
1 

Support Vector Machines 

•  Optimally defined decision surface  

•  Typically nonlinear in the input space 

•  Linear in a higher dimensional space 

•  Implicitly defined by a kernel function 

Acknowledgments:  These slides combine and modify ones 
provided by Andrew Moore (CMU), Jerry Zhu (Wisconsin), Glenn 
Fung (Wisconsin), and Olvi Mangasarian (Wisconsin) 

What are Support Vector Machines 
Used For? 

•  Classification 

•  Regression and data-fitting 

•  Supervised and unsupervised learning 

Lake Mendota, Madison, WI 
• Identify areas of land cover (land, ice, 

water, snow) in a scene 

• Two methods: 
• Scientist manually-derived 

• Support Vector Machine (SVM) 

 

 

Visible 
Image 

Expert 
Labeled 

Expert 
Derived 

Automated 
Ratio 

SVM 

Lake Mendota, Wisconsin  

Classifier Expert 

Derived 

SVM 

cloud 45.7% 58.5% 

ice 60.1% 80.4% 

land 93.6% 94.0% 

snow 63.5% 71.6% 

water 84.2% 89.1% 

unclassified 45.7% 

Courtesy of Steve Chien of NASA/JPL  

 Linear Classifiers 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

How would you 
classify this data? 
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Linear Classifiers 
(aka Linear Discriminant Functions) 

• Definition 

 A function that is a linear combination of the 
components of the input (column vector) x 

 

 

 

 where w is the weight (column vector) and b is 
the bias 

• A 2-class classifier then uses the rule: 

 Decide class c1 if f(x)  0 and class c2 if f(x) < 0 

  Decide c1 if w
Tx   -b   and  c2  otherwise 
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w is the plane’s normal vector 

b is the distance from the origin 

Planar decision surface 
in d dimensions is 
parameterized by (w, b) 

 Linear Classifiers 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

How would you 
classify this data? 

 Linear Classifiers 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

How would you 
classify this data? 
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 Linear Classifiers 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

How would you 
classify this data? 

 Linear Classifiers 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

Any of these 
would be fine … 

 

… but which is 
best? 

Classifier Margin 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

Define the margin 
of a linear classifier 
as the width that 
the boundary could 
be increased by 
before hitting a 
data point 

Maximum Margin 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the maximum 
margin! 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Linear SVM 
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Maximum Margin 
f          x y 

denotes +1 

denotes -1 

f(x, w, b) = sign(w · x + b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the maximum 
margin 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Support Vectors 
are those data 
points that the 
margin pushes up 
against 

Linear SVM 

Why Maximum Margin? 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin. 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Support Vectors 
are those data 
points that the 
margin pushes 
up against 

1. Intuitively this feels safest  

2. If we’ve made a small error in the 
location of the boundary (it’s been 
jolted in its perpendicular direction) 
this gives us least chance of causing a 
misclassification 

3. Robust to outliers since the model is 
immune to change/removal of any 
non-support-vector data points 

4. There’s some theory (using “VC 
dimension”) that is related to (but not 
the same as) the proposition that this 
is a good thing 

5. Empirically it works very well 

Specifying a Line and Margin 

• How do we represent this mathematically? 

• … in d input dimensions?   

• An example x = (x1, …, xd)
T 

Plus-Plane 

Minus-Plane 

Classifier Boundary 

Specifying a Line and Margin 

• Plus-plane   =     wT · x + b = +1  

• Minus-plane =     wT · x + b = -1  

 

Plus-Plane 

Minus-Plane 

Classifier Boundary 

Classify as +1 if wT · x + b  1 

 -1 if wT · x + b ≤ -1 

  ? if -1 < wT · x + b < 1 

Weight vector: w = (w1 , …, wd)
T 

Bias or threshold:  b 

The dot product wT · x 
=  wi xi is a scalar: 
x’s projection onto w 
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Computing the Margin 

• Plus-plane   =     w x + b = +1  

• Minus-plane =     w x + b = -1  

 

Claim: The vector w is perpendicular to the Plus-Plane 

 

M = Margin (width) 

How do we compute 
M in terms of w 
and b? 

w 

Note:  From now on, 
transpose symbol on w 
implied 

Computing the Margin 

• Plus-plane   =     w x + b = +1  

• Minus-plane =     w x + b = -1  

• The vector w is perpendicular to the Plus Plane 

• Let x  be any point on the minus plane 

• Let x + be the closest plus-plane-point to x - 

M = Margin 

How do we compute 
M in terms of w 
and b? 

x - 

x + 

Any location in 


m: not 

necessarily a 

datapoint 

Any location in 
Rm: not 
necessarily a 

data point 

w 

Computing the Margin 

• Plus-plane   =     w x + b = +1  

• Minus-plane =     w x + b = -1  

• The vector w is perpendicular to the Plus Plane 

• Let x  be any point on the minus plane 

• Let x + be the closest plus-plane-point to x  

• Claim: x + = x  + l w  for some value of l.  Why? 

M = Margin 

How do we compute 
M in terms of w 
and b? 

x - 

x + 

w 

Computing the Margin 

• Plus-plane   =     w x + b = +1 

• Minus-plane =     w x + b = -1  

• The vector w is perpendicular to the Plus Plane 

• Let x  be any point on the minus plane 

• Let x + be the closest plus-plane-point to x  

• Claim: x + = x  + l w  for some value of l. Why? 

M = Margin 

How do we compute 
M in terms of w 
and b? 

x - 

x + 

The line from x - to x + is 
perpendicular to the 
planes 

So to get from  x - to x + 
travel some distance in 
direction w 

w 
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Computing the Margin 

What we know: 

• w x + + b = +1  

• w x  + b = -1  

• x + = x  + l w 

• ||x + - x  || = M 

It’s now easy to get M in terms of w and b 

M = Margin 

x - 

x + 

w 

Computing the Margin 

What we know: 

• w x + + b = +1  

• w x - + b  = -1  

• x + = x - + l w 

• ||x + - x - || = M 

It’s now easy to get M 
in terms of w and b 

M = Margin 

w (x - + l w) + b = 1  

 

w x - + b + l ww = 1 

 

-1 + l ww = 1 

 

 

x - 

x + 

w 

wwT

2
l

Computing the Margin 

What we know: 

• w x + + b = +1  

• w x - + b = -1  

• x + = x - + l w 

• ||x + - x - || = M  

2
λ 

w w

M = Margin = 

M = |x + - x - | =| l w |= 

x - 

x + 

2 2
 

 

w w

w w w w

| |λ λ  w w w

2

w w

w 

w

2
 = M, margin size 

Learning the Maximum Margin Classifier 

Given a guess of w and b we can 

1. Compute whether all data points in the correct half-planes 

2. Compute the width of the margin 

So now we just need to write a program to search the space 
of w’s and b’s to find the widest margin that matches all 
the data points.  How? 

M = Margin = 

x - 

x + 
2

w w

w 
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SVM as Constrained Optimization 
• Unknowns: w, b 

• Objective function: maximize the margin 
M=2/||w|| 

• Equivalent to minimizing ||w|| or ||w||2 = wTw 

 

• Assume N training points (xk , yk), yk = 1 or -1 

• Subject to each training point on the correct side 
(the constraint), i.e., 

subject to yk(w
Txk + b)  1 for all k 

This is a Quadratic optimization problem, which 
can be solved efficiently 

SVMs:  More than Two Classes 

• SVMs can only handle two-class problems 

• N-class problem: Split the task into N binary 
tasks and learn N  SVMs: 

• Class 1 vs. the rest (classes 2 — N) 

• Class 2 vs. the rest (classes 1, 3 — N) 

• … 

• Class N  vs. the rest 

• Finally, pick the class that puts the point 
farthest into the positive region 

SVM: Non Linearly-Separable Data 

• What if the data are not linearly separable? 

SVM: Non Linearly-Separable Data 

• Two solutions: 

 Allow a few points on the wrong side (slack variables) 

 Map data to a higher dimensional space, and do linear 
classification there (kernel trick) 
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Non Linearly-Separable Data 

• Approach 1:  Allow a few points on the wrong 
side (slack variables) 

denotes +1 

denotes -1 

What should we do? 

denotes +1 

denotes -1 

What should we do? 

Idea 1: 

Find minimum ||w||2 while 
minimizing number of 
training set errors 

Problem: Two things to 
minimize makes for an 
ill-defined optimization 

denotes +1 

denotes -1 

What should we do? 

Idea 1.1: 

Minimize 

 ||w||2 + C (# train errors) 

 

 

There’s a serious practical 
problem with this approach 

Tradeoff parameter 
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What should we do? 

Idea 1.1: 

Minimize 

 ||w||2 + C (# train errors) 

 

 

There’s a serious practical 
problem with this approach 

denotes +1 

denotes -1 

Tradeoff parameter 

Can’t be expressed as a Quadratic 
Programming problem. 

Solving it may be too slow. 

(Also, doesn’t distinguish between 
disastrous errors and near misses) 

denotes +1 

denotes -1 

What should we do? 

Idea 2.0: 

Minimize 
 ||w||2 + C (distance of  
       “error points”             
        to their correct 
        place) 

 

 

Learning Maximum Margin with Noise 
Given guess of w, b, we can 

1. Compute sum of distances 
of points to their correct 
zones 

2. Compute the margin width 

Assume N examples, each  
(xk , yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

How many constraints will 
we have?  

What should they be? 

Learning Maximum Margin with Noise 
Given guess of w , b we can 

1. Compute sum of distances 
of points to their correct 
zones 

2. Compute the margin width 

Assume N  examples, each  
(xk , yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

 

Minimize 
1

1

2

N

k

k

C ε


  w w

e7  

e11  

e2  

How many constraints will we 
have?  N 

What should they be? 

“slack variables” 

yk(w
Txk + b)  1-ek for all k 
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Given guess of w , b we can 

1. Compute sum of distances 
of points to their correct 
zones 

2. Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 

Learning Maximum Margin with Noise 
M = 

2

w w

What should our quadratic 
optimization criterion be? 

 

Minimize 
1

1

2

N

k

k

C ε


  w w

e7  

e11  
e2  

Our original (noiseless data) QP had d +1 
variables: w1, w2, … wd, and b 

Our new (noisy data) QP has d +1+N 
variables: w1, w2, … wd, b, ek , e1 ,… eN  

d = # input 
dimensions 

How many constraints will we 
have? N 

What should they be? 

w · xk + b  1- ek  if yk = +1 

w · xk + b  -1+ek  if yk = -1 

N = # examples 
How many constraints will we 

have? N 

What should they be? 

w · xk + b  1- ek  if yk = +1 

w · xk + b  -1+ek  if yk = -1 

Learning Maximum Margin with Noise 
Given guess of w , b we can 

1. Compute sum of distances 
of points to their correct 
zones 

2. Compute the margin width 

Assume N examples, each 
(xk, yk) where yk = +/- 1 

M = 
2

w w

What should our quadratic 
optimization criterion be? 

 

Minimize 
1

1

2

N

k

k

C ε


  w w

e7  

e11  
e2  

There’s a bug in this QP. Can you spot it? 

Learning Maximum Margin with Noise 
Given guess of w , b we can 

1. Compute sum of distances 
of points to their correct 
zones 

2. Compute the margin width 

Assume N examples, each 
(xk, yk) where yk = +/- 1 

M = 
2

w w

What should our quadratic 
optimization criterion be? 

 

Minimize 

How many constraints will we 
have?  2N 

What should they be? 

w · xk + b  +1 - ek  if yk = +1 

w · xk + b  -1 + ek  if yk = -1 

ek  0 for all k 

1

1

2

N

k

k

C ε


  w w

e7  

e11  
e2  

Non Linearly-Separable Data 

• Approach 2:  Map data to a higher 
dimensional space, and do linear classification 
there (kernel trick) 
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Suppose we’re in 1 Dimension 

What would 
SVMs do with 
this data? 

x=0 

Suppose we’re in 1 Dimension 

Positive “plane” Negative “plane” 

x=0 

Harder 1D Dataset: 
Not Linearly-Separable 

What can be done 
about this? 

x=0 

Harder 1D Dataset 

The Kernel Trick: 
Preprocess the 
data, mapping x 
into a higher 
dimensional 
space, (x) 

x=0 
),()( 2xxx 

Here,  maps data from 1D to 2D 
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Harder 1D Dataset 

x=0 
),()( 2xxx 

The Kernel Trick: 
Preprocess the 
data, mapping x 
into a higher 
dimensional 
space, (x) 

wT (x) + b = +1 

The data is linearly 
separable in the new 
space, so use a linear 
SVM in the new space 

Another Example 

),,(),( 2

2

2

12121 xxxxxx 

• Project examples into some higher dimensional space 
where the data is linearly separable, defined by z = (x) 

• Can formulate optimization problem so that objective 
function depends only on dot products of the form 

(xi)
T · (xj)   where xi and xj are two data points 

• Example: 

 

 

Define  K(xi, xj) = (xi)
T · (xj) = (xi · xj)

2 

 

• Claim:  Can compute kernel function K without explicitly 
computing (x) or w 

• Dimensionality of z space is generally much larger than 
the dimensionality of input space x 

 

),2,()( 2

221

2

1 xxxxx 

What’s Special about a Kernel? 

• Say data is 2D: s = (s1, s2) 

• We decide to use a particular mapping into 6D 
space: 

(s) = (s1
2, s2

2, 2 s1s2, s1, s2, 1) 

• Let another point be t = (t1, t2) 

• Then, 

(s)T  (t) = s1
2 t1

2 + s2
2 t2

2 + 2s1s2t1t2 + s1t1 + s2t2 + 1 

• Let the kernel be K(s, t) = (sTt +1)2 = (s1t1 + s2t2 + 1)2 

• K(s, t) = (s)T  (t)  

• We save computation by using K  
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Some Commonly Used Kernels 

• Linear kernel:  K(xi , xj) = xi
T xj 

• Quadratic kernel: K(xi , xj) = (xi
T xj  +1)2 

• Polynomial kernel: K(xi , xj) = (xi
T xj  +1)d 

• Radial Basis Function kernel:                                     
 K(xi , xj) = exp(- ||xi

  -xj ||
2  / 2)  

 

• Many other kernels 

• Hacking with SVMs: create various kernels, hope their 
space  is meaningful, plug them into SVM, pick one 
with good classification accuracy 

• Kernel can be combined with slack variables 

Example Application: 
The Federalist Papers Dispute 

• Written in 1787-1788 by Alexander Hamilton, John 

Jay, and James Madison to persuade the citizens of 

New York to ratify the U.S. Constitution 

 

• Papers consisted of short essays, 900 to 3500 words 

in length   

 

• Authorship of 12 of those papers have been in 

dispute ( Madison or Hamilton); these papers are 

referred to as the disputed Federalist papers 

 

Description  of  the  Data 

•  For every paper: 
• Machine readable text was created using a scanner 

• Computed relative frequencies of 70 words that 

Mosteller-Wallace identified as good candidates for 

author-attribution studies 

• Each document is represented as a vector containing the 

70 real numbers corresponding to the 70 word 

frequencies 

•  The dataset consists of 118 papers: 
•  50 Madison papers 

•  56 Hamilton papers 

•  12 disputed papers 

 

Function Words Based on Relative 
Frequencies 
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Feature Selection for Classifying the 
Disputed Federalist Papers 

• Apply the SVM Successive Linearization 

Algorithm for feature selection to: 

• Train on the 106 Federalist papers with known 

authors 

• Find a classification hyperplane that uses as few 

words as possible 

• Use the hyperplane to classify the 12 

disputed papers 
 

 

Hyperplane Classifier Using 3 Words 

• A hyperplane depending on three words 

was found: 

   

 0.537to + 24.663upon + 2.953would = 66.616 

 

• All disputed papers ended up on the 

Madison side of the plane 

 

  

 

 

 

Results: 3D Plot of Hyperplane SVM Applet 

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml 

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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Summary 

• Learning linear functions 

• Pick separating plane that maximizes margin 

• Separating plane defined in terms of support 
vectors only 

• Learning non-linear functions 

• Project examples into higher dimensional space 

• Use kernel functions for efficiency 

• Generally avoids overfitting problem 

• Global optimization method; no local optima 

• Can be expensive to apply, especially for multi-
class problems 


