
1

1

Uninformed Search

Chapter 3.1 – 3.4

Many AI Tasks can be Formulated
as Search Problems

 Puzzles

 Games

 Navigation

 Assignment

 Layout

 Scheduling

 Routing

Search Example: Route Finding Search Example: River Crossing Problem

Rules:

1) Farmer must row the boat

2) Only room for one other

3) Without the farmer present:

• Dog bites sheep

• Sheep eats cabbage

2

Search Example: 8-Puzzle

Search Example: Water Jugs Problem

Given 4-liter and 3-liter pitchers, how do you get

exactly 2 liters into the 4-liter pitcher?

4 3

Search Example: 8-Queens

Remove 5 Sticks Problem

Remove exactly 5

of the 17 sticks so

the resulting figure

forms exactly 3

squares

3

Basic Search Task Assumptions
(usually, though not games)

 Fully observable

 Deterministic

 Static

 Discrete

 Single agent

11

What Knowledge does the Agent

Need?

 The information needs to be

– sufficient to describe all relevant aspects

for reaching the goal

– adequate to describe the world state/situation

 Fully observable assumption, also known as the

closed world assumption, means

– All necessary information about a problem domain

is accessible so that each state is a complete

description of the world; there is no missing

information at any point in time

12

How should the Environment be

Represented?

 Knowledge representation problem:

– What information from the sensors is relevant?

– How to represent domain knowledge?

 Determining what to represent is difficult and is

usually left to the system designer to specify

 Problem State = representation of all necessary

information about the environment

 State Space (aka Problem Space) = all possible valid

configurations of the environment

13

What Goal does the Agent want to

Achieve?

 How do you describe the goal?

– as a task to be accomplished

– as a state to be reached

– as a set of properties to be satisfied

 How do you know when the goal is reached?

– with a goal test that defines what it means

to have achieved/satisfied the goal

– or, with a set of goal states

 Determining the goal is usually left to the system

designer or user to specify

4

15

What Actions does the Agent Need?

 Discrete and Deterministic task assumptions imply

 Given:

– an action (aka operator or move)

– a description of the current state of the world

 Action completely specifies:

– if that action can be applied (i.e., legal)

– what the exact state of the world will be after the

action is performed in the current state (no "history"

information needed to compute the successor state)

Search Example: 8-Puzzle

 States = configurations

 Actions = up to 4 kinds of moves: up, down, left,

right

Water Jugs Problem

Given 4-liter and 3-liter pitchers, how do you get exactly 2

liters into the 4-liter pitcher?

State: (x, y) for # liters in 4-liter and 3-liter pitchers, respectively

Actions: empty, fill, pour water between pitchers

Initial state: (0, 0)

Goal state: (2, *)

4 3

Actions / Successor Functions

1. (x, y | x < 4) (4, y) Fill 4

2. (x, y | y < 3) (x, 3) Fill 3

3. (x, y | x > 0) (0, y) Empty 4

4. (x, y | y > 0) (x, 0) Empty 3

5. (x, y | x+y  4 and y > 0) (4, y - (4 - x))

 Pour from 3 to 4 until 4 is full

6. (x, y | x+y  3 and x > 0) (x - (3 - y), 3)

 Pour from 4 to 3 until 3 is full

7. (x, y | x+y  4 and y > 0) (x+y, 0)

 Pour all water from 3 to 4

5

19

Formalizing Search in a State Space

 A state space is a graph: (V, E)

– V is a set of nodes (vertices)

– E is a set of arcs (edges)

each arc is directed from one node to another node

 Each node is a data structure that contains:

– a state description

– other information such as:

 link to parent node

 name of action that generated this node (from its

parent)

 other bookkeeping data

20

Formalizing Search in a State Space

 Each arc corresponds to one of the finite number of

actions:

– when the action is applied to the state associated

with the arc's source node

– then the resulting state is the state associated with

the arc's destination node

 Each arc has a fixed, positive cost:

– corresponds to the cost of the action

21

Formalizing Search in a State Space

 Each node has a finite set of successor nodes:

– corresponds to all of the legal actions

that can be applied at the source node's state

 Expanding a node means:

– generate all of the successor nodes

– add them and their associated arcs to the state-

space search tree

22

Formalizing Search in a State Space

 One or more nodes are designated as start nodes

 A goal test is applied to a node's state to determine

if it is a goal node

 A solution is a sequence of actions associated with

a path in the state space from a start to a goal node:

– just the goal state (e.g., cryptarithmetic)

– a path from start to goal state (e.g., 8-puzzle)

 The cost of a solution is the sum of the arc costs

on the solution path

6

(Ignoring “backwards”

moves)

8-Puzzle State Space Sizes of State Spaces

 Tic-Tac-Toe 39

 8 Puzzle 105 .01 seconds

 23 Rubik’s Cube 106 .2 seconds

 15 Puzzle 1013 6 days

 33 Rubik’s Cube 1019 68,000 years

 24 Puzzle 1025 12 billion years

 Checkers 1040

 Chess 10120

Brute-Force Search Time

(10 million nodes/second)

Problem Nodes

Formalizing Search

A search problem has five components:

 S, I, G, actions, cost

1. State space S: all valid configurations

2. Initial states I ⊆ S: a set of start states

3. Goal states G ⊆ S: a set of goal states

4. An action function successors(s) ⊆ S : states

reachable in one step (one arc) from s

5. A cost function cost(s, s): The cost of moving from

s to s

 The goal of search is to find a solution path from a

state in I to a state in G

I = {(FCDS,)} ⊆ S

G = {(,FCDS)} ⊆ S

successors((FCDS,)) = {(CD,FS)}
successors((CDF,S)) = {(CD,FS), (D,FCS), (C,FSD)}

?

F C D S

F C D S

State Space = A Directed Graph

 In general there will be many generated, but un-

expanded, states at any given time

 One has to choose which one to “expand” next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

Start Goal

7

Different Search Strategies

 The generated, but not yet expanded, states
define the Frontier (aka Open or Fringe) list

 The essential difference is, which one to expand

first?

 Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

Start Goal

29

Formalizing Search in a State Space

State-space search is the process of searching through

a state space for a solution by making explicit a

sufficient portion of an implicit state-space graph to

include a goal node: TREE SEARCH Alg.

Frontier = {S}, where S is the start node

Loop do

 if Frontier is empty then return failure

 pick a node, n, from Frontier

if n is a goal node then return solution

Generate all n’s successor nodes and add

them all to Frontier

Remove n from Frontier

30

Formalizing Search in a State Space

 This algorithm does NOT detect goal when

node is generated

 This algorithm does NOT detect loops in state

space

 Each node implicitly represents

– a partial solution path from the start node to the

given node

– cost of the partial solution path

 From this node there may be

– many possible paths that have this partial path

as a prefix

– many possible solutions

Uninformed Search on Trees

 Uninformed means we only know:

– The goal test

– The successors() function

 But not which non-goal states are better

 For now, also assume state space graph is a tree

– That is, we won’t encounter (or at least worry

about) repeated states

– We will relax this later

 Search strategies differ by what un-expanded

node is expanded next

8

37

Uninformed Search Strategies

Uninformed Search: strategies that order nodes without

using any domain specific information, i.e., doesn’t use

any information stored in a state

 BFS: breadth-first search

– Queue (FIFO) used for the Frontier list

– remove from front, add to back

 DFS: depth-first search

– Stack (LIFO) used for the Frontier list

– remove from front, add to front

Breadth-First Search (BFS)

Expand the shallowest node first:

1. Examine states one step away from the initial states

2. Examine states two steps away from the initial states

3. and so on

Goal

39

Breadth-First Search (BFS)

of nodes tested: 0, expanded: 0

expnd. node Frontier list

{S}
5 2

9

6

4

4

6 2

1

7

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

40

5 2

9

6

4

4

6 2

1

7

Breadth-First Search (BFS)

of nodes tested: 1, expanded: 1

expnd. node Frontier list

{S}

S not goal {A,B,C}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

9

41

4

5 2

9

6

4

6 2

1

7

Breadth-First Search (BFS)

of nodes tested: 2, expanded: 2

expnd. node Frontier list

{S}

S {A,B,C}

A not goal {B,C,D,E}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

42

5 2

9

6

4

4

6 2

1

7

Breadth-First Search (BFS)

of nodes tested: 3, expanded: 3

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C,D,E}

B not goal {C,D,E,G}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

43

2

5 2

9

6

4

4

6

1

7

Breadth-First Search (BFS)

of nodes tested: 4, expanded: 4

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C,D,E}

B {C,D,E,G}

C not goal {D,E,G,F}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

44

7

5 2

9

6

4

4

6 2

1

Breadth-First Search (BFS)

of nodes tested: 5, expanded: 5

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C,D,E}

B {C,D,E,G}

C {D,E,G,F}

D not goal {E,G,F,H}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

10

45

5 2

9

6

4

4

6 2

1

7

Breadth-First Search (BFS)

of nodes tested: 6, expanded: 6

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C,D,E}

B {C,D,E,G}

C {D,E,G,F}

D {E,G,F,H}

E not goal {G,F,H,G}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

46

5 2

9

6

4

4

6 2

1

7

Breadth-First Search (BFS)

of nodes tested: 7, expanded: 6

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C,D,E}

B {C,D,E,G}

C {D,E,G,F}

D {E,G,F,H}

E {G,F,H,G}

G goal {F,H,G} no expand

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

47

6

5 2

9

6

4

4

2

1

7

Breadth-First Search (BFS)

of nodes tested: 7, expanded: 6

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C,D,E}

B {C,D,E,G}

C {D,E,G,F}

D {E,G,F,H}

E {G,F,H,G}

G {F,H,G}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, queue)

path: S,B,G

cost: 8
49

Evaluating Search Strategies

 Completeness

If a solution exists, will it be found?

– a complete algorithm will find a solution (not all)

 Optimality / Admissibility

If a solution is found, is it guaranteed to be optimal?

– an admissible algorithm will find a solution with

minimum cost

11

50

Evaluating Search Strategies

 Time Complexity

How long does it take to find a solution?

– usually measured for worst case

– measured by counting number of nodes expanded

 Space Complexity

How much space is used by the algorithm?

– measured in terms of the maximum size

of the Frontier list during the search

 If goal is at depth d, how big is the frontier (worst
case)?

What’s in the Frontier (Queue) for BFS?

Goal

52

Breadth-First Search (BFS)

 Complete

 Optimal / Admissible

– Yes, if all operators (i.e., arcs) have the same

constant cost, or costs are positive, non-decreasing

with depth

– otherwise, not optimal but does guarantee finding

solution of shortest length (i.e., fewest arcs)

53

Breadth-First Search (BFS)

 Time and space complexity: O(bd) (i.e., exponential)

– d is the depth of the solution

– b is the branching factor at each non-leaf node

 Very slow to find solutions with a large number of steps

because must look at all shorter length possibilities first

12

54

Breadth-First Search (BFS)

 A complete search tree has a total # of nodes =

1 + b + b2 + ... + bd = (b(d+1) - 1) / (b-1)

– d: the tree's depth

– b: the branching factor at each non-leaf node

 For example: d = 12, b = 10

1 + 10 + 100 + ... + 1012 = (1013 - 1)/9 = O(1012)

– If BFS expands 1,000 nodes/sec and each node

uses 100 bytes of storage, then BFS will take 35

years to run in the worst case, and it will use 111

terabytes of memory!

Depth-First Search

Goal

Expand the deepest node first

1. Select a direction, go deep to the end

2. Slightly change the end

3. Slightly change the end some more…

Use a Stack to order nodes on the Frontier list

56

5 2

9

6

4

4

6 2

1

7

of nodes tested: 0, expanded: 0

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

57

5 2

9

6

4

4

6 2

1

7

of nodes tested: 1, expanded: 1

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S not goal {A,B,C}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

13

58

4

5 2

9

6

4

6 2

1

7

of nodes tested: 2, expanded: 2

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S {A,B,C}

A not goal {D,E,B,C}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

59

5 2

9

6

4

4

6 2

1

7

of nodes tested: 3, expanded: 3

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S {A,B,C}

A {D,E,B,C}

D not goal {H,E,B,C}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

60

5 2

9

6

4

4

6 2

1

7

of nodes tested: 4, expanded: 4

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S {A,B,C}

A {D,E,B,C}

D {H,E,B,C}

H not goal {E,B,C}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

61

5 2

9

6

4

4

6 2

1

7

of nodes tested: 5, expanded: 5

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S {A,B,C}

A {D,E,B,C}

D {H,E,B,C}

H {E,B,C}

E not goal {G,B,C}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

14

62

5 2

9

6

4

4

6 2

1

7

of nodes tested: 6, expanded: 5

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S {A,B,C}

A {D,E,B,C}

D {H,E,B,C}

H {E,B,C}

E {G,B,C}

G goal {B,C} no expand

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

63

4

5 2

9

6

4

6 2

1

7

of nodes tested: 6, expanded: 5

Depth-First Search (DFS)

expnd. node Frontier list

{S}

S {A,B,C}

A {D,E,B,C}

D {H,E,B,C}

H {E,B,C}

E {G,B,C}

G {B,C}

S
start

A

E D F

B

G
goal

C

H

generalSearch(problem, stack)

path: S,A,E,G

cost: 15

64

Depth-First Search (DFS)

 May not terminate without a depth bound
i.e., cutting off search below a fixed depth, D

 Not complete
– with or without cycle detection
– and, with or without a depth cutoff

 Not optimal / admissible

 Can find long solutions quickly if lucky

65

Depth-First Search (DFS)

 Time complexity: O(bd) exponential

Space complexity: O(bd) linear

– d is the depth of the solution

– b is the branching factor at each non-leaf node

 Performs “chronological backtracking”

– i.e., when search hits a dead end, backs up one

level at a time

– problematic if the mistake occurs because of a bad

action choice near the top of search tree

15

66

Uniform-Cost Search (UCS)

 Use a “Priority Queue” to order nodes on the

Frontier list, sorted by path cost

 Let g(n) = cost of path from start node s to current

node n

 Sort nodes by increasing value of g

67

of nodes tested: 0, expanded: 0

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S}
5 2

9

6

4

4

6 2

1

7

S
start

A

E D F

B

G
goal

C

H

68

5 2

9

6

4

4

6 2

1

7

of nodes tested: 1, expanded: 1

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S:0}

S not goal {B:2,C:4,A:5}

S
start

A

E D F

B

G
goal

C

H

69

6

5 2

9

6

4

4

2

1

7

of nodes tested: 2, expanded: 2

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S}

S {B:2,C:4,A:5}

B not goal {C:4,A:5,G:2+6}

S
start

A

E D F

B

G
goal

C

H

16

70

5 2

9

6

4

4

6 2

1

7

of nodes tested: 3, expanded: 3

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S}

S {B:2,C:4,A:5}

B {C:4,A:5,G:8}

C not goal {A:5,F:4+2,G:8}

S
start

A

E D F

B

G
goal

C

H

71

5 2

9

6

4

4

6 2

1

7

of nodes tested: 4, expanded: 4

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S}

S {B:2,C:4,A:5}

B {C:4,A:5,G:8}

C {A:5,F:6,G:8}

A not goal {F:6,G:8,E:5+4,

D:5+9}

S
start

A

E D F

B

G
goal

C

H

72

2

1

5 2

9

6

4

4

6

7

of nodes tested: 5, expanded: 5

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S}

S {B:2,C:4,A:5}

B {C:4,A:5,G:8}

C {A:5,F:6,G:8}

A {F:6,G:8,E:9,D:14}

F not goal {G:4+2+1,G:8,E:9,

D:14}

S
start

A

E D F

B

G
goal

C

H

73

5 2

9

6

4

4

6 2

1

7

of nodes tested: 6, expanded: 5

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S}

S {B:2,C:4,A:5}

B {C:4,A:5,G:8}

C {A:5,F:6,G:8}

A {F:6,G:8,E:9,D:14}

F {G:7,G:8,E:9,D:14}

G goal {G:8,E:9,D:14}

no expand

S
start

A

E D F

B

G
goal

C

H

17

74

5 2

9

6

4

4

6 2

1

7

of nodes tested: 6, expanded: 5

generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list

{S}

S {B:2,C:4,A:5}

B {C:4,A:5,G:8}

C {A:5,F:6,G:8}

A {F:6,G:8,E:9,D:14}

F {G:7,G:8,E:9,D:14}

G {G:8,E:9,D:14}

S
start

A

E D F

B

G
goal

C

H
path: S,C,F,G

cost: 7
75

Uniform-Cost Search (UCS)

 Called Dijkstra's Algorithm in the algorithms

literature

 Similar to Branch and Bound Algorithm

in Operations Research literature

 Complete

 Optimal / Admissible

– requires that the goal test is done when a node is

removed from the Frontier list rather than when the

node is generated by its parent node

76

Uniform-Cost Search (UCS)

 Time and space complexity: O(bd) (i.e., exponential)

– d is the depth of the solution

– b is the branching factor at each non-leaf node

 More precisely, time and space complexity is

O(bC*/) where all edge costs   > 0, and C* is the

best goal path cost

77

Iterative-Deepening Search (IDS)

 requires modification to DFS search algorithm:

– do DFS to depth 1

and treat all children of the start node as leaves

– if no solution found, do DFS to depth 2

– repeat by increasing “depth bound” until a solution

found

 Start node is at depth 0

18

79

deepeningSearch(problem)

depth: 1, # of nodes expanded: 0, tested: 0

Iterative-Deepening Search (IDS)

expnd. node Frontier list

{S} 5 2

9

6

4

4

6 2

1

7

S
start

A

E D F

B

G
goal

C

H

80

5 2

9

6

4

4

6 2

1

7

deepeningSearch(problem)

depth: 1, # of nodes tested: 1, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S not goal {A,B,C}

81

5 2

9

6

4

4

6 2

1

7

deepeningSearch(problem)

depth: 1, # of nodes tested: 2, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A not goal {B,C} no expand

82

5 2

9

6

4

4

6 2

1

7

deepeningSearch(problem)

depth: 1, # of nodes tested: 3, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B not goal {C} no expand

19

83

5 2

9

6

4

4

6 2

1

7

deepeningSearch(problem)

depth: 1, # of nodes tested: 4, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C not goal { } no expand-FAIL

84

4

5 2

9

6

4

6 2

1

7

deepeningSearch(problem)

depth: 2, # of nodes tested: 4(1), expanded: 2

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C { }

S no test {A,B,C}

85

4

5 2

9

6

4

6 2

1

7

deepeningSearch(problem)

depth: 2, # of nodes tested: 4(2), expanded: 3

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C { }

S {A,B,C}

A no test {D,E,B,C}

86

4

5 2

9

6

4

6 2

1

7

deepeningSearch(problem)

depth: 2, # of nodes tested: 5(2), expanded: 3

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C { }

S {A,B,C}

A {D,E,B,C}

D not goal {E,B,C} no expand

20

87

4

5 2

9

6

4

6 2

1

7

deepeningSearch(problem)

depth: 2, # of nodes tested: 6(2), expanded: 3

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C { }

S {A,B,C}

A {D,E,B,C}

D {E,B,C}

E not goal {B,C} no expand

88

6 4

5 2

9

6

4

2

1

7

deepeningSearch(problem)

depth: 2, # of nodes tested: 6(3), expanded: 4

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C { }

S {A,B,C}

A {D,E,B,C}

D {E,B,C}

E {B,C}

B no test {G,C}

89

6 4

5 2

9

6

4

2

1

7

deepeningSearch(problem)

depth: 2, # of nodes tested: 7(3), expanded: 4

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C { }

S {A,B,C}

A {D,E,B,C}

D {E,B,C}

E {B,C}

B {G,C}

G goal {C} no expand 90

6 4

5 2

9

6

4

2

1

7

deepeningSearch(problem)

depth: 2, # of nodes tested: 7(3), expanded: 4

Iterative-Deepening Search (IDS)

S
start

A

E D F

B

G
goal

C

H

expnd. node Frontier list

{S}

S {A,B,C}

A {B,C}

B {C}

C { }

S {A,B,C}

A {D,E,B,C}

D {E,B,C}

E {B,C}

B {G,C}

G {C}

path: S,B,G

cost: 8

21

91

Iterative-Deepening Search (IDS)

 Has advantages of BFS

– completeness

– optimality as stated for BFS

 Has advantages of DFS

– limited space

– in practice, even with redundant effort it still finds

longer paths more quickly than BFS

92

Iterative-Deepening Search (IDS)

 Space complexity: O(bd) (i.e., linear like DFS)

 Time complexity is a little worse than BFS or DFS

– because nodes near the top of the search tree

are generated multiple times (redundant effort)

 Worst case time complexity: O(bd) exponential

– because most nodes are near the bottom of tree

93

Iterative-Deepening Search (IDS)

How much redundant effort is done?

 The number of times the nodes are generated:

1bd + 2b(d-1) + ... + db  bd / (1 – 1/b)2 = O(bd)

– d: the solution's depth

– b: the branching factor at each non-leaf node

 For example: b = 4

4d / (1 – ¼)2 = 4d / (.75)2 = 1.78  4d

– in the worst case, 78% more nodes are

searched (redundant effort) than exist at depth d

– as b increases, this % decreases

Bidirectional Search

s
t
a
rt

 Breadth-first search from both start and goal

 Frontiers meet

 Generates O(bd/2) instead of O(bd) nodes

g
o
a
l

22

95

Which Direction Should We Search?

Our choices: Forward, backwards, or bidirectional

The issues: How many start and goal states are there?

 Branching factors in each direction

 How much work is it to compare states?

Performance of Search Algorithms on Trees

O(bm) O(bm) N N
Depth-first
search

O(bC*/) O(bC*/) Y Y
Uniform-cost
search2

O(bd) O(bd) Y, if 1 Y
Breadth-first
search

O(bd) O(bd) Y, if 1 Y
Iterative
deepening

O(bd/2) O(bd/2) Y, if 1 Y
Bidirectional
search3

space time optimal Complete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs   > 0. C* is the best goal path cost
3. both directions BFS; not always feasible

b: branching factor (assume finite) d: goal depth m: graph depth

If State Space is Not a Tree

 The problem: repeated states

 Ignoring repeated states: wasteful (BFS) or

impossible (DFS). Why?

 How to prevent these problems?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

If State Space is Not a Tree

 We have to remember already-expanded states
(called Explored (aka Closed) list) too

 Why?

 When we pick a state from Frontier
– Remove it from Frontier
– Add it to Explored
– Expand node, generating all successors
– For each successor, child,

 If child is in Explored, throw child away
 Otherwise, check whether child is in Frontier

– If no, add it to Frontier
– If yes and path-cost(child) < path-cost of node

already in Frontier, then replace that Frontier node
with child

23

Example

S

A B C

D E G

1 5 8

3 7 9 4 5
How are nodes expanded by

• Depth First Search

• Breadth First Search

• Uniform Cost Search

• Iterative Deepening

Are the solutions the same?

Nodes Expanded by:

 Depth-First Search: S A D E G

Solution found: S A G

 Breadth-First Search: S A B C D E G

Solution found: S A G

 Uniform-Cost Search: S A D B C E G

Solution found: S B G

 Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G

