
1

Support Vector Machines

• Optimally defined decision surface

• Typically nonlinear in the input space

• Linear in a higher dimensional space

• Implicitly defined by a kernel function

Acknowledgments: These slides combine and modify ones
provided by Andrew Moore (CMU), Jerry Zhu (Wisconsin), Glenn
Fung (Wisconsin), and Olvi Mangasarian (Wisconsin)

What are Support Vector Machines
Used For?

• Classification

• Regression and data-fitting

• Supervised and unsupervised learning

Lake Mendota, Madison, WI
• Identify areas of land cover (land, ice,

water, snow) in a scene

• Two methods:
• Scientist manually-derived

• Support Vector Machine (SVM)

Visible
Image

Expert
Labeled

Expert
Derived

Automated
Ratio

SVM

Lake Mendota, Wisconsin

Classifier Expert

Derived

SVM

cloud 45.7% 58.5%

ice 60.1% 80.4%

land 93.6% 94.0%

snow 63.5% 71.6%

water 84.2% 89.1%

unclassified 45.7%

Courtesy of Steve Chien of NASA/JPL

 Linear Classifiers
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

How would you
classify this data?

2

Linear Classifiers
(aka Linear Discriminant Functions)

• Definition

 A function that is a linear combination of the
components of the input (column vector) x

 where w is the weight (column vector) and b is
the bias

• A 2-class classifier then uses the rule:

 Decide class c1 if f(x)  0 and class c2 if f(x) < 0

  Decide c1 if w
Tx  -b and c2 otherwise

T

1

()
m

ij j

j

f x w x b b


    w x

w is the plane’s normal vector

b is the distance from the origin

Planar decision surface
in d dimensions is
parameterized by (w, b)

 Linear Classifiers
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

How would you
classify this data?

 Linear Classifiers
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

How would you
classify this data?

3

 Linear Classifiers
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

How would you
classify this data?

 Linear Classifiers
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

Any of these
would be fine …

… but which is
best?

Classifier Margin
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point

Maximum Margin
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

The maximum
margin linear
classifier is the
linear classifier
with the maximum
margin!

This is the
simplest kind of
SVM (Called an
LSVM)

Linear SVM

4

Maximum Margin
f x y

denotes +1

denotes -1

f(x, w, b) = sign(w · x + b)

The maximum
margin linear
classifier is the
linear classifier
with the maximum
margin

This is the
simplest kind of
SVM (Called an
LSVM)

Support Vectors
are those data
points that the
margin pushes up
against

Linear SVM

Why Maximum Margin?

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of
SVM (Called an
LSVM)

Support Vectors
are those data
points that the
margin pushes
up against

1. Intuitively this feels safest

2. If we’ve made a small error in the
location of the boundary (it’s been
jolted in its perpendicular direction)
this gives us least chance of causing a
misclassification

3. Robust to outliers since the model is
immune to change/removal of any
non-support-vector data points

4. There’s some theory (using “VC
dimension”) that is related to (but not
the same as) the proposition that this
is a good thing

5. Empirically it works very well

Specifying a Line and Margin

• How do we represent this mathematically?

• … in d input dimensions?

• An example x = (x1, …, xd)
T

Plus-Plane

Minus-Plane

Classifier Boundary

Specifying a Line and Margin

• Plus-plane = wT · x + b = +1

• Minus-plane = wT · x + b = -1

Plus-Plane

Minus-Plane

Classifier Boundary

Classify as +1 if wT · x + b  1

 -1 if wT · x + b ≤ -1

 ? if -1 < wT · x + b < 1

Weight vector: w = (w1 , …, wd)
T

Bias or threshold: b

The dot product wT · x
=  wi xi is a scalar:
x’s projection onto w

5

Computing the Margin

• Plus-plane = w x + b = +1

• Minus-plane = w x + b = -1

Claim: The vector w is perpendicular to the Plus-Plane

M = Margin (width)

How do we compute
M in terms of w
and b?

w

Note: From now on,
transpose symbol on w
implied

Computing the Margin

• Plus-plane = w x + b = +1

• Minus-plane = w x + b = -1

• The vector w is perpendicular to the Plus Plane

• Let x  be any point on the minus plane

• Let x + be the closest plus-plane-point to x -

M = Margin

How do we compute
M in terms of w
and b?

x -

x +

Any location in


m: not

necessarily a

datapoint

Any location in
Rm: not
necessarily a

data point

w

Computing the Margin

• Plus-plane = w x + b = +1

• Minus-plane = w x + b = -1

• The vector w is perpendicular to the Plus Plane

• Let x  be any point on the minus plane

• Let x + be the closest plus-plane-point to x 

• Claim: x + = x  + l w for some value of l. Why?

M = Margin

How do we compute
M in terms of w
and b?

x -

x +

w

Computing the Margin

• Plus-plane = w x + b = +1

• Minus-plane = w x + b = -1

• The vector w is perpendicular to the Plus Plane

• Let x  be any point on the minus plane

• Let x + be the closest plus-plane-point to x 

• Claim: x + = x  + l w for some value of l. Why?

M = Margin

How do we compute
M in terms of w
and b?

x -

x +

The line from x - to x + is
perpendicular to the
planes

So to get from x - to x +
travel some distance in
direction w

w

6

Computing the Margin

What we know:

• w x + + b = +1

• w x  + b = -1

• x + = x  + l w

• ||x + - x  || = M

It’s now easy to get M in terms of w and b

M = Margin

x -

x +

w

Computing the Margin

What we know:

• w x + + b = +1

• w x - + b = -1

• x + = x - + l w

• ||x + - x - || = M

It’s now easy to get M
in terms of w and b

M = Margin

w (x - + l w) + b = 1



w x - + b + l ww = 1



-1 + l ww = 1



x -

x +

w

wwT

2
l

Computing the Margin

What we know:

• w x + + b = +1

• w x - + b = -1

• x + = x - + l w

• ||x + - x - || = M

2
λ 

w w

M = Margin =

M = |x + - x - | =| l w |=

x -

x +

2 2
 

 

w w

w w w w

| |λ λ  w w w

2

w w

w

w

2
 = M, margin size

Learning the Maximum Margin Classifier

Given a guess of w and b we can

1. Compute whether all data points in the correct half-planes

2. Compute the width of the margin

So now we just need to write a program to search the space
of w’s and b’s to find the widest margin that matches all
the data points. How?

M = Margin =

x -

x +
2

w w

w

7

SVM as Constrained Optimization
• Unknowns: w, b

• Objective function: maximize the margin
M=2/||w||

• Equivalent to minimizing ||w|| or ||w||2 = wTw

• Assume N training points (xk , yk), yk = 1 or -1

• Subject to each training point on the correct side
(the constraint), i.e.,

subject to yk(w
Txk + b)  1 for all k

This is a Quadratic optimization problem, which
can be solved efficiently

SVMs: More than Two Classes

• SVMs can only handle two-class problems

• N-class problem: Split the task into N binary
tasks and learn N SVMs:

• Class 1 vs. the rest (classes 2 — N)

• Class 2 vs. the rest (classes 1, 3 — N)

• …

• Class N vs. the rest

• Finally, pick the class that puts the point
farthest into the positive region

SVM: Non Linearly-Separable Data

• What if the data are not linearly separable?

SVM: Non Linearly-Separable Data

• Two solutions:

 Allow a few points on the wrong side (slack variables)

 Map data to a higher dimensional space, and do linear
classification there (kernel trick)

8

Non Linearly-Separable Data

• Approach 1: Allow a few points on the wrong
side (slack variables)

denotes +1

denotes -1

What should we do?

denotes +1

denotes -1

What should we do?

Idea 1:

Find minimum ||w||2 while
minimizing number of
training set errors

Problem: Two things to
minimize makes for an
ill-defined optimization

denotes +1

denotes -1

What should we do?

Idea 1.1:

Minimize

 ||w||2 + C (# train errors)

There’s a serious practical
problem with this approach

Tradeoff parameter

9

What should we do?

Idea 1.1:

Minimize

 ||w||2 + C (# train errors)

There’s a serious practical
problem with this approach

denotes +1

denotes -1

Tradeoff parameter

Can’t be expressed as a Quadratic
Programming problem.

Solving it may be too slow.

(Also, doesn’t distinguish between
disastrous errors and near misses)

denotes +1

denotes -1

What should we do?

Idea 2.0:

Minimize
 ||w||2 + C (distance of
 “error points”
 to their correct
 place)

Learning Maximum Margin with Noise
Given guess of w, b, we can

1. Compute sum of distances
of points to their correct
zones

2. Compute the margin width

Assume N examples, each
(xk , yk) where yk = +/- 1

M =

ww.

2

What should our quadratic
optimization criterion be?

How many constraints will
we have?

What should they be?

Learning Maximum Margin with Noise
Given guess of w , b we can

1. Compute sum of distances
of points to their correct
zones

2. Compute the margin width

Assume N examples, each
(xk , yk) where yk = +/- 1

M =

ww.

2

What should our quadratic
optimization criterion be?

Minimize
1

1

2

N

k

k

C ε


  w w

e7

e11

e2

How many constraints will we
have? N

What should they be?

“slack variables”

yk(w
Txk + b)  1-ek for all k

10

Given guess of w , b we can

1. Compute sum of distances
of points to their correct
zones

2. Compute the margin width

Assume R datapoints, each
(xk,yk) where yk = +/- 1

Learning Maximum Margin with Noise
M =

2

w w

What should our quadratic
optimization criterion be?

Minimize
1

1

2

N

k

k

C ε


  w w

e7

e11
e2

Our original (noiseless data) QP had d +1
variables: w1, w2, … wd, and b

Our new (noisy data) QP has d +1+N
variables: w1, w2, … wd, b, ek , e1 ,… eN

d = # input
dimensions

How many constraints will we
have? N

What should they be?

w · xk + b  1- ek if yk = +1

w · xk + b  -1+ek if yk = -1

N = # examples
How many constraints will we

have? N

What should they be?

w · xk + b  1- ek if yk = +1

w · xk + b  -1+ek if yk = -1

Learning Maximum Margin with Noise
Given guess of w , b we can

1. Compute sum of distances
of points to their correct
zones

2. Compute the margin width

Assume N examples, each
(xk, yk) where yk = +/- 1

M =
2

w w

What should our quadratic
optimization criterion be?

Minimize
1

1

2

N

k

k

C ε


  w w

e7

e11
e2

There’s a bug in this QP. Can you spot it?

Learning Maximum Margin with Noise
Given guess of w , b we can

1. Compute sum of distances
of points to their correct
zones

2. Compute the margin width

Assume N examples, each
(xk, yk) where yk = +/- 1

M =
2

w w

What should our quadratic
optimization criterion be?

Minimize

How many constraints will we
have? 2N

What should they be?

w · xk + b  +1 - ek if yk = +1

w · xk + b  -1 + ek if yk = -1

ek  0 for all k

1

1

2

N

k

k

C ε


  w w

e7

e11
e2

Non Linearly-Separable Data

• Approach 2: Map data to a higher
dimensional space, and do linear classification
there (kernel trick)

11

Suppose we’re in 1 Dimension

What would
SVMs do with
this data?

x=0

Suppose we’re in 1 Dimension

Positive “plane” Negative “plane”

x=0

Harder 1D Dataset:
Not Linearly-Separable

What can be done
about this?

x=0

Harder 1D Dataset

The Kernel Trick:
Preprocess the
data, mapping x
into a higher
dimensional
space, (x)

x=0
),()(2xxx 

Here,  maps data from 1D to 2D

12

Harder 1D Dataset

x=0
),()(2xxx 

The Kernel Trick:
Preprocess the
data, mapping x
into a higher
dimensional
space, (x)

wT (x) + b = +1

The data is linearly
separable in the new
space, so use a linear
SVM in the new space

Another Example

),,(),(2

2

2

12121 xxxxxx 

• Project examples into some higher dimensional space
where the data is linearly separable, defined by z = (x)

• Can formulate optimization problem so that objective
function depends only on dot products of the form

(xi)
T · (xj) where xi and xj are two data points

• Example:

Define K(xi, xj) = (xi)
T · (xj) = (xi · xj)

2

• Claim: Can compute kernel function K without explicitly
computing (x) or w

• Dimensionality of z space is generally much larger than
the dimensionality of input space x

),2,()(2

221

2

1 xxxxx 

What’s Special about a Kernel?

• Say data is 2D: s = (s1, s2)

• We decide to use a particular mapping into 6D
space:

(s) = (s1
2, s2

2, 2 s1s2, s1, s2, 1)

• Let another point be t = (t1, t2)

• Then,

(s)T  (t) = s1
2 t1

2 + s2
2 t2

2 + 2s1s2t1t2 + s1t1 + s2t2 + 1

• Let the kernel be K(s, t) = (sTt +1)2 = (s1t1 + s2t2 + 1)2

• K(s, t) = (s)T  (t)

• We save computation by using K

13

Some Commonly Used Kernels

• Linear kernel: K(xi , xj) = xi
T xj

• Quadratic kernel: K(xi , xj) = (xi
T xj +1)2

• Polynomial kernel: K(xi , xj) = (xi
T xj +1)d

• Radial Basis Function kernel:
 K(xi , xj) = exp(- ||xi

 -xj ||
2 / 2)

• Many other kernels

• Hacking with SVMs: create various kernels, hope their
space  is meaningful, plug them into SVM, pick one
with good classification accuracy

• Kernel can be combined with slack variables

Example Application:
The Federalist Papers Dispute

• Written in 1787-1788 by Alexander Hamilton, John

Jay, and James Madison to persuade the citizens of

New York to ratify the U.S. Constitution

• Papers consisted of short essays, 900 to 3500 words

in length

• Authorship of 12 of those papers have been in

dispute (Madison or Hamilton); these papers are

referred to as the disputed Federalist papers

Description of the Data

• For every paper:
• Machine readable text was created using a scanner

• Computed relative frequencies of 70 words that

Mosteller-Wallace identified as good candidates for

author-attribution studies

• Each document is represented as a vector containing the

70 real numbers corresponding to the 70 word

frequencies

• The dataset consists of 118 papers:
• 50 Madison papers

• 56 Hamilton papers

• 12 disputed papers

Function Words Based on Relative
Frequencies

14

Feature Selection for Classifying the
Disputed Federalist Papers

• Apply the SVM Successive Linearization

Algorithm for feature selection to:

• Train on the 106 Federalist papers with known

authors

• Find a classification hyperplane that uses as few

words as possible

• Use the hyperplane to classify the 12

disputed papers

Hyperplane Classifier Using 3 Words

• A hyperplane depending on three words

was found:

 0.537to + 24.663upon + 2.953would = 66.616

• All disputed papers ended up on the

Madison side of the plane

Results: 3D Plot of Hyperplane SVM Applet

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

15

Summary

• Learning linear functions

• Pick separating plane that maximizes margin

• Separating plane defined in terms of support
vectors only

• Learning non-linear functions

• Project examples into higher dimensional space

• Use kernel functions for efficiency

• Generally avoids overfitting problem

• Global optimization method; no local optima

• Can be expensive to apply, especially for multi-
class problems

