Madison papers
« 56 Hamilton papers
» 12 disputed papers

Function Words Based on Relative
Frequencies

or
our
shall
should
50
some
such

1
2
3
4
5
[¢]
7
8

than
that
the
their
then
there
things
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Feature Selection for Classifying the
Disputed Federalist Papers

» Apply the SVM Successive Linearization
Algorithm for feature selection to:

+ Train on the 106 Federalist papers with known
authors

+ Find a classification hyperplane that uses as few
words as possible

* Use the hyperplane to classify the 12
disputed papers

Hyperplane Classifier Using 3 Words

* A hyperplane depending on three words
was found:

0.537to + 24.663upon + 2.953would = 66.616

« All disputed papers ended up on the
Madison side of the plane

Results: 3D Plot of Hyperplane
Separating Plane for the Fedgralists Papers - (Fung)

R ":. o
# . Hamilton (56 Papers)
* L P .

upon
N
i .

epd Bt T —
¢ 5’ ,“«;f 54 w0 ) { B

o ey i - DiSputedi(12 Papegisi o
©" = :Madison (50 Papers) =

0 : ,<;’ 10
25 ;?/ o would

B L oo o
Y
8/

SVM Applet

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

Summary

Learning linear functions
e Pick separating plane that maximizes margin

 Separating plane defined in terms of support
vectors only

Learning non-linear functions

¢ Project examples into higher dimensional space
¢ Use kernel functions for efficiency

Generally avoids overfitting problem

Global optimization method; no local optima

Can be expensive to apply, especially for multi-
class problems
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