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Uninformed Search 

Chapter 3.1 – 3.4 

Many AI Tasks can be Formulated 
as Search Problems 

 Puzzles 

 Games 

 Navigation 

 Assignment 

 Layout 

 Scheduling 

 Routing 

Search Example:  Route Finding Search Example:  River Crossing Problem 

Rules: 

1) Farmer must row the boat 

2) Only room for one other 

3) Without the farmer present: 

• Dog bites sheep 

• Sheep eats cabbage 
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Search Example:  8-Puzzle 
 

 

 

 

 

 

 

Search Example:  Water Jugs Problem 

Given 4-liter and 3-liter pitchers, how do you get 

exactly 2 liters into the 4-liter pitcher? 
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Search Example:  8-Queens 

 

 

 

 

 

 

 

 

 

Remove 5 Sticks Problem 

Remove exactly 5 

of the 17 sticks so 

the resulting figure 

forms exactly 3 

squares 
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Basic Search Task Assumptions 
(usually, though not games) 

 Fully observable 

 Deterministic 

 Static 

 Discrete 

 Single agent 
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What Knowledge does the Agent 

Need? 

 
 The information needs to be 

– sufficient to describe all relevant aspects 

for reaching the goal 

– adequate to describe the world state/situation 

 

 Fully observable assumption, also known as the 

closed world assumption, means 

– All necessary information about a problem domain 

is accessible so that each state is a complete 

description of the world; there is no missing 

information at any point in time 

12 

How should the Environment be 

Represented? 
 

 Knowledge representation problem: 

– What information from the sensors is relevant? 

– How to represent domain knowledge? 

 Determining what to represent is difficult and is 

usually left to the system designer to specify 

 Problem State = representation of all necessary 

information about the environment 

 State Space (aka Problem Space) = all possible valid 

configurations of the environment 
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What Goal does the Agent want to 

Achieve? 
 

 How do you describe the goal? 

– as a task to be accomplished 

– as a state to be reached 

– as a set of properties to be satisfied 

 How do you know when the goal is reached? 

– with a goal test that defines what it means 

to have achieved/satisfied the goal 

– or, with a set of goal states 

 Determining the goal is usually left to the system 

designer or user to specify 
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What Actions does the Agent Need? 

 
 Discrete and Deterministic task assumptions imply 

 

 Given: 

– an action (aka operator or move) 

– a description of the current state of the world 

 

 Action completely specifies: 

– if that action can be applied (i.e., legal) 

– what the exact state of the world will be after the 

action is performed in the current state (no "history" 

information needed to compute the successor state) 

Search Example:  8-Puzzle 

 

 

 

 

 

 

 

 

 States = configurations 

 Actions = up to 4 kinds of moves: up, down, left, 

right 

Water Jugs Problem 

Given 4-liter and 3-liter pitchers, how do you get exactly 2 

liters into the 4-liter pitcher? 

 

 

 

 

 

 

 

 

State: (x, y) for # liters in 4-liter and 3-liter pitchers, respectively 

Actions: empty, fill, pour water between pitchers 

Initial state: (0, 0) 

Goal state:   (2, *) 

4 3 

Actions / Successor Functions 

1. (x, y | x < 4)      (4, y)  Fill  4 

2. (x, y | y < 3)     (x, 3)  Fill  3  

3. (x, y | x > 0)      (0, y)  Empty 4  

4. (x, y | y > 0)      (x, 0)  Empty 3 

5. (x, y | x+y  4  and y > 0)    (4, y - (4 - x))   

    Pour from 3 to 4 until 4 is full 

6. (x, y | x+y  3  and x > 0)    (x - (3 - y), 3)   

    Pour from 4 to 3 until 3 is full 

7. (x, y | x+y  4  and y > 0)    (x+y, 0)          

    Pour all water from 3 to 4 
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Formalizing Search in a State Space 

 A state space is a graph: (V, E) 

– V is a set of nodes (vertices) 

– E is a set of arcs (edges) 

each arc is directed from one node to another node 

 Each node is a data structure that contains: 

– a state description 

– other information such as: 

 link to parent node 

 name of action that generated this node (from its 

parent)  

 other bookkeeping data 
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Formalizing Search in a State Space 

 Each arc corresponds to one of the finite number of 

actions: 

– when the action is applied to the state associated 

with the arc's source node 

– then the resulting state is the state associated with 

the arc's destination node 

 

 Each arc has a fixed, positive cost: 

– corresponds to the cost of the action 
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Formalizing Search in a State Space 

 Each node has a finite set of successor nodes: 

– corresponds to all of the legal actions 

that can be applied at the source node's state 

 

 Expanding a node means: 

– generate all of the successor nodes 

– add them and their associated arcs to the state-

space search tree 
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Formalizing Search in a State Space 

 One or more nodes are designated as start nodes 

 A goal test is applied to a node's state to determine 

if it is a goal node 

 A solution is a sequence of actions associated with 

a path in the state space from a start to a goal node: 

– just the goal state (e.g., cryptarithmetic)  

– a path from start to goal state (e.g., 8-puzzle) 

 The cost of a solution is the sum of the arc costs 

on the solution path 
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(Ignoring “backwards” 

moves) 

8-Puzzle State Space Sizes of State Spaces 

 Tic-Tac-Toe    39 

 8 Puzzle                 105               .01 seconds 

 23 Rubik’s Cube    106                .2 seconds 

 15 Puzzle               1013             6 days 

 33 Rubik’s Cube    1019             68,000 years    

 24 Puzzle               1025             12 billion years 

 Checkers     1040 

 Chess     10120 

Brute-Force Search Time 

(10 million nodes/second) 

Problem Nodes 

Formalizing Search 

A search problem has five components: 

 S, I, G, actions, cost 

1. State space S: all valid configurations 

2. Initial states I ⊆ S: a set of start states 

3. Goal states G ⊆ S: a set of goal states 

4. An action function successors(s) ⊆ S : states 

reachable in one step (one arc) from s 

 

 

5. A cost function cost(s, s ):  The cost of moving from 

s to s 

 The goal of search is to find a solution path from a 

state in I to a state in G 

I = {(FCDS,)} ⊆ S 

G = {(,FCDS)} ⊆ S 

successors((FCDS,)) = {(CD,FS)} 
successors((CDF,S)) = {(CD,FS), (D,FCS), (C,FSD)} 

? 

F              C             D                 S  

F              C             D                 S  

State Space = A Directed Graph 

 

 

 

 

 

 

 

 

 

 In general there will be many generated, but un-

expanded, states at any given time 

 One has to choose which one to “expand” next 

CSDF, CD,SF CDF, S 

D, CFS 

C, DSF 

DFS, C 

CSF, D 

S, CFD SF, CD  , CSDF 

Start Goal 



7 

Different Search Strategies 

 The generated, but not yet expanded, states 
define the Frontier (aka Open or Fringe) list 

 The essential difference is, which one to expand 

first? 

 Deep or shallow? 

CSDF, CD,SF CDF, S 

D, CFS 

C, DSF 

DFS, C 

CSF, D 

S, CFD SF, CD  , CSDF 

Start Goal 

29 

Formalizing Search in a State Space 

State-space search is the process of searching through 

a state space for a solution by making explicit a 

sufficient portion of an implicit state-space graph to 

include a goal node:    TREE  SEARCH Alg. 
 

Frontier = {S}, where S is the start node 

Loop do 

 if Frontier is empty then return failure 

 pick a node, n, from Frontier 

if n is a goal node then return solution 

Generate all n’s successor nodes and add 

them all to Frontier 

Remove n from Frontier 

30 

Formalizing Search in a State Space 

 This algorithm does NOT detect goal when 

node is generated 

 This algorithm does NOT detect loops in state 

space 

 Each node implicitly represents 

– a partial solution path from the start node to the 

given node  

– cost of the partial solution path 

 From this node there may be 

– many possible paths that have this partial path 

as a prefix 

– many possible solutions 

Uninformed Search on Trees 

 Uninformed means we only know: 

– The goal test 

– The successors() function 

 But not which non-goal states are better 

 For now, also assume state space graph is a tree 

– That is, we won’t encounter (or at least worry 

about) repeated states 

– We will relax this later 

 Search strategies differ by what un-expanded 

node is expanded next 
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Uninformed Search Strategies 

 

Uninformed Search: strategies that order nodes without 

using any domain specific information, i.e., doesn’t use 

any information stored in a state 

 

 BFS: breadth-first search 

– Queue (FIFO) used for the Frontier list 

– remove from front, add to back 

 

 DFS: depth-first search 

– Stack (LIFO) used for the Frontier list 

– remove from front, add to front 

Breadth-First Search (BFS)  

Expand the shallowest node first: 

1. Examine states one step away from the initial states 

2. Examine states two steps away from the initial states 

3. and so on 

Goal 

39 

Breadth-First Search (BFS) 

# of nodes tested: 0, expanded: 0 

expnd. node Frontier list 

{S} 
5 2 

9 

6 

4 

4 

6 2 

1 

7 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 

40 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

Breadth-First Search (BFS) 

# of nodes tested: 1, expanded: 1 

expnd. node Frontier list 

{S} 

S not goal {A,B,C} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 
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41 

4 

5 2 

9 

6 

4 

6 2 

1 

7 

Breadth-First Search (BFS) 

# of nodes tested: 2, expanded: 2 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A not goal {B,C,D,E} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 

42 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

Breadth-First Search (BFS) 

# of nodes tested: 3, expanded: 3 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C,D,E} 

B not goal {C,D,E,G} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 

43 

2 

5 2 

9 

6 

4 

4 

6 

1 

7 

Breadth-First Search (BFS) 

# of nodes tested: 4, expanded: 4 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C,D,E} 

B {C,D,E,G} 

C not goal {D,E,G,F} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 

44 

7 

5 2 

9 

6 

4 

4 

6 2 

1 

Breadth-First Search (BFS) 

# of nodes tested: 5, expanded: 5 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C,D,E} 

B {C,D,E,G} 

C {D,E,G,F} 

D not goal {E,G,F,H} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 
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45 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

Breadth-First Search (BFS) 

# of nodes tested: 6, expanded: 6 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C,D,E} 

B {C,D,E,G} 

C {D,E,G,F} 

D {E,G,F,H} 

E not goal {G,F,H,G} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 

46 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

Breadth-First Search (BFS) 

# of nodes tested: 7, expanded: 6 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C,D,E} 

B {C,D,E,G} 

C {D,E,G,F} 

D {E,G,F,H} 

E {G,F,H,G} 

G goal {F,H,G} no expand 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 
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6 

5 2 

9 

6 

4 

4 

2 

1 

7 

Breadth-First Search (BFS) 

# of nodes tested: 7, expanded: 6 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C,D,E} 

B {C,D,E,G} 

C {D,E,G,F} 

D {E,G,F,H} 

E {G,F,H,G} 

G {F,H,G} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, queue) 

path: S,B,G 

cost: 8 
49 

Evaluating Search Strategies 

 Completeness 

If a solution exists, will it be found? 

– a complete algorithm will find a solution (not all) 

 

 Optimality / Admissibility 

If a solution is found, is it guaranteed to be optimal? 

– an admissible algorithm will find a solution with 

minimum cost 
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Evaluating Search Strategies 

 Time Complexity 

How long does it take to find a solution? 

– usually measured for worst case 

– measured by counting number of nodes expanded 

 

 Space Complexity 

How much space is used by the algorithm? 

– measured in terms of the maximum size 

of the Frontier list during the search 

 If goal is at depth d, how big is the frontier (worst 
case)? 

 

What’s in the Frontier (Queue) for BFS? 

Goal 

52 

Breadth-First Search (BFS) 

 

 Complete 

 

 Optimal / Admissible 

– Yes, if all operators (i.e., arcs) have the same 

constant cost, or costs are positive, non-decreasing 

with depth 

– otherwise, not optimal but does guarantee finding 

solution of shortest length (i.e., fewest arcs) 

53 

Breadth-First Search (BFS) 

 

 Time and space complexity: O(bd) (i.e., exponential) 

– d  is the depth of the solution 

– b  is the branching factor at each non-leaf node 

 

 Very slow to find solutions with a large number of steps 

because must look at all shorter length possibilities first 
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Breadth-First Search (BFS) 

 A complete search tree has a total # of nodes = 

1 + b + b2 + ... + bd  =  (b(d+1) - 1) / (b-1) 

– d: the tree's depth 

– b: the branching factor at each non-leaf node 

 For example: d = 12, b = 10 

1 + 10 + 100 + ... + 1012  =  (1013 - 1)/9 = O(1012) 

– If BFS expands 1,000 nodes/sec and each node 

uses 100 bytes of storage, then BFS will take 35 

years to run in the worst case, and it will use 111 

terabytes of memory! 

Depth-First Search 

Goal 

Expand the deepest node first 

1. Select a direction, go deep to the end 

2. Slightly change the end 

3. Slightly change the end some more… 

Use a Stack to order nodes on the Frontier list 

56 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 0, expanded: 0 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 

57 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 1, expanded: 1 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S not goal {A,B,C} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 
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58 

4 

5 2 

9 

6 

4 

6 2 

1 

7 

# of nodes tested: 2, expanded: 2 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A not goal {D,E,B,C} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 

59 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 3, expanded: 3 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {D,E,B,C} 

D not goal {H,E,B,C} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 

60 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 4, expanded: 4 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {D,E,B,C} 

D {H,E,B,C} 

H not goal {E,B,C} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 

61 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 5, expanded: 5 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {D,E,B,C} 

D {H,E,B,C} 

H {E,B,C} 

E not goal {G,B,C} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 
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62 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 6, expanded: 5 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {D,E,B,C} 

D {H,E,B,C} 

H {E,B,C} 

E {G,B,C} 

G goal {B,C} no expand 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 

63 

4 

5 2 

9 

6 

4 

6 2 

1 

7 

# of nodes tested: 6, expanded: 5 

Depth-First Search (DFS) 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {D,E,B,C} 

D {H,E,B,C} 

H {E,B,C} 

E {G,B,C} 

G {B,C} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

generalSearch(problem, stack) 

path: S,A,E,G 

cost: 15 

64 

Depth-First Search (DFS) 

 May not terminate without a depth bound 
i.e., cutting off search below a fixed depth, D 

 

 Not complete 
– with or without cycle detection 
– and, with or without a depth cutoff 

 

 Not optimal / admissible 

 

 Can find long solutions quickly if lucky 

65 

Depth-First Search (DFS) 

 Time complexity: O(bd) exponential 

Space complexity: O(bd) linear 

– d  is the depth of the solution 

– b  is the branching factor at each non-leaf node 

 Performs “chronological backtracking” 

– i.e., when search hits a dead end, backs up one 

level at a time 

– problematic if the mistake occurs because of a bad 

action choice near the top of search tree 
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Uniform-Cost Search (UCS) 

 

 Use a “Priority Queue” to order nodes on the 

Frontier list, sorted by path cost 

 Let g(n) = cost of path from start node s to current 

node n 

 Sort nodes by increasing value of g 

67 

# of nodes tested: 0, expanded: 0 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S} 
5 2 

9 

6 

4 

4 

6 2 

1 

7 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

68 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 1, expanded: 1 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S:0} 

S not goal {B:2,C:4,A:5} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

69 

6 

5 2 

9 

6 

4 

4 

2 

1 

7 

# of nodes tested: 2, expanded: 2 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S} 

S {B:2,C:4,A:5} 

B not goal {C:4,A:5,G:2+6} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 
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70 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 3, expanded: 3 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S} 

S {B:2,C:4,A:5} 

B {C:4,A:5,G:8} 

C not goal {A:5,F:4+2,G:8} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

71 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 4, expanded: 4 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S} 

S {B:2,C:4,A:5} 

B {C:4,A:5,G:8} 

C {A:5,F:6,G:8} 

A not goal {F:6,G:8,E:5+4, 

D:5+9} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

72 

2 

1 

5 2 

9 

6 

4 

4 

6 

7 

# of nodes tested: 5, expanded: 5 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S} 

S {B:2,C:4,A:5} 

B {C:4,A:5,G:8} 

C {A:5,F:6,G:8} 

A {F:6,G:8,E:9,D:14} 

F not goal {G:4+2+1,G:8,E:9,

D:14} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

73 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 6, expanded: 5 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S} 

S {B:2,C:4,A:5} 

B {C:4,A:5,G:8} 

C {A:5,F:6,G:8} 

A {F:6,G:8,E:9,D:14} 

F {G:7,G:8,E:9,D:14} 

G goal {G:8,E:9,D:14} 

no expand 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 
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74 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

# of nodes tested: 6, expanded: 5 

generalSearch(problem, priorityQueue) 

Uniform-Cost Search (UCS) 

expnd. node Frontier list 

{S} 

S {B:2,C:4,A:5} 

B {C:4,A:5,G:8} 

C {A:5,F:6,G:8} 

A {F:6,G:8,E:9,D:14} 

F {G:7,G:8,E:9,D:14} 

G {G:8,E:9,D:14} 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 
path: S,C,F,G 

cost: 7 
75 

Uniform-Cost Search (UCS) 

 Called Dijkstra's Algorithm in the algorithms 

literature 

 Similar to Branch and Bound Algorithm 

in Operations Research literature 

 

 Complete 

 Optimal / Admissible 

– requires that the goal test is done when a node is 

removed from the Frontier list rather than when the 

node is generated by its parent node 

76 

Uniform-Cost Search (UCS) 

 

 Time and space complexity: O(bd)  (i.e., exponential) 

– d  is the depth of the solution 

– b  is the branching factor at each non-leaf node 

 

 More precisely, time and space complexity is       

O(bC*/ ) where all edge costs   > 0, and  C* is the 

best goal path cost 

 

77 

Iterative-Deepening Search (IDS) 

 

 requires modification to DFS search algorithm: 

– do DFS to depth 1 

and treat all children of the start node as leaves 

– if no solution found, do DFS to depth 2 

– repeat by increasing “depth bound” until a solution 

found 

 

 Start node is at depth 0 
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79 

deepeningSearch(problem) 

depth: 1, # of nodes expanded: 0, tested: 0 

Iterative-Deepening Search (IDS) 

expnd. node Frontier list 

{S} 5 2 

9 

6 

4 

4 

6 2 

1 

7 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

80 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 1, # of nodes tested: 1, expanded: 1 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S not goal {A,B,C} 

81 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 1, # of nodes tested: 2, expanded: 1 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A not goal {B,C} no expand 

82 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 1, # of nodes tested: 3, expanded: 1 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B not goal {C} no expand 
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83 

5 2 

9 

6 

4 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 1, # of nodes tested: 4, expanded: 1 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C not goal { } no expand-FAIL 

84 

4 

5 2 

9 

6 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 2, # of nodes tested: 4(1), expanded: 2 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C { } 

S no test {A,B,C} 

85 

4 

5 2 

9 

6 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 2, # of nodes tested: 4(2), expanded: 3 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C { } 

S {A,B,C} 

A no test {D,E,B,C} 

86 

4 

5 2 

9 

6 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 2, # of nodes tested: 5(2), expanded: 3 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C { } 

S {A,B,C} 

A {D,E,B,C} 

D not goal {E,B,C} no expand 
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87 

4 

5 2 

9 

6 

4 

6 2 

1 

7 

deepeningSearch(problem) 

depth: 2, # of nodes tested: 6(2), expanded: 3 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C { } 

S {A,B,C} 

A {D,E,B,C} 

D {E,B,C} 

E not goal {B,C} no expand 

88 

6 4 

5 2 

9 

6 

4 

2 

1 

7 

deepeningSearch(problem) 

depth: 2, # of nodes tested: 6(3), expanded: 4 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C { } 

S {A,B,C} 

A {D,E,B,C} 

D {E,B,C} 

E {B,C} 

B no test {G,C} 

89 

6 4 

5 2 

9 

6 

4 

2 

1 

7 

deepeningSearch(problem) 

depth: 2, # of nodes tested: 7(3), expanded: 4 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C { } 

S {A,B,C} 

A {D,E,B,C} 

D {E,B,C} 

E {B,C} 

B {G,C} 

G goal {C} no expand 90 

6 4 

5 2 

9 

6 

4 

2 

1 

7 

deepeningSearch(problem) 

depth: 2, # of nodes tested: 7(3), expanded: 4 

Iterative-Deepening Search (IDS) 

S 
start 

A 

E D F 

B 

G 
goal 

C 

H 

expnd. node Frontier list 

{S} 

S {A,B,C} 

A {B,C} 

B {C} 

C { } 

S {A,B,C} 

A {D,E,B,C} 

D {E,B,C} 

E {B,C} 

B {G,C} 

G {C} 

path: S,B,G 

cost: 8 
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Iterative-Deepening Search (IDS) 

 Has advantages of BFS 

– completeness 

– optimality as stated for BFS 

 

 Has advantages of DFS 

– limited space 

– in practice, even with redundant effort it still finds 

longer paths more quickly than BFS 

92 

Iterative-Deepening Search (IDS) 

 Space complexity: O(bd)  (i.e., linear like DFS) 

 

 Time complexity is a little worse than BFS or DFS 

– because nodes near the top of the search tree 

are generated multiple times (redundant effort) 

 

 Worst case time complexity: O(bd) exponential 

– because most nodes are near the bottom of tree 

93 

Iterative-Deepening Search (IDS) 

How much redundant effort is done? 

 The number of times the nodes are generated: 

1bd + 2b(d-1) + ... + db    bd / (1 – 1/b)2 = O(bd) 

– d: the solution's depth 

– b: the branching factor at each non-leaf node 

 For example: b = 4 

4d / (1 – ¼)2  =  4d / (.75)2  =  1.78  4d 

– in the worst case, 78% more nodes are 

searched (redundant effort) than exist at depth d 

– as b increases, this % decreases 

Bidirectional Search 

s
t
a
rt 

 Breadth-first search from both start and goal 

 Frontiers meet 

 Generates O(bd/2) instead of O(bd) nodes 

g
o
a
l 
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Which Direction Should We Search? 

Our choices:  Forward, backwards, or bidirectional 

The issues:  How many start and goal states are there? 

  Branching factors in each direction 

  How much work is it to compare states? 

Performance of Search Algorithms on Trees 

O(bm)  O(bm)  N N 
Depth-first 
search 

O(bC*/)  O(bC*/)  Y Y 
Uniform-cost 
search2 

O(bd)  O(bd)  Y, if 1 Y 
Breadth-first 
search 

O(bd)  O(bd)  Y, if 1 Y 
Iterative 
deepening 

O(bd/2)  O(bd/2)  Y, if 1 Y 
Bidirectional 
search3 

space time optimal Complete 

1. edge cost constant, or positive non-decreasing in depth 
2. edge costs   > 0.  C* is the best goal path cost 
3. both directions BFS; not always feasible 

b: branching factor (assume finite) d: goal depth m: graph depth 

If State Space is Not a Tree 

 The problem: repeated states 

 

 

 

 

 

 

 Ignoring repeated states: wasteful (BFS) or 

impossible (DFS).  Why? 

 How to prevent these problems?   

CSDF, CD,SF CDF, S 

D, CFS 

C, DSF 

DFS, C 

CSF, D 

S, CFD SF, CD  , CSDF 

If State Space is Not a Tree 

 We have to remember already-expanded states 
(called Explored (aka Closed) list) too 

 

 Why? 

 

 When we pick a state from Frontier 
– Remove it from Frontier 
– Add it to Explored 
– Expand node, generating all successors 
– For each successor, child,  

 If child is in Explored, throw child away 
 Otherwise, check whether child is in Frontier 

– If no, add it to Frontier 
– If yes and path-cost(child) < path-cost of node 

already in Frontier, then replace that Frontier node 
with child 
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Example 

S 

A B C 

D E G 

1            5      8 

3          7      9       4        5 
How are nodes expanded by 

 

• Depth First Search 

• Breadth First Search 

• Uniform Cost Search 

• Iterative Deepening 

 

Are the solutions the same? 

Nodes Expanded by: 

 Depth-First Search: S A D E G 

Solution found: S A G 

 

 Breadth-First Search: S A B C D E G 

Solution found: S A G 

 

 Uniform-Cost Search: S A D B C E G 

Solution found: S B G  

 

 Iterative-Deepening Search: S A B C S A D E G 

Solution found: S A G  


