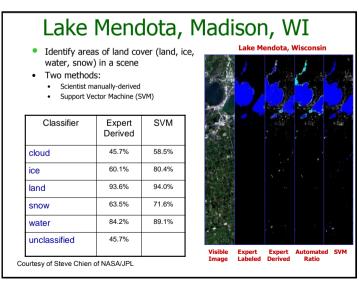
Support Vector Machines

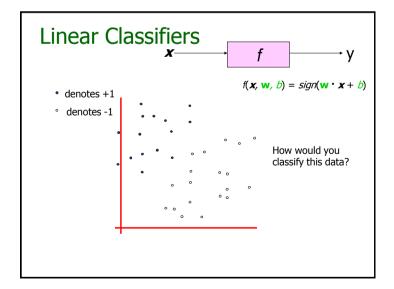
- Optimally defined decision surface
- Typically nonlinear in the input space
- Linear in a higher dimensional space
- Implicitly defined by a kernel function

Acknowledgments: These slides combine and modify ones provided by Andrew Moore (CMU), Jerry Zhu (Wisconsin), Glenn Fung (Wisconsin), and Olvi Mangasarian (Wisconsin)

What are Support Vector Machines Used For?

- Classification
- Regression and data-fitting
- Supervised and unsupervised learning





Linear Classifiers (aka Linear Discriminant Functions)

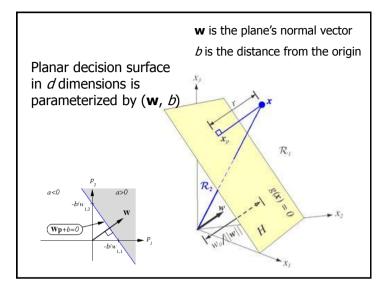
• Definition

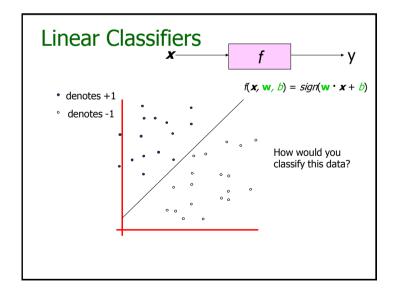
A function that is a linear combination of the components of the input (column vector) ${\bm x}$

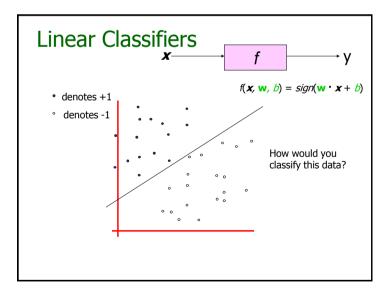
$$f(x) = \sum_{j=1}^{m} w_{ij} x_j + b = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b$$

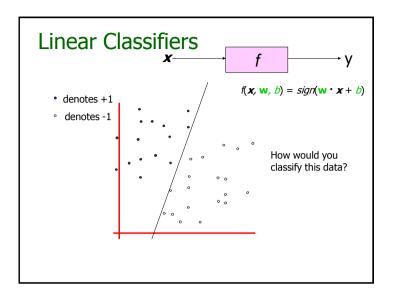
where ${\bf w}$ is the weight (column vector) and b is the bias

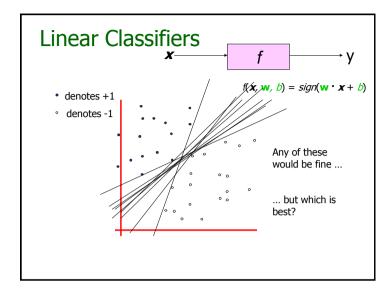
 A 2-class classifier then uses the rule: Decide class c₁ if f(x) ≥ 0 and class c₂ if f(x) < 0
 ⇔ Decide c₁ if w^Tx ≥ -b and c₂ otherwise

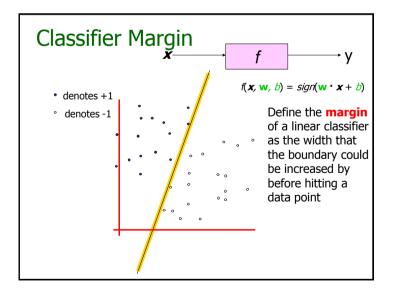


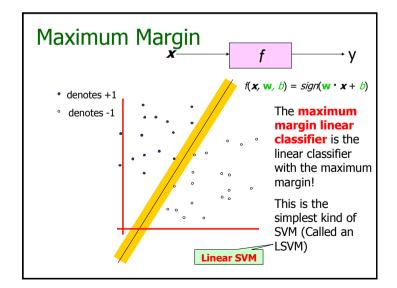


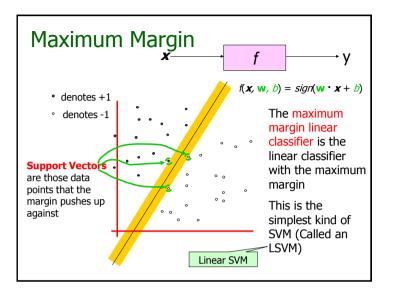


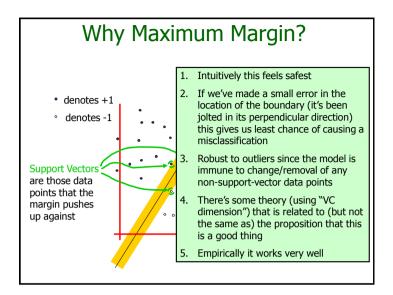


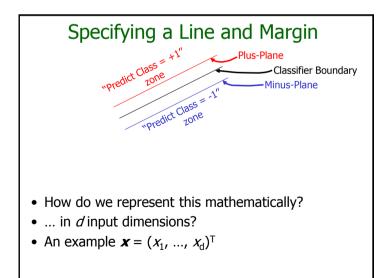


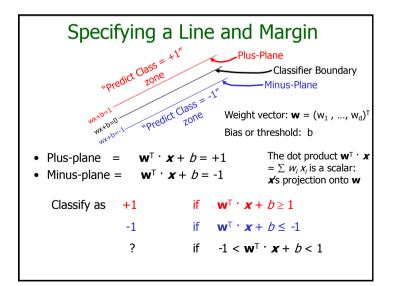


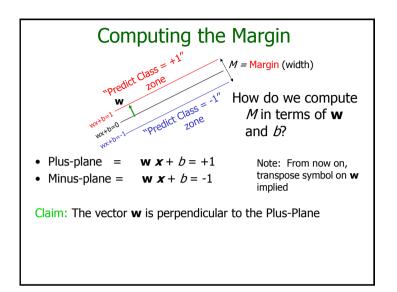


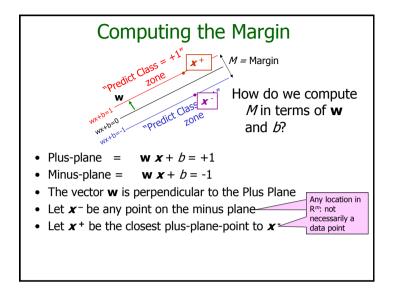


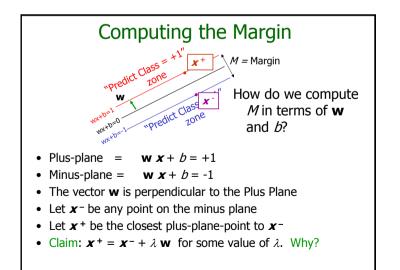


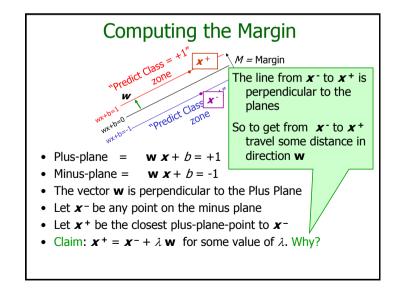


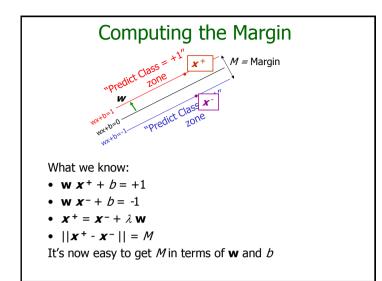


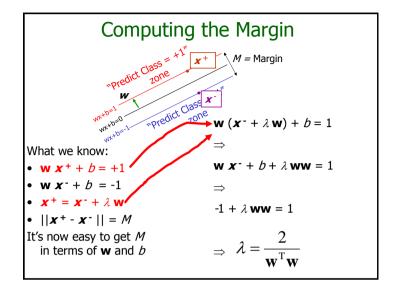


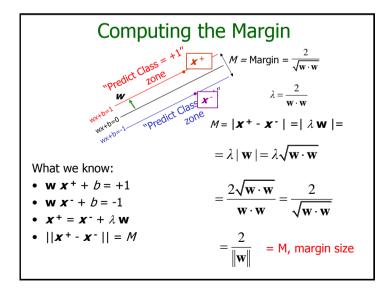


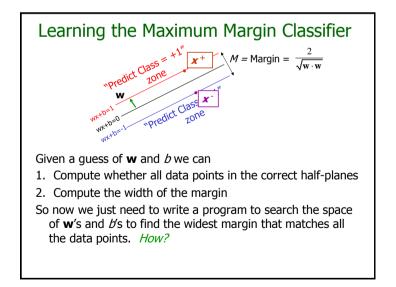












SVM as Constrained Optimization

- Unknowns: w, b
- Objective function: maximize the margin $M=2/||\mathbf{w}||$
- Equivalent to **minimizing** $||\mathbf{w}||$ or $||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$
- Assume N training points (x_k, y_k) , $y_k = 1$ or -1
- Subject to each training point on the correct side (the constraint), i.e.,

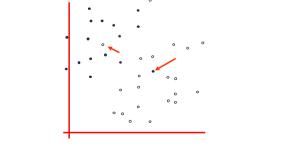
subject to $y_k(\mathbf{w}^T x_k + b) \ge 1$ for all k

This is a **Quadratic optimization problem**, which can be solved efficiently

SVMs: More than Two Classes

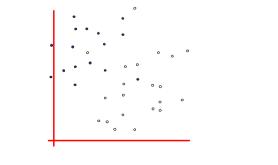
- SVMs can only handle two-class problems
- *N*-class problem: Split the task into *N* binary tasks and learn *N* SVMs:
 - Class 1 vs. the rest (classes 2 N)
 - Class 2 vs. the rest (classes 1, 3 N)
 - ...
 - Class N vs. the rest
- Finally, pick the class that puts the point farthest into the positive region

SVM: Non Linearly-Separable Data • What if the data are *not* linearly separable?



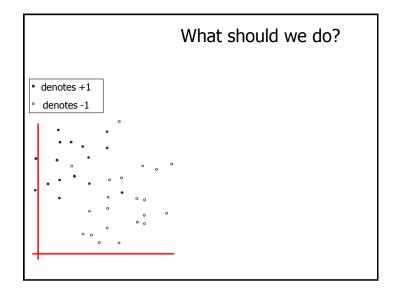
SVM: Non Linearly-Separable Data

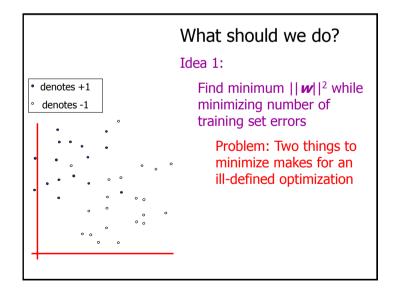
- Two solutions:
 - Allow a few points on the wrong side (slack variables)
 - Map data to a higher dimensional space, and do linear classification there (kernel trick)

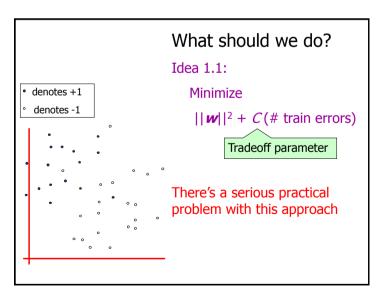


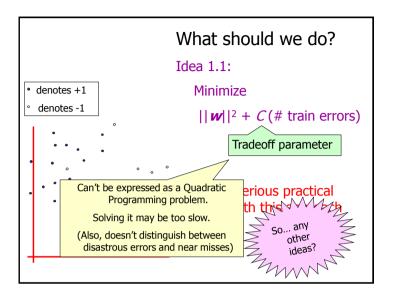
Non Linearly-Separable Data

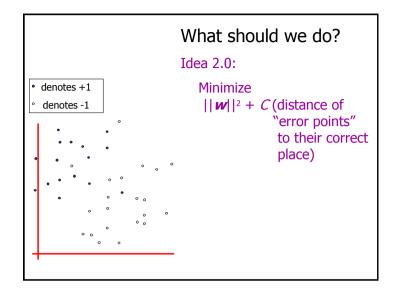
• Approach 1: Allow a few points on the wrong side (**slack variables**)

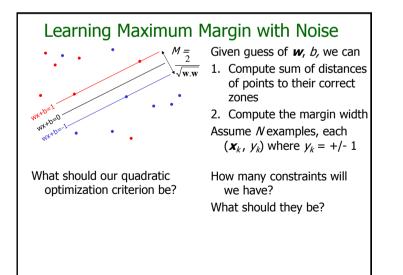


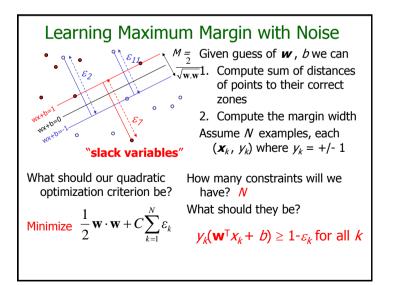


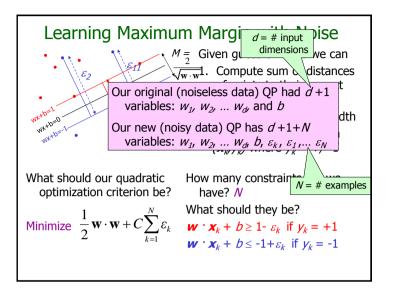


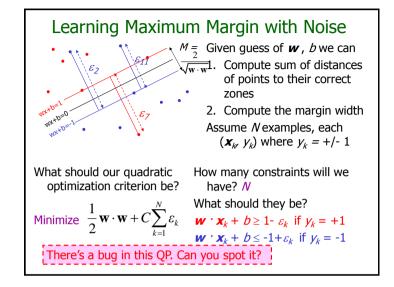


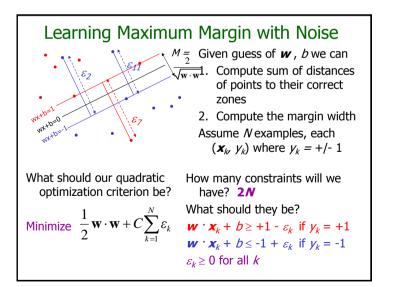


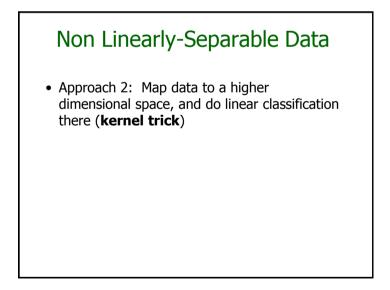


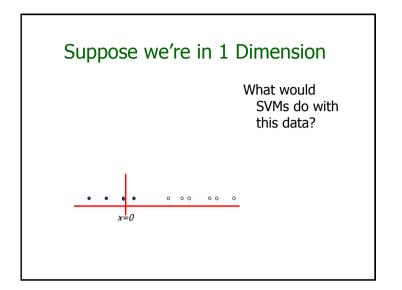


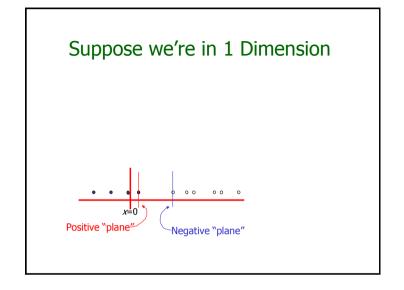


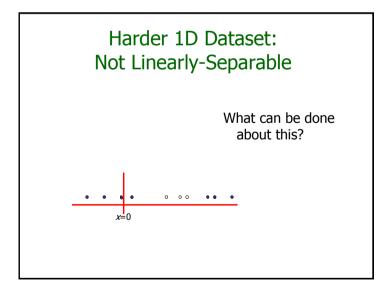


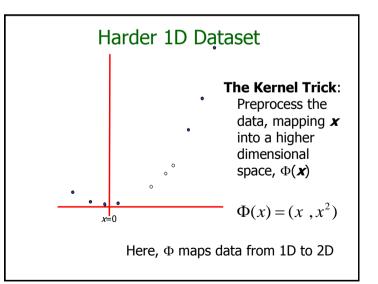


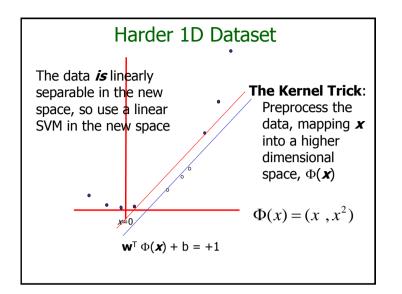


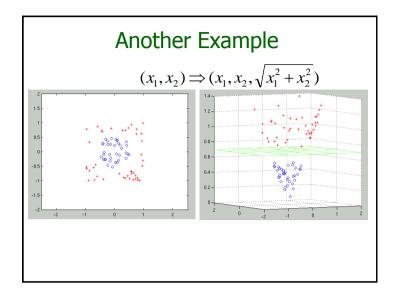












- Project examples into some higher dimensional space where the data *is* linearly separable, defined by *z* = Φ(*x*)
- Can formulate optimization problem so that objective function depends *only* on dot products of the form
 Φ(**x**_i)^T · Φ(**x**_j) where **x**_i and **x**_j are two data points
- Example:

$$\Phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

Define $K(\mathbf{x}_{i'}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i})^{\mathsf{T}} \cdot \Phi(\mathbf{x}_{j}) = (\mathbf{x}_{i} \cdot \mathbf{x}_{j})^{2}$

- Claim: Can compute kernel function *K without* explicitly computing Φ(*x*) or w
- Dimensionality of *z* space is generally *much larger* than the dimensionality of input space *x*

What's Special about a Kernel?

- Say data is 2D: **s** = (s₁, s₂)
- We decide to use a particular mapping into 6D space:

 $\Phi(\mathbf{s}) = (s_1^2, s_2^2, \sqrt{2} s_1 s_2, s_1, s_2, 1)$

- Let another point be $\mathbf{t} = (t_1, t_2)$
- Then,

$$\Phi(\mathbf{s})^{\mathsf{T}} \cdot \Phi(\mathbf{t}) = s_1^2 t_1^2 + s_2^2 t_2^2 + 2s_1 s_2 t_1 t_2 + s_1 t_1 + s_2 t_2 + 1$$

- Let the **kernel** be $K(\mathbf{s}, \mathbf{t}) = (\mathbf{s}^{\mathsf{T}} \cdot \mathbf{t} + 1)^2 = (s_1 t_1 + s_2 t_2 + 1)^2$
- $K(\boldsymbol{s}, \boldsymbol{t}) = \Phi(\boldsymbol{s})^{\mathsf{T}} \cdot \Phi(\boldsymbol{t})$
- We save computation by using K

Some Commonly Used Kernels

- Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$
- Quadratic kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j + 1)^2$
- Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j + 1)^d$
- Radial Basis Function kernel:
 K(*x_i*, *x_j*) = exp(- ||*x_i x_j*||² / σ²)
- Many other kernels
- Hacking with SVMs: create various kernels, hope their space Φ is meaningful, plug them into SVM, pick one with good classification accuracy
- · Kernel can be combined with slack variables

Example Application: The Federalist Papers Dispute

- Written in 1787-1788 by Alexander Hamilton, John Jay, and James Madison to persuade the citizens of New York to ratify the U.S. Constitution
- Papers consisted of short essays, 900 to 3500 words in length
- Authorship of 12 of those papers have been in dispute (Madison or Hamilton); these papers are referred to as the disputed Federalist papers

Description of the Data

- For every paper:
 - Machine readable text was created using a scanner
 - Computed relative frequencies of 70 words that Mosteller-Wallace identified as good candidates for author-attribution studies
 - Each document is represented as a vector containing the 70 real numbers corresponding to the 70 word frequencies
- The dataset consists of 118 papers:
 - 50 Madison papers
 - 56 Hamilton papers
 - 12 disputed papers

Function Words Based on Relative Frequencies

1	a	15	do	29	is	43	or	57	this
2	all	16	down	30	it	44	our	58	to
3	also	17	even	31	its	45	shall	59	up
4	an	18	every	32	may	46	should	60	upon
5	and	19	for	33	more	47	so	61	was
6	any	20	from	34	must	48	some	62	were
7	are	21	had	35	$_{my}$	49	such	63	what
8	as	22	has	36	no	50	than	64	when
9	at	23	have	37	not	51	that	65	which
10	be	24	her	38	now	52	the	66	who
11	been	25	his	39	of	53	their	67	will
12	but	26	if	40	on	54	then	68	with
13	by	27	in	41	one	55	there	69	would
14	can	28	into	42	only	56	things	70	your

Feature Selection for Classifying the Disputed Federalist Papers

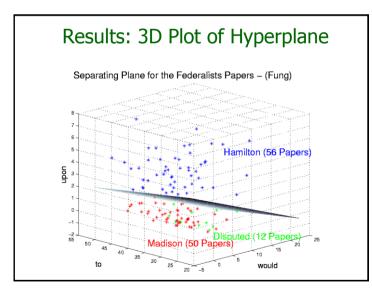
- Apply the SVM Successive Linearization Algorithm for feature selection to:
 - Train on the 106 Federalist papers with known authors
 - Find a classification hyperplane that uses as few words as possible
- Use the hyperplane to classify the 12 disputed papers

Hyperplane Classifier Using 3 Words

• A hyperplane depending on three words was found:

0.537to + 24.663upon + 2.953would = 66.616

• All disputed papers ended up on the Madison side of the plane



SVM Applet

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

Summary

- Learning linear functions
 - Pick separating plane that maximizes margin
 - Separating plane defined in terms of support vectors only
- Learning non-linear functions
 - Project examples into higher dimensional space
 - Use kernel functions for efficiency
- Generally avoids overfitting problem
- Global optimization method; no local optima
- Can be expensive to apply, especially for multiclass problems