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abstract

In both machine learning (ML) and cognitive psychology (CP), catego-
rization is considered a basic task commonly encountered by learning
agents and studied in both fields. While a great deal of work in CP has
been applied to understanding human learning in supervised categoriza-
tion, little work has been done previously to investigate the effects of both
labeled and unlabeled data as in the semi-supervised setting. I have had
the opportunity to contribute to a number of studies investigating just this
situation: human learners tasked with learning a categorization task from
some combination of labeled and unlabeled data. This work has involved
the use of ML to both (1) better understand how labeled and unlabeled
data affect human learners in categorization tasks as well as (2) attempt to
influence the resulting behavior using ideas and techniques derived from
ML.

The results of this work have shown that (1) in addition to humans being
affected by the distribution of unlabeled data, they can also be affected
by ordering of the unlabeled items (2) that humans are not constrained
in their search of a parameter space when attempting to integrate new
unlabeled items with previously labeled experience (3) that humans can
learn using underlying manifold structure (4) that the speed of human
learning on a supervised task can be affected by prior unlabeled experience
and (5) that, using Co-Training constraints, human collaborators can be
induced to learn a boundary neither would have likely learned on their
own.
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1 classification as model of human
categorization

Classification is one of the principal tasks investigated in the field of Ma-
chine Learning (ML). The same can be said of the field of Cognitive Psy-
chology (CP), where the same task is known as categorization, the only
difference being that the learners under investigation are human beings
instead of computer programs. CP has long had an interest in under-
standing human categorization (also known as human category learning):
How we come to conceive of objects in the world as belonging to different
categories, and how we use categories to draw inferences about the unob-
served properties of objects. To this end a suite of computational models
have been devised to model human behavior.

These cognitive models bear a striking resemblance to models designed
in the study of ML, even though the goals of the two fields are strikingly
different and evolved separately for the most part. In ML, the primary goal
is to develop models which generalize from a set of training data to data on
which they are tested. In human category learning, however, the primary
goal is to create models which produce behavior which matches that of
humans in the same task. The similarity of these models begs the question:
Can we use statistically-motivated ML models to better understand human
behavior?

For the most part, the experimental setting investigated in human
category learning has been a Supervised Learning (SL) setting, where
the learner is presented with a set of 〈item, label〉 pairs and is asked to
learn some mapping from item to label. This use of SL as an experimental
procedure has proven exceedingly fertile – countless experiments in this
setting have been conducted and a vast array of interesting regularities in
human behavior have been documented (Pothos and Wills, 2011).

Only relatively recently have experiments been performed on humans
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investigating the effect of labeled plus unlabeled data on human category
learning, known as Semi-Supervised Learning (SSL); i.e. the learner is
presented with some combination of 〈item, label〉 pairs (labeled data)
along with a set of items without labels (unlabeled data). The setting
is particularly interesting given that this is the natural combination of
experience in real life, a combination of labeled teaching moments and
unlabeled everyday experience.

My work has focused on investigating how humans are affected by
these combinations of labeled and unlabeled data while performing cate-
gorization tasks. Through this work I have had the opportunity to be part
of several studies which produced significant findings, all of which fall
under a general thesis:

Human category learning, shown to be sensitive to both labeled and
unlabeled data, can be both better understood and influenced using
semi-supervised machine learning models.

Before exploring these experimental results, we will review and for-
malize the categorization/classification task under investigation.

1.1 Review of Classification in Machine
Learning and Cognitive Psychology

As mentioned previously, the primary experimental focus in the investiga-
tion of human category learning has been in the SL setting. The models
developed to investigate the observed behavior have been supervised as
well, in that they do not contain explicit methods for dealing with un-
labeled data. Three dominant models have been developed to describe
human behavior in a categorization tasks. These are: exemplar, prototype
and Rational models. Equivalences can be shown between these models
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and the following ML models: Kernel Density Estimation, Gaussian Mix-
ture Models and Dirichlet Process Mixture Models, respectively. Some of the
important relationships between the psychological and machine learn-
ing models have been discussed in detail by other researchers (Fried and
Holyoak, 1984; Nosofsky, 1991; Ashby and Alfonso-Reese, 1995; Sanborn
et al., 2006; Griffiths et al., 2007) while the SSL models discussed here were
developed in Zhu, Gibson, Jun, Rogers, Harrison, and Kalish (2010).

Before proceeding, it will be useful to define the categorization task
itself, to indicate very generally how mathematical models in CP and ML
have been brought to bear on the task, and to introduce some notation.

The standard categorization task asks a learner to label a previously
unseen item xt after viewing a set of labeled examples {(xi,yi)}t−1

i=1 . In this
notation, xt indicates a multidimensional feature vector that describes a
single stimulus item (with t indexing the order in which items are seen
over time), and yt indicates the category label associated with each item.
In both CP and ML, the probabilistic way of modeling human category
decisions for xt at time t is to calculate P(yt = k | xt, {(xi,yi)}t−1

i=1), that is,
the probability that a person will choose label yt = k for each of k ∈ K
categories given the current item xt and the preceding labeled evidence
{(x,y)}t−1

i=1 i.e., the training examples viewed prior to the query item xt.
A common way to compute the probability P(yt = k | xt, {(xi,yi)}t−1

i=1)

is via the Bayes rule. Formally the Bayes rule states

P(yt = k | xt, {(xi,yi)}t−1
i=1) = (1.1)

P(xt | yt = k, {(xi,yi)t−1
i=1)P(yt = k | {(xi,yi)}t−1

i=1)∑
k ′ P(xt | yt = k

′, {(xi,yi)}t−1
i=1)P(yt = k

′ | {(xi,yi)}t−1
i=1)

.

The first term in the numerator, P(xt | yt = k, {(xi,yi)}t−1
i=1), is the likelihood,

which specifies the probability of observing item xt assuming it has the
label yt = k. The second term in the numerator, P(yt = k | {(xi,yi)}t−1

i=1),
is the prior, which specifies the probability, prior to observing xt, that xt
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will have label yt = k. The left-hand side, P(yt = k | xt, {(xi,yi)}t−1
i=1), is

the posterior, which indicates the probability that k is the correct label after
seeing xt. The denominator is a normalization factor so that the posterior
probability sums to 1. Once the posterior probability is computed, one
can classify xt by the most likely label:

ŷt = arg max
k∈K

P(yt = k | xt, {(xi,yi)}t−1
i=1) (1.2)

= arg max
k∈K

P(xt | yt = k, {(xi,yi)}t−1
i=1)P(yt = k | {(xi,yi)}t−1

i=1).

The above classification rule minimizes expected error. Alternatively, one
can sample the class label in a practice known as Gibbs classifier in ML:

ŷt ∼ P(yt = k | xt, {(xi,yi)}t−1
i=1) (1.3)

which corresponds to probability matching in psychology (Myers, 1976;
Vulkan, 2000).

In ML there exist a variety of models for computing the posterior via
Bayes rule. In all of these models, the prior is typically a multinomial
distribution over the values yt may take (i.e., the different category la-
bels). Thus the primary difference between probabilistic ML models is in
how the likelihood term is calculated. Interestingly, three common ML
models of this computation bear a striking resemblance to the exemplar,
prototype, and Rational models of human categorization. Indeed, certain
parametrization of the CP models are formally identical to the ML models.
This identity is, perhaps, surprising since the primary goal of the CP work
has been to fit observed human behavior in artificial category learning
experiments. Many early theorists, with the notable exceptions of Shepard
(1991) and Anderson (1991), did not explicitly consider whether the prob-
abilities computed by a given model were correct in any formal sense (see
e.g. Medin and Schaffer, 1978; Hintzman, 1986; Rosch et al., 1976). The
fact that the CP and ML probabilistic models are formally equivalent thus



5

suggests that human categorization decisions are optimal in some respects
– that is, the decisions people make are shaped by estimates of the true
posterior probability distribution, and so represent the best decisions that
can be made given prior beliefs and learning episodes (Anderson, 1991;
Sanborn et al., 2006; Tenenbaum et al., 2006; Griffiths et al., 2011).

The equivalence of CP and probabilistic ML models is also useful for
another reason: it allows us to leverage insights from machine learning to
develop explicit hypotheses about human SSL. A considerable amount of
work in machine learning has focused on how best to exploit both labeled
data, consisting of (x,y) pairs, and unlabeled data, consisting of only the x
observations without y labels. The modification of a supervised model
to make use of unlabeled data is sometimes called lifting the model. In
machine learning the primary motivation for lifting supervised models
has been that labeled data are often expensive – that is, data labeling can
be time-consuming and often requires an expert in the field. In contrast,
unlabeled data are usually plentiful and inexpensive to acquire in large
quantities. A key discovery has been that, under certain well-specified
assumptions, semi-supervised models can use the potentially inexpensive
unlabeled data to greatly improve classifier performance compared to
supervised models alone (Balcan and Blum, 2010).

1.2 Semi-Supervised Learning Assumptions

By definition, unlabeled data do not come with labels and so cannot
be used directly for supervised learning. Instead, these data provide
information about the marginal P(x), that is, the distribution of items in the
feature space. To use this information for category learning, assumptions
must be made about the nature of the unlabeled item distribution and the
relationship between P(x) and P(y | x). These assumptions then “steer”
how category learning proceeds. SSL is the learning paradigm that adopts
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such assumptions to make use of both labeled and unlabeled data when
learning to categorize.

There are many types of SSL assumptions that can be used to support
different kinds of learning models (Chapelle et al., 2006; Zhu and Goldberg,
2009). The assumption most germane to existing psychological models
of categorization is the mixture model assumption, which states that all
items are drawn independently from a probability distribution composed
of a mixture of underlying components. The observed distribution of
unlabeled examples can thus be used to infer the underlying mixture
components, while the comparatively infrequent labeled examples can be
used to label each component. We will use the mixture model assumption
to create lifted variants of the prototype and Rational models of human
semi-supervised learning. The exemplar model is a non-parametric model
that requires a slightly different assumption.

Another SSL assumption we will encounter is the manifold assumption,
also known as graph-based SSL. Here it is assumed that the labels vary
slowly along an underlying manifold i.e. the discrete graph formed by
connecting nearby items. In other words, if we form a graph among the
data-points in dataset D, we can propagate labels along these edges.

Finally, when we investigate the use of the Co-Training algorithm to in-
fluence human behavior, we will make several assumptions very specific to
the task setting, the most important being that learners using two separate
views of the data can cooperate to learn a classification.

1.3 Translating Between ML and CP

While the tasks of classification and categorization are identical in ML
and CP respectively, the literature describing the two perspectives have
developed independently. This has led to a need to translate between
the terms used in ML classification and CP categorization. The mod-
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els I describe here will derive directly from this shared focus. In most
cases, like in the case of classification and categorization, terms will be
used interchangeably and can be considered equivalent unless specified
otherwise.

Though there are many equivalences, it is important to note the differ-
ences between the two fields. One constraint of human category learning
to consider that the average human can only attend to a single visual
stimulus at a time. The implication here is that, in general, humans are
performing online learning: the learner is constrained by the need to attend
to and process one stimuli at a time, resulting in a temporal ordering of
the data. In other words, the data points (x1,y1), (x2,y2), . . . , (xn,yn) must
be considered in sequence and not all at once, as they would in a batch
setting. Experimentally, this ordering can either be explicitly enforced,
where human learners are exposed to stimuli one at a time, or it may occur
implicitly, such as when the learner is given a batch of data to process and
can consider each item in the order that they choose. In order to provide
an accurate analogue to human behavior, this restriction may need to be
considered during model design.

Another constraint to consider is the fact that humans are not tireless.
Unlike a computer, a human asked to do a repetitive task will over time
grow tired. In order to maintain human attention, the learner must also
be motivated. Very often this motivation is external to the task, such as
class credit for participating. It is an important thing to consider when
designing human experiments, especially when coming from the endlessly
patient and cooperative world of ML.

In the next chapter, I will continue to translate between ML and CP,
looking at the set of models with roots in both ML and CP. Following
that I will show the combination of labeled and unlabeled data can affect
the human learner, first motivated in an attempt to understand human
categorization behavior and then in an attempt to manipulate this learning.
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With regard to understanding human behavior, we will first review
previous work proving that humans are sensitive to, and can learn from,
the distribution of the unlabeled data. From there I will describe new
work which deals with two motivations: understanding human behavior
and influencing human behavior using SSL methods.

To better understand human behavior in a SSL setting, I discuss a
study investigating how ordering effects can affect human learning. This
is followed by an investigation how best to explain category shifts seen
in human SSL under a particular family of models. A third experiment
is described applying a fundamentally different SSL assumption: the
network assumption where underlying manifolds may be perceived. In
this experiment we will also see our first instance of attempting to influence
human behavior, to attempt and drive human learning to a particular
solution.

I then shift two experiments describing explicit attempts to influence
human behavior. The first is an attempt to speed human learning using
prior unlabeled experience. The second makes use of yet another set of
SSL assumptions where Co-Training constraints are applied in an attempt
to see two human learners can learn a classification boundary unlikely to
be achieved by either learner alone.

This is followed by a final chapter providing a summary of the work, a
discussion of future work, and a few of the lessons learned working with
humans from the point of view of ML.
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2 semi-supervised models of human
categorization behavior

In this chapter we will describe translations between a set of CP models and
equivalent ML models, providing additional motivation for the application
of ML techniques to the study of human learning.

2.1 Exemplar Model as Kernel Density
Estimation

One common model of human categorization is the exemplar model, which
stores all previously-viewed examples and uses these to estimate the most
likely category label for novel query items. The Generalized Context Model
(GCM) proposed by Nosofsky (1986, 2011) is probably the best known of
this class in human category learning. To facilitate comparison with ML
models we consider a specific parametrization of the full GCM model, in
which two free parameters, memory strength and dimensional scaling
weights (see Nosofsky, 2011), are fixed to one. With this simplification,
the GCM model can be described as

P(yt = k | xt, {(xi,yi)}t−1
i=1) =

b(k)
(∑

j:yj=k
s(xt, xj)

)
∑
k ′:k ′∈K b

(k ′)
(∑

j ′:yj ′=k
′ s(xt, xj ′)

) (2.1)

where b(k) is the bias on category k and s(xi, xj) is a scaled similarity
measure between item xi and xj. The bias term b serves the same role as
the prior in the Bayes rule: it indicates the probability of encountering a
label with value k prior to observing the query item. Intuitively it is easy
to see that the probability of the query item xi sharing the same label as a
stored item xj grows with the similarity s between the queried and stored
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items. Consequently the probability that the query item receives label k
depends on its similarity to all items in category k and its similarity to all
other items in the contrasting categories.

This formulation does not specify how the similarity between the
queried and stored examples is to be computed. In ML, a common choice
for s is the Gaussian kernel, which, in 1D is defined by

s(xi, xj) = exp
[
−

1
2σ2 (xi − xj)

2
]

(2.2)

where σ2 is the variance. In psychological models it is more common
to employ an exponential similarity gradient, following Shepard (1986).
Shepard’s 1986 arguments, however, were premised on the assumption
that the item distribution P(x) was uniform over discrete dimensions (see
Anderson, 1991); in the studies we consider below, the items are sampled
from a mixture of Gaussian distributions in a fully continuous space.
Empirically, at least one study has found that Gaussian similarity functions
can provide a better fit to human behavior for such stimuli (Nosofsky, 1985).
Moreover, an interesting property of this class of model is that, in the limit,
the estimate of P(yt = k | xt, {(xi,yi)}t−1

i=1) is not affected by the shape of
the similarity gradient (or the kernel in ML). For these reasons, a Gaussian
similarity function is used in what follows.

Kernel Density Estimation

A clear analog to exemplar models is Kernel Density Estimation (KDE).
Like exemplar models, each labeled example (xi,yi) is retained in KDE
and is used to compare against the current query item. One model that
makes use of the likelihood estimate provided by KDE is the Nadaraya-
Watson kernel estimator (Nadaraya, 1964; Wasserman, 2006; Shi et al.,
2008), a regression function that returns a real value. When this estimator
is adapted to categorization, the real value provides a direct estimate of
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the conditional probability P(yt = k | xt, {(xi,yi)}t−1
i=1). Given training data

{(xi,yi)}t−1
i=1 , the categorization function is

P(yt = k | xt, {(xi,yi)}t−1
i=1) =

∑t−1
j=1 K

(xt−xj
h

)
δ(yj,k)∑t−1

j ′=1 K
(
xn−xj ′

h

) (2.3)

where the kernel function K determines the weight between the query
item xt and each of the 1, . . . , t − 1 exemplars xj, and where δ(u, v) = 1
when u = v and 0 otherwise.

From this description, the equivalence between Equation (2.3) and
Equation (2.1) may not be immediately obvious. Under certain parameter
settings however, the equivalence becomes clear. The kernel function K

acts like the similarity function s(xi, xj), returning a value that gives a
sense of the “similarity” between the query xn and each exemplar xj. The
hyperparameter h, the bandwidth parameter, controls how the effect of
each exemplar diminishes with distance. Using a Gaussian function for s
(in the exemplar model) and a 1-dimensional Gaussian kernel for K (in
the ML model), and setting the bandwidth h to one standard deviation of
this Gaussian, the functions become identical:

s(xi, xj) = exp
[

1
2h2 (xi − xj)

2
]
= exp

[
1
2

(
xi − xj
h

)2
]
= K

(
xi − xj
h

)
.

(2.4)

Setting b(k) = 1 for all k completes the equivalence. This parametriza-
tion of the Nadaraya-Watson KDE is therefore formally identical to the
parametrization of the GCM described in (2.1) with the additional con-
straint that all categories are assumed to be equally likely a-priori.
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The Semi-Supervised Exemplar Model

To derive our semi-supervised exemplar model, we describe an SSL version
of KDE and make use of the equivalence between the Nadaraya-Watson
KDE and the GCM model. The standard model is lifted as follows: When
an item xi is queried for a label, the supervised model returnsP(yi = k | xi)
for all k = 1, . . . ,K categories. Normally, in supervised learning, the
true label yi will then be received and the labeled (xi,yi) pair added to
the training set in preparation for the next query item xi+1. In the semi-
supervised setting, xi may remain unlabeled, so that no ground truth
yi label is received. Instead of tossing out this unlabeled xi, as would
happen in the supervised case, the real value P(yi = k | xi) is calculated
for all k = 1, . . . ,K and these values are considered soft labels on xi. The
xi, together with the soft labels, is then added to the training set as a
pseudo-labeled exemplar. Thus we now maintain (xi, yi) pairs where yi
is a vector with yik = P(yi = k | xi), k = 1, . . . ,K. If xi is labeled with
yi = k

∗, the corresponding yik∗ = 1 while yik = 0 for all other values of k.
Algorithm 1 describes the model in detail.

2.2 Prototype Model as Mixture of Gaussians

Unlike the exemplar model, where learning is accomplished by storing all
individual training items, learning in the prototype model consists of sum-
marizing each category and discarding the training items themselves. The
summary is achieved by assuming that each category can be represented
with a parametric distribution P(x | y = k), so that only the distribution
parameters for each category need be retained. The parameters associated
with a given category constitute the category prototype. Prototypes do not
necessarily correspond to any particular labeled item, but are abstract
representations of all labeled items in the category they represent. For
example, if we assume that each category P(x | y = k) has a Gaussian



13

Algorithm 1: Semi-Supervised Exemplar Model
Given: kernel bandwidth h
for n = 1, 2, . . . do

Receive xt and predict its label using

arg max
k
P(yt = k | xt, {(xi, yi)}t−1

i=1) =

∑t−1
j=1 K

(xt−xj
h

)
yjk∑t−1

j ′=1 K
(

xt−x ′j
h

) . (2.5)

if xt is labeled with yt = k∗ then

Set ytk =

{
1, if k = k∗

0, o.w. , for k = 1, . . . ,K.

else
Set ytk = P(yt = k | xt, {(xi, yi)}t−1

i=1) for k = 1, . . . ,K.
end
Add (xt, yt) as an exemplar.

end

distribution, then the corresponding prototype can be represented by
the parameters µ(k) (mean or “component center”) and σ2(k) (variance
or “spread”). Typically the number of categories K in the model is fixed
in advance, before any labeled examples are seen, so that the number of
stored prototypes does not grow with the number of examples. A new
item is labeled by comparing it to each stored prototype.

A variety of different prototype models have been proposed in the psy-
chological literature. To illustrate the link to ML, we consider the model
proposed by Minda and Smith (2011), in which the prototype is simply
the sample mean of labeled training examples in a given category. Query
items are labeled using the same method as in the exemplar model, by
comparison to a set of stored representations. The difference is that the
stored representations are category prototypes, and not the labeled train-
ing items themselves. Thus it is not surprising that the formal description



14

of the model is very similar:

P(yt = k | xt, {(xi,yi)}t−1
i=1) =

b(k) s(xt, x̄(k))∑
k ′:k ′∈K b

(k ′) s(xt, x̄(k ′))
(2.6)

where x̄(k) is the prototype for category k and s(xi, x̄(k)) is a similarity
function as in Equation (2.1), except that now xi is compared to a single
summary representation x̄(k) of each category k. Just as in the exemplar
model, the bias term b(k) encodes the prior belief on label k.

Gaussian Mixture Models

An ML analog to prototype models is the mixture model, in which items
are assumed to be generated from some mixture of underlying compo-
nents. Each component is represented by a set of parameters that are
learned from the data, with the number of components fixed before learn-
ing. We use the Gaussian Mixture Model (GMM), where each category is
represented by a single component corresponding to a Gaussian distribu-
tion. The GMM is defined by parameters θ = {α,µ,Σ}, where α is the set
of non-negative mixing parameters {α(1), . . . ,α(K)},

∑
k=1:K α

(k) = 1, µ a
vector of the corresponding Kmeans (µ(1), . . . ,µ(K)), and Σ a set of covari-
ance matrices (Σ(1), . . . ,Σ(K)). When x is one-dimensional, the covariance
matrices are replaced by variances σ2(1), . . . ,σ2(K). The model is defined
by the joint probability P(xi,yi | θ) = P(yi | θ)P(xi | yi, θ) where

P(yi = k | θ) = α(k), (2.7)

P(xi | yi = k, θ) = N(xi; µ(k),Σ(k)). (2.8)

Note that the n training examples seen prior to the query xn are not used
directly to label new items, but instead are used to estimate the parameters
θ, typically via the maximum likelihood estimate (MLE). The parameter
estimates after seeing the n − 1 examples are denoted as θ̂(n−1). The
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probability distribution over category labels for the query item xn is then
computed as the posterior

P(yt = k | xt, θ̂(t−1)) = (2.9)
P(xt | yt = k, θ̂(t−1))P(yt = k | θ̂(t−1))∑

k ′∈K P(xt | yt = k ′, θ̂(t−1))P(yt = k ′ | θ̂(t−1))

with the most likely label found by taking arg maxk P(yt = k | xt, θ̂(t−1)).
As was the case when comparing KDE and exemplar models, GMMs

are identical to prototype models under a certain parametrization. As
in the exemplar model, we define the similarity function s to be a Gaus-
sian (2.2). Unlike the exemplar model, where we compare the query xt to
each labeled example, here we only compare it to the set of K prototypes
{x̄(k) : k ∈ K} corresponding to the K categories. For each category, the
point x̄(k) is equal to the sample mean µ̂(k) for that category in the GMM
formulation, while the covariance σ̂2(k) enters s implicitly via the defini-
tion of multivariate Gaussian probability density function. The set of α̂
corresponds to the set of b(k). Thus under these settings the prototype
model is equivalent to the GMM.

The Semi-Supervised Prototype Model

Recall that, in the prototype and GMM frameworks, the number of pro-
totypes is fixed, usually equal to the number of categories, and each pro-
totype is encoded by parameters learned from the training set. In the
supervised setting these parameters can be computed in closed form by
taking the MLE. In the semi-supervised setting, the closed-form compu-
tation is no longer possible because it is not clear to which category each
unlabeled item belongs, and consequently it is not clear to which parame-
ter estimates the item should contribute. To make use of unlabeled data,
the MLE is instead computed using an approximation method, typically
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the expectation maximization (EM) algorithm (Dempster et al., 1977).
In the case of a 2-category Gaussian mixture model with x ∈ R and

labels y ∈ {0, 1} the sufficient statistics vector is

φ̂(x,y) = (1 − y, (1 − y)x, (1 − y)x2,y,yx,yx2). (2.10)

Algorithm 2 formulates our procedure for using both labeled and unla-
beled data to find a prototype model solution.

2.3 Rational Model as Dirichlet Process
Mixture Model

The exemplar model is nonparametric in that the number of representa-
tional elements grows directly with the number of training examples and
no assumptions are made about the number or distribution of categories.
The prototype model is parametric in that there are a fixed number of
components (category prototypes) which are defined by a fixed number of
parameters. While several psychological models have been proposed that
exist between these extremes (e.g., the Varying Abstraction model (Van-
paemel et al., 2005)), perhaps the most influential is Anderson’s Rational
model (Anderson, 1990, 1991). A version of the Rational algorithm, slightly
modified from the presentation in Anderson (1991), is presented in Algo-
rithm 3.

The term P(zi = `
′ | xi) controls the probability that a given item will

be assigned to a new cluster, with the effect that the number of repre-
sentational elements in a trained model will vary with this term. This
probability in turn depends on a “coupling parameter” that specifies the
prior probability of any two items being drawn from the same cluster.
When the coupling parameter is low, P(zi = ` ′ | xi) is high, so each labeled
item will likely be placed in its own cluster, similar to the exemplar model.
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Algorithm 2: Semi-Supervised Prototype Model
Given: Prior encoded in φ
Initialize θ(0) from φ (see M-step below)
for t = 1, 2, . . . do

Receive xt and calculate q(yt) = P(yt | xt, θ(t−1))
Receive yt (may be unlabeled), update model

E-step:
if xt is unlabeled then
φ = φ+ Eq[φ̃(xt,yt)]

else
φ = φ+ φ̃(xt,yt)

end

M-step: Let φ = (n0, s0, ss0,n1, s1, ss1).
Compute θ(t) as follows:

α =
n1

n0 + n1
(2.11)

µ0 =
s0

n0
(2.12)

σ2
0 =

ss0

n0
−

(
s0

n0

)2

(2.13)

µ1 =
s1

n1
(2.14)

σ2
1 =

ss1

n1
−

(
s1

n1

)2

(2.15)

with n0, n1 the weighted sum of items assigned to category 0, 1.
end

When the coupling parameter is high, P(zi = ` ′ | xi) is low and relatively
few clusters will be learned, similar to the prototype model. In Ander-
son (1991), the coupling parameter is assumed to be fixed in advance of
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Algorithm 3: Rational Model of Categorization
Given: cluster assignments {zi}t−1

i=1 assigning {xi}t−1
i=1 to clusters in L

for each cluster l ∈ L do
calculate P(zt = l | xt, {xi, zi}t−1

i=1), the probability that xt comes
from cluster l.

end
Also, let P(zn = l ′ | xt) be the probability that xt comes from a new
cluster l ′.

Assign xt to the cluster with maximum probability:

zt = arg max
l∈{L,l ′}

{
P(zt = l | xt, {xi, zi}t−1

i=1)
P(zt = l

′ | xt)
(2.16)

If the assigned cluster is the new l ′, add l ′ to L.

training.

Dirichlet Process Mixture Models

Dirichlet Process Mixture Models (DPMMs) are to KDEs and GMMs as
the Rational model is to exemplar and prototype models: DPMMs allow
the number of components of the mixture model to grow dynamically
with the number of data points observed. Anderson’s Rational model was
in fact shown to be equivalent to the DPMM (Neal, 1998; Sanborn et al.,
2006; Griffiths et al., 2011).

The model presented here is similar to the AClass model of (Mans-
inghka et al., 2007), which was used for supervised learning. But un-
like AClass where each category has its own private DPMM, we stack
(x,y) : x ∈ R, y ∈ {0, 1}, into an extended feature vector and use one global
DPMM: G ∼ DP(G0,α2), θ1 . . . θt ∼ G, (xi,yi) ∼ F(x,y|θi), where G0 is a
base distribution which we take to be the product of Normal-Gamma and
Beta, conjugate priors for Normal and binomial: G0 = NG(µ0, κ0,α0,β0)Beta(α1,β1).
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θ = (µ, λ,p) is a parameter vector with the mean and precision of a Gaus-
sian for the x component, and the “head” probability for the y component.
Due to the property of the Dirichlet process (Teh, 2010), many θ’s will be
identical, creating an implicit clustering of items. F is a product of Gaussian
and Bernoulli: F = Norm(x;µ, λ)py(1−p)1−y. As is common with DPMM,
we introduce cluster membership indices z1 . . . zt, and integrate out θ and
G via particle filtering (Fearnhead, 2004). That is, at iteration t − 1 we
assume the distribution P({zi}t−1

i=1 | {xi}
t−1
i=1 , {yi}t−2

i=1) is well-approximated
by the empirical distribution onm particles z(1), . . . , z(m), each particle z a
vector of indices z1, . . . , zt−1:

P({zi}
t−1
i=1 | {xi}

t−1
i=1 , {yi}t−2

i=1) ≈
1
m

m∑
l=1

δ({zi}
t−1
i=1 , z(l)),

where δ(u, v) = 1 if u = v, and 0 otherwise. Then, at iteration t, after we
observe the input item xt but before seeing its label yt, the distribution
P({zi}

t
i=1 | {xi}

t
i=1, {yi}t−1

i=1) can be shown to be proportional to

m∑
l=1

δ
(
{zi}

t−1
i=1 , z(l)

)
P
(
yt−1 | z(l), {yi}t−2

i=1
)
P
(
zt | z(l)

)
P
(
xt | zt, z(l), {xi}t−1

i=1
)

.

(2.17)
One would further sample from (2.17)m new particles z(1), . . . z(m). The
empirical distribution on these new particles will approximate P({zi}ti=1 |

{xi}
t
i=1, {yi}t−1

i=1). This update is the key to particle filtering, which uses a
fixed number of particles to approximate an increasingly complex distri-
bution.

In (2.17), one needs to compute three conditional probabilities. The
conditional probability of zt is computed from the Chinese Restaurant
Process prior. Let there be K unique index values 1 . . .K in {zi}

t−1
i=1 , then

P(zt = k | {zi}
t−1
i=1) =

{
tk/(α2 + t− 1), k 6 K

α2/(α2 + t− 1), k = K+ 1
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where tk is the number of indices with value k in {zi}
t−1
i=1 . The conditional

probability of xt is computed from a student-t distribution,

P(xt | {zi}
t
i=1, {xi}t−1

i=1) = t2α (xt | µ,β(κ+ 1)/(ακ)) ,

with

µ =
κ0µ0 +Nx̄

κ0 +N
(2.18)

κ = κ0 +N (2.19)

α = α0 +
N

2
(2.20)

β = β0 +
1
2

N∑
i=1

δ(zi, zt)(xi − x̄)2 +
κ0N(x̄− µ0)

2

2(κ0 +N)
(2.21)

N =

t∑
i=1

δ(zi, zt) (2.22)

x̄ =
1
N

t−1∑
i=1

δ(zi, zt)xi (2.23)

The Semi-Supervised Rational Model

Just as in the semi-supervised exemplar and prototype models, lifting the
DPMM requires modifications to accommodate both labeled (x,y) pairs
and unlabeled x items with no corresponding ground truth labels y. The
key point is that the probability distribution over partition assignments,
which is central to the Rational/DPMM approach, is influenced here by
the distribution of both labeled and unlabeled examples in the feature
space, as well as by the labels given to the labeled items. Unlabeled data
thus influence category learning by influencing which partitions of the
feature space are most probable.

Importantly, for our semi-supervised variant of DPMM, the conditional
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Algorithm 4: Semi-Supervised Rational Model of Categorization
Parameters: α2,µ0, κ0,α0,β0,α1,β1
Initializem empty particles; y0 =unlabeled
for t = 1, 2, . . . do

Receive yt−1 (may be unlabeled) and xt
Re-samplem particles from (2.17)
Predict yt with new particles from (2.27)

end

probability of yt−1 is computed from a beta-binomial distribution

P(yt−1 | {zi}
t−1
i=1 , {yi}t−2

i=1) =
c1 + α1

c0 + c1 + α1 + β1
. (2.24)

Note some of the y’s might be unlabeled. If yt−1 is unlabeled, the prob-
ability is simply 1 since it must take either one of the labels. If some y’s
in {yi}

t−2
i=1 are unlabeled, one can show that those are marginalized over,

resulting in the following counts:

c1 =

t−2∑
i=1

δ(zi, zt−1)δ(yi, 1) (2.25)

c0 =

t−2∑
i=1

δ(zi, zt−1)δ(yi, 0) (2.26)

Here, we define δ(yi, 1) = δ(yi, 0) = 0 if yi is unlabeled. Once the particles
are updated with (2.17), predicting yt is straightforward:

p(yt | {xi}
t
i=1, {yi}t−1

i=1) ≈
1
m

m∑
l=1

p(yt | z(l), {yi}t−1
i=1) (2.27)

where p(yt | z(l), {yi}t−1
i=1) is computed with (2.24). The complete algorithm

is given in Algorithm 4.
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3 semi-supervised effects due to distribution of
unlabeled data: previous evidence

While the models discussed in the previous chapter provide a theoretical
basis for considering models of human semi-supervised learning, this
does not show that humans actually are affected by unlabeled data in a
categorization task. The following experiment, conducted by members of
my research group prior to my joining, was among the first demonstration
of the sensitivity of human learners to unlabeled data in a categorization
task.

3.1 Experiment 1: SSL Distribution Effects

The experiment was designed to assess whether human categorization
decisions are influenced by the distribution of unlabeled examples (Zhu
et al., 2007). 22 students at the University of Wisconsin completed a bi-
nary categorization task with complex novel shapes varying in a single
continuous parameter x ∈ [−2, 2] as seen in the examples in Figure 3.1.
The two categories were denoted by y = 0 or y = 1. Participants first
received 2 labeled items: (x,y) = (−1, 0) and (1, 1), repeated 10 times each
in random order. These items were “labeled” in that feedback indicating
the correct response was provided after each trial. Participants next classi-
fied 795 unlabeled test examples in one of two experimental conditions,
differing only in how the majority of the unlabeled items were generated.
In the L-shift condition, 690 of the unlabeled test items were drawn from a
mixture of two Gaussians with a trough shifted to the left of the boundary
implied by the labeled training items (see Figure 3.2). The other condition,
R-shift, varied only in that the trough between the Gaussians was now
shifted to the right of the implied labeled boundary. In both conditions,
the remaining unlabeled test items were items drawn from a grid across
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−2 −1 0 1 2

Figure 3.1: Example stimuli used in Zhu et al. (2007), with corresponding
x values.

the entire range of x, ensuring that both unlabeled distributions spanned
the same range. The grid items appeared in random order at the begin-
ning and end of the unsupervised phase, allowing for the measurement
of the category boundary participants learned immediately following the
supervised experience and following exposure to the unlabeled bimodal
distribution.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(x

)

Figure 3.2: Example of the dataset used in the L-shift condition of Zhu et al.
(2007). Labeled points are represented as negative ( ) and positive ( ). The
black curve is the bimodal distribution P(x) from which unlabeled items
were drawn. The dashed vertical line represents the boundary implied by
the labeled points alone. Note that the trough in the unlabeled distribution
is shifted to the left with respect to the supervised learning boundary.
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Figure 3.3: Results from shift in unlabeled distribution in Zhu et al. (2007).
The thick black line marks items on which the majority human categoriza-
tion differs in the two conditions.

Figure 3.3 shows a summary of the results by pooling human behavior
by condition and fitting logistic regression curves to show the conditional
probability P(y = 1 | x). Two subsets of the data are examined. The early
subset shows behavior on the first 50 unlabeled test items (drawn right
after the labeled training phase), while the late subset shows behavior on
the final 50 unlabeled test items (drawn at the end of exposure to unlabeled
data).

Comparing the early items, the two groups look essentially the same
and the curves overlap. On the late items the curves are substantially differ-
ent. The decision threshold, i.e., x producing the value P(y = 1 | x) = 0.5,
shifted in opposite directions in the two conditions, moving to the left in
the L-shift condition and to the right in the R-shift condition. In the late
subset, the majority of participants classified the items x ∈ [−0.07, 0.50]
differently in the two conditions. If participants were unaffected by unla-
beled data, the late test curves should be identical to the early curves and
overlap. The fact that they do not indicates that participants are affected
by the unlabeled data for this categorization task. To statistically test these
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observations, decision boundaries for the early and late grid-test items
were computed separately for each participant using logistic regression on
the participant’s categorization decisions. A repeated measures analysis
of variance assessing the influence of early vs. late and L-shift vs. R-shift on
the location of the decision showed a significant interaction between the
two factors (F(1, 18) = 7.82,p < 0.02), indicating that after exposure to the
unlabeled data, the decision boundary shifted in significantly different
directions for the two groups. Thus exposure to the unlabeled bimodal
distribution appears to alter participant’s beliefs about the location of the
category boundary.

3.2 Experiment 2: Social Categories

The second study had a somewhat different goal – namely to investigate
whether semi-supervised learning might provide part of an explanation
as to why people are often prone to form incorrect beliefs about social
categories (Kalish et al., 2011). The experiment is useful for current pur-
poses, however, because it revealed similar effects to those reported by Zhu
et al. (2007) even though it used quite different stimuli and a different
method for measuring the effect of unlabeled items. In this experiment the
unlabeled distribution was held constant while the location of the original
labeled examples varied across experimental groups.

Forty-three undergraduates viewed schematic images of women vary-
ing along the single dimension of width. The women were described as
coming from one of two islands. As in Experiment 1, each participant
first completed a supervised phase where a labeled example from each
category (i.e. “Island”) was presented five times in random order for a
total of 10 labeled examples. In the L-labeled condition participants viewed
two relatively thin stimuli (pixel-widths of 80 and 115) while those in the
R-labeled condition viewed two somewhat wider stimuli (pixel-widths of
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135 and 165). All participants then classified a set of unlabeled items with-
out feedback. In the experimental conditions, both L-labeled and R-labeled
groups viewed the same set of unlabeled items, including 37 initial test
items sampled from a uniform grid along the full stimulus range, 300
items sampled from a mixture of two Gaussian distributions, and a final
set of 37 test items sampled from the grid. The mixture of Gaussians was
constructed so that the modes of the distribution lay midway between the
labeled points in the L-Labeled and R-labeled conditions (see Figure 3.4). In
a control condition, participants received the same L-labeled or R-labeled
experience, but only viewed items lying on a grid between the two labeled
items in the unsupervised phase.

Figure 3.4: Examples of the Island Women stimuli, the labeled points, and
the bimodal distribution from which unlabeled items are sampled.

In Zhu et al. (2007) the trough of the unlabeled distribution fell between
the labeled points. In contrast, in this study the two labeled points both
fell to one side of the trough in the unlabeled distribution, resulting in an
even stronger conflict between the boundaries suggested by supervised
and unsupervised experience. Given this mismatch, would learners still
be affected by the unlabeled distributions? To answer this question, the
authors considered three different measures. First, like Zhu et al. (2007),
they considered how participants categorized unlabeled items along the
grid prior to and following exposure to the bimodal unlabeled distribution.
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Second, following the unsupervised phase of the experiment, they asked
participants to explicitly indicate where the boundary was located by
adjusting a slider that controlled the width of a pictured stimulus. Finally,
using the same slider, they asked participants to indicate the “most typical”
example of each category.

All three measures showed beliefs about category structure to be
strongly shaped by the distribution of the unlabeled examples. In the
control condition, participant behavior strongly reflected their supervised
learning experience: the estimate of the implicit category boundary and
the participants’ explicit reports of the boundary were closely aligned
with and not significantly different from the midpoint between the labeled
examples, while their judgments of the most typical example of each class
aligned closely with and did not differ significantly from the labeled exam-
ples they had received. In comparison, implicit boundary estimates in the
experimental groups were significantly shifted toward the trough in the
unlabeled distributions – that is, toward the right in the L-labeled condition,
and toward the left in the R-labeled condition. This shift was reflected even
more strongly in the explicit boundary judgments. Moreover, choices
about the most typical examples of each category aligned closely with the
modes of the unlabeled distribution, shifting very dramatically away from
the labeled items observed in the beginning of the experiment. Perhaps
most interestingly, the majority of participants in each condition actually
altered their beliefs about one of the two labeled examples, coming to
classify it with the opposite label than that viewed during the supervised
phase.

Given these substantial effects of unlabeled data, one might inquire
whether participants accurately remember the labeled examples and sim-
ply change their beliefs about the accuracy of the earlier supervisory feed-
back, or whether their memory for the labeled items itself changes. Kalish
et al. (2011) addressed this question in a follow up experiment where,
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following exposure to the unlabeled items, participants used the slider in
an attempt to reproduce the two labeled items that had appeared at the
beginning of the study. Strikingly, their reproduction were also strongly
influenced by the unlabeled data, lining up closely with the two modes
of the unlabeled distribution even though, in actuality, the two labeled
points lay on either side of one of the modes. Thus memory for the original
labeled examples appeared to be distorted by exposure to the unlabeled
items.

One might further wonder whether the labeled experience has any im-
pact at all in these studies beyond providing basic information about which
“cluster” in the unlabeled distribution should get which label. Kalish et al.
(2011) were able to show that the labeled information does, in fact, have
a persisting influence even after extensive unlabeled experience: despite
being exposed to exactly the same unlabeled items, participants in the
L-labeled and R-labeled conditions of these studies did not end up with
exactly the same beliefs about the location of the boundary. Instead, the
L-labeled group’s final boundary was displaced significantly to the left of
the R-labeled group’s final boundary, indicating some lasting effect of the
original supervisory experience.

Finally, this study rules out an alternative explanation of the effects
of unlabeled data in these experiments. In the Zhu et al. (2007) study,
because participants in the different experimental groups viewed different
sets of unlabeled items, it was possible that the observed differences in
categorization boundaries might arise from perceptual contrast effects.
For instance, a given stimulus in that study might look “more pointy” or
“less pointy” depending upon how pointy the preceding stimulus was.
It is conceivable that these local perceptual contrast effects might lead
to consistent differences in the estimated category boundary depending
upon the location of the trough in the unlabeled distribution. In the
study of Kalish et al. (2011), both experimental groups viewed exactly
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the same set of unlabeled items, in the same fixed order, but nevertheless
showed systematic differences in their estimate of the category boundary
depending upon their supervised experience. Thus the learning in this
study appears to be truly semi-supervised, reflecting contributions from
both labeled and unlabeled experience.
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4 semi-supervised effects due to order of
unlabeled data (zhu, gibson et al., 2010)

In this study we used ML models and techniques to investigate the behav-
iors exhibited by humans in categorization tasks and how that behavior is
affected by a mixture of labeled and unlabeled data. We introduced the
term Test-Item Effect to denote the possibility that unlabeled test items can
induce changes to the classifier f in human category learning. Specifically,
the Test-Item Effect predicts that two otherwise identical people A, B re-
ceiving exactly the same training data can be made to disagree on certain
test items x∗, i.e., fA(x∗) 6= fB(x∗), simply by manipulating what other test
data xAn+1 . . . and xBn+1 . . . they are asked to classify, respectively.

My contribution to this work was in performing the modeling analysis show-
ing that existing SSL models can be modified to reproduce the Test-Item Effect
observed in humans.

While some past research did show that classification behavior can be
influenced by the construction of the test set (Zaki and Nosofsky, 2007;
Palmeri and Flanery, 1999; Fried and Holyoak, 1984), the Test-Item Effect
was not well-understood. The goal of this project was (i) to report Test-
Item Effects observed in a human category-learning task, and (ii) to assess
whether the different SSL models described in Section 4.2 vary in how
well they match the reported human behavior. If some models fit the
human data better than others, this suggests that the Test-Item Effects
might importantly constrain computational accounts of human category
learning. The main contribution of this work was thus to CP and the
understanding of human category learning.
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4.1 Human Experiment

This experiment consisted of two identical conditions except for one aspect:
They shared the same set of test items, but differed in the order the test
items were presented to the subjects. As shown below, subjects in these
two conditions consistently disagreed on the label of certain test items.

Participants and Materials

40 undergraduate students participated for partial course credit. The
stimuli were the novel shapes seen before (Figure 3.1), varying according
to a single continuous parameter x ∈ [−2, 2]. There were two classes,
denoted as y = 0 or y = 1.

Procedure

In trial n, a stimulus xn appeared on a computer screen, and stayed on
until the subject pressed one of two keys to label it. All subjects ini-
tially had the same 10 labeled trials, where two items occurred alterna-
tively: (xn,yn) = (−2, 0), (2, 1), (−2, 0), (2, 1) . . . For these 10 trials, after
the subject pressed her key, a label feedback appeared on screen indicating
whether her classification was correct (same as yn). The computer screen
was then cleared, and the stimulus for the next trial appeared. After these
labeled trials, subjects were presented with a series of 81 unlabeled test
items evenly spaced in feature space: xn = −2,−1.95,−1.9, . . . , 2. The test
items appeared one at a time on the screen, and the subjects had to classify
them using the same procedure. However, there was no longer labeled
feedback after each classification. Importantly, the subjects were randomly
divided into two conditions of equal size. In the “L to R” condition, the
order of the test items was as above. In the “R to L” condition, the order
was the opposite (i.e., 2, 1.95, 1.9, . . . ,−2).
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Result

Figure 4.1(Left) shows a plot of P(y = 1|x), estimated by the fraction of
subjects in each condition who classified xwith label y = 1. The difference
is striking.1 Subjects in the “L to R” condition tended to classify more test
items as y = 0, while those in the “R to L” condition tended to classify
more as y = 1. For instance, for the same test item x = −0.5, only 4 out of
20 subjects in the “L to R” condition classified it as y = 1, while 15 out of
20 subjects in the “R to L” condition did so. This is significantly different
using log odds ratio at p < 0.0004. It is clear evidence of the Test-Item
Effect, where the effect is produced by the order of test items. In fact, for
test items x ∈ [−1.2, 0.1] a majority-vote among subjects would classify
them in opposite ways in those two conditions.

We postulated that the subjects might perform self-reinforcement: that
once a person classifies a test item x as in class y, the predicted label y
(perhaps weighted by its uncertainty) becomes a training label for the
person. For example, for a subject in the “L to R” condition, the first few
test items are all near x = −2. The subject can easily classify them as y = 0
from the training she just received. If self-reinforcement is in effect, these
test items will act as additional training data for the y = 0 class. This would
tend to favor classifying more test items as y = 0. The opposite can be
said for the “R to L” condition. Such self-reinforcement corresponds to the
self-training algorithm in semi-supervised learning (Zhu and Goldberg,
2009, §2.5). Under certain probabilistic models, it can also be interpreted
as an Expectation-Maximization (EM) procedure.

1We point out that the two curves in Figure 4.1 are not symmetric about x = 0, as
one would expect. We speculate that this is due to the stimulus space in Figure 3.1 not
being perceptually uniform. Our feature x is a parameter used to generate the geometry
of the shapes, and does not necessarily match the human perceived similarity between
stimuli. Nonetheless, this does not affect the validity of the observed Test-Item Effect,
which only depends on the two curves separating from each other.
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Figure 4.1: The Test-Item Effect due to order. The thick black lines mark
items on which the majority human classification differs in the two condi-
tions.

4.2 Model Comparison

In addition to the Text-Item Effect due to order, we can consider the be-
havior seen in Zhu et al. (2007) as evidence of a different kind of Test-Item
Effect, in that case due to distribution (see Section 3.1). We used both
experimental datasets to examine how well our SSL models, described in
Section 4.2, fit human data.

Parameter tuning

Let (x[s]n ,y[s]n ), n = 1, 2, . . . be the sequence of training and test data that
the s-th subject saw during human experiments, where some y’s may
be unlabeled. Furthermore, let h[s]

n ∈ {0, 1} be the binary classification
response the s-th subject made at trial n. Each of our models predicts the
label probability P(yn|x1:n,y1:n−1, θ) at trial n, given parameter θ = h,n0,
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Figure 4.2: Order training set log likelihood `tr(θ) for a set of θ

exemplar prototype RMC
θ̂ h = 0.6 n0 = 12 α2 = 0.3

`te(θ̂) −3727 −2460 −2169

Table 4.1: Order test set log likelihood `te(θ̂)

or α2. We define training set log likelihood as

`tr(θ) ≡
∑
s∈tr

∑
n

log P(h[s]
n | x

[s]
1:n,y[s]1:n−1, θ).

Because the order and distribution tasks used the same stimuli, we merge
their subjects and fit a single parameter for both tasks.2 Specifically, we
take 32 subjects, eight each from the “order task L to R”, “order task R to L”,
“distribution task L shifted”, and “distribution task R shifted” conditions
to form the training set tr. The remaining 4, 2, 12, 12 subjects in those
conditions form the test set te, and define test set log likelihood `te(θ)
accordingly. These sets are shared by the three models. For each model,
we find the maximum likelihood estimate parameter θ̂ = arg maxθ `tr(θ)
on the training set using a coarse parameter grid as shown in Figure 4.2.

2This reduces data sparsity. We assume that because the stimulus space is the same,
and the learners have no prior knowledge that the tasks are different, they will use the
same parameter setting in both tasks.
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Observations

Table 4.1 shows the log likelihood `te(θ̂) on the test set, which was not
involved in parameter tuning. In addition, Figure 4.3 shows the behavior
of the three models over a wide range of parameters (including θ̂). We
make a few observations: (i) All three models predict test-items effects. All
models show different classification behavior following the same super-
vised training depending upon the order and distribution of the test items.
(ii) Some models are more consistent with the empirical data than others.
Specifically, the semi-supervised RMC model showed a qualitatively simi-
lar pattern (and the best log-likelihoods) to both datasets under a range of
parameter values. The prototype model fared well under some parameter
choices but not others; and the exemplar model failed to qualitatively
match the empirical data under any of the studied parametrization. The
test-item effect thus provides evidence useful for constraining theories of
human categorization. In this case, it suggests that the RMC provides a
better approximation of human category learning than either prototype or
exemplar theories, though to more firmly assess this hypothesis it will be
necessary to consider other parametrization of the later kinds of models.

Down-weight unlabeled exemplars

Our semi-supervised exemplar model has the lowest likelihood. On the
“order” task, the two curves are too wide apart; on the “distribution” task,
they overlap, cross, or even flip. A natural idea for improvement is to
afford a weight parameter w < 1 to unlabeled exemplars: perhaps a self-
assigned label is worth less than a true label. Specifically, one can adapt the
Nadaraya-Watson kernel estimator into r(x) =

∑n
i=1

wiK(
x−xi
h )∑n

j=1wiK(
x−xj
h )
yi, with

wi = w if xi is unlabeled, and wi = 1 otherwise. Figure 4.4(left) shows
`tr(w,h = 0.6) for the exemplar model withw ranging from 0 (supervised
learning) to 2 (overweight). Clearly, semi-supervised learning (w > 0)



36

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

h = 0.1 h = 0.6 h = 1 h = 0.1 h = 0.6 h = 1

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−2 −1 0 1 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
P

(y
=

1|
x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

n0 = 1 n0 = 12 n0 = 20 n0 = 1 n0 = 12 n0 = 20

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

α2 = 0.03 α2 = 0.3 α2 = 3 α2 = 0.03 α2 = 0.3 α2 = 3

Figure 4.3: (Top) Semi-supervised exemplar model, (middle) Semi-
supervised prototype model, (bottom) Semi-supervised rational model
of categorization. Columns 1–3 show model predictions P(yn =
1|x1:n,y1:n−1) on the “order” task (Section 4.1), and columns 4–6 the “dis-
tribution” task (Section 3.1). The legend is the same as in Figure 4.1.

is much better than supervised learning at explaining the human data.
Training likelihood peaks at w = 0.2 and decreases thereafter. The test set
log likelihood with w = 0.2,h = 0.6 is −2934, still worse than the other
two models (which have only one parameter). The other two panels in
Figure 4.4 show exemplar model predictions similar to the top row of
Figure 4.3, but with w = 0.2,h = 0.6. Overall, down-weight unlabeled
exemplar helps, but not overwhelmingly.

While this an interesting adaptation to the model, the primary result of
the study not change, the presentation of a novel Test-Item Effect in human
categorization, induced by test item order. Together with the previously
known distribution-induced effect, to describe this effect called for new
online semi-supervised learning models, for which the models described



37

0 1 2
−10000

−8000

−6000

w (fix h=0.6)

l tr
weighted exemplar

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(y

=
1|

x)

Figure 4.4: Down-weight unlabeled exemplars

in Section 4.2 were developed. The simulations discussed here show that
all of our models exhibited the Test-Item Effect, with semi-supervised
RMC giving the best fit.
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5 what parameters are affected in
semi-supervised effects?(gibson, rogers, kalish, zhu)

In the experiment described in Section 3.1, Zhu et al. (2007) showed that
learners presented with unlabeled data drawn from a bimodal distribu-
tion whose trough does not align with a previously learned categorization
boundary will shift the boundary towards this trough. Subsequent work
has shown that such category shifts – changes to beliefs about category
structure arising from unlabeled learning experiences – can be quite dra-
matic (Zhu et al., 2010; Gibson et al., 2010; Kalish et al., 2011; Lake and
McClelland, 2011; Kalish et al., 2012, 2014).

In this experiment we considered the causes behind these observed
category-shifts. If we model human category learning using the prototype
or GMM model, we can view learning as a search through the parameter
space defining the model. Competing hypotheses suggest different con-
straints on how this search is performed when unlabeled information is
encountered.

My contribution to this work involved creating a set of formalized models,
finding an optimal training set and constructing and performing a human exper-
iment showing that humans are sensitive to all parameters and do not constrain
their search of the parameter space.

5.1 Competing Hypotheses

We considered two general hypotheses: Under the first, the shifts happen
because, during the initial supervised phase, participants notice and track
one or more parameters of the distribution from which the labeled items
are sampled, then seek to maintain a category structure that preserves the
noticed parameter. For instance, in Zhu et al.’s (2007) study, the supervised
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phase involved learning about just two examples (one from each category),
each presented 10 times with the order randomized. This experience
potentially provides the learner with important information about the two
classes that she may then seek to preserve when exposed to the unlabeled
distribution. For example, the learner may notice that members of each
category occur about equally frequently during the supervised phase.
In the unsupervised phase, she may then select a category boundary
that divides the unlabeled items approximately in half, preserving this
frequency information. Alternatively, the learner might notice that the
two categories both have approximately equal variance, and so might
learn category structures that preserve roughly equal variation between
members of the category.

Since the unlabeled distribution in the original study was bimodal,
symmetrical about the trough with peaks of equal width, either of these
strategies would lead the learner to shift the boundary to this trough.
Indeed, there are many elements of the unsupervised and supervised
distributions that differed in this study, any one of which might account
for the observed changes in categorization behavior.

The first hypothesis, then, was that learners are trying to preserve
specific parameters of the item and label distribution learned during the
initial supervised phase. We referred to this as the heuristic hypothesis,
since there is no principled reason for choosing to preserve a particular
parameter from the labeled distribution. Moreover, note that there are
several possible variants of the heuristic hypothesis: participants may try
to preserve the relative frequencies of the two categories, their variances,
their distance from the boundary, and so on.

The second hypothesis was that human beings are true semi-supervised
learners – that is, they learn the category structures most likely to have
generated all of the observations, labeled and unlabeled, subject to particu-
lar implicit assumptions about the relation between labeled and unlabeled
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examples. In the semi-supervised mixture model described by Zhu et al.
(2007), the assumptions were that (i) items are sampled from a distribution
in the feature space that is a mixture of Gaussian components and (ii)
items sampled from the same component of the mixture receive the same
category label. With these assumptions, it is possible to estimate, from all
labeled and unlabeled items, the most likely components of the mixture
(and their parameters) and the most likely labels associated with each
component. We referred to this as the SSL hypothesis.

This experiment attempted to adjudicate which of these hypotheses
best explains category-shifts that occur following exposure to unlabeled
examples, as documented in prior work.

5.2 Constrained Expectation Maximization
Models

To address the question we first formulated a set of models and then
attempted to determine which model or models best fit human behavior
on a classification task.

Task Definition

The study was performed as a 1D binary classification task (feature val-
ues x ∈ [0, 1] with labels y ∈ {0, 1}). We made the strong, yet common,
assumption that humans are making use of a Gaussian Mixture Model
(GMM). Formally, we defined the parameters of a two-component GMM
as θ = {w0,µ0,σ2

0,µ1,σ2
1}, and let Θ = {θ}, the set of all parametrization of

this model. The learner was presented first with a set of labeled items:
L = {(xi,yi)}, i = 1 . . .nL, drawn from a 2-component GMM defined by
θL, followed by a set of unlabeled items U = {(xj)}, j = nL + 1 . . .nL + nU
drawn from another GMM with different parameters θU.
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We assumed that, when training on L, humans find the maximum
likelihood estimate (MLE) denoted θ̂SL ∈ Θ. The learner was then pre-
sented with a new set of unlabeled data U which may be drawn from a
different distribution than L. Learning from U amounts to performing a
search inΘ for a set of parameters that best fit the observed stimuli. Under
the heuristic hypotheses, humans search some subspace of Θ for the new
optimum, while under the SSL hypothesis, humans search in the whole of
Θ.

We also assumed the learner uses some form of expectation-maximization
(EM) as the search procedure to find this optimum, the MLE on U, with
θ̂SL as the starting point for the search Dempster et al. (1977); Bishop (2007).
Note that, as an optimization procedure, EM can be applied even when
labeled and unlabeled items come from different distributions. Although
unusual in ML, EM used on non-iid data is plausible as a mechanism for
how humans adapt. Under this assumption, participants are not focused
on matching or maintaining particular aspects of the labeled distribution,
but are trying to find a parametric model that jointly “explains” the labeled
and unlabeled distributions.

For example, humans might be only willing to change the proportion
of one class to another (ŵ0) leaving the rest of the learned parameters(
µ̂0, µ̂1, σ̂2

0, σ̂2
1
)

fixed as they were in θ̂SL. Or, they may update both ŵ0 and
the peaks of the learned distribution (µ̂0, µ̂1), but remain insensitive to
changes in spread, or variance

(
σ̂2

0, σ̂2
1
)
, of the data. This behavior might

be interpreted as the human learner “hanging on” to some beliefs learned
on L.

Formalized Cognitive Models

With this task in mind we describe the cognitive models which were under
consideration as models of human behavior.
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unconstrained SL (θ̂SL) : This model is a purely supervised learner de-
fined by the parameters θ̂SL. This model estimates the GMM param-
eters using the MLE over the labeled set L alone and holds them
fixed over the unlabeled test data, in effect ignoring the unlabeled
data. It is included as comparison, as we know humans are affected
by U. Updates are made using

µ̂0 =
1
n0

nL∑
i=1

1 {yi = 0} xi (5.1)

σ̂2
0 =

1
n0

nL∑
i=1

1 {yi = 0} (xi − µ̂0)
2 (5.2)

ŵ0 =
n0

nL
(5.3)

with n0 =
∑nL
i=1 1 {yi = 0} (µ̂1, σ̂1 are defined similarly).

unconstrained SSL (θ̂SSL) : We specify the SSL model, defined by the
parameters θ̂SSL, before the heuristic models as all other models are
derived from this unconstrained version. Consideration must be
given as to whether to perform EM on the full data set (L+U) or to
use θ̂SL, the MLE on L, as initialization and perform EM on U alone.
We choose the latter as it more closely approximates the situation
faced by human learners in the task: initially exposed to L but with
no additional feedback as they classify U. For each M-step of EM,
the MLE estimates become

µ̂0 =

∑n
i=nL+1 γixi∑n
i=nL+1 γi

(5.4)

σ̂0
2 =

∑n
i=nL+1 γi(xi − µ̂0)

2∑n
i=nL+1 γi

(5.5)

ŵ0 =
1
nU

n∑
i=nL+1

γi (5.6)
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n = nL + nU, responsibilities γi calculated at each E-step as

γi =
ŵ0N(xi; µ̂0, σ̂2

0)

ŵ0N(xi; µ̂0, σ̂2
0) + (1 − ŵ0)N(xi; µ̂1, σ̂2

1)
(5.7)

and µ̂1 and σ̂1 calculated similarly using (1 − γi).

All remaining models correspond to our heuristic models. They are all
similar to θ̂SSL, but assume that learning is being done by fixing one of the
GMM parameters to the values learned on Lwhile allowing all others to
vary:

constrained means (θ̂µ) : Means µ̂0 and µ̂1 are fixed at the initialization
values learned on L using (5.1). It is as though two prototypes are
formed at the modes of the labeled distribution and retained when
exposed to U. At each EM iteration t, the values of µ̂ at t − 1 are
simply copied forward. The variances σ̂0

2, σ̂1
2, weight ŵ0 and re-

sponsibilities γi are updated using (5.5), (5.6) and (5.7) respectively.

fixed standard deviations (θ̂σ) : The standard deviations σ̂0 and σ̂1 are
fixed at the initialization values learned on L using (5.2). Here, it is
the spread of the labeled data that is considered important, and is
maintained. Again at each EM iteration the values of σ̂0 and σ̂1 are
simply copied forward. Updates for means, weight and responsibili-
ties are the same as in (5.4), (5.6) and (5.7).

fixed ratio of standard deviations (θ̂r) : At initialization, the ratio of stan-
dard deviations learned on L using (5.2) is calculated as r = σ̂0/σ̂1.
Again, the spread is considered most important, but now the spread
of each class is allowed to vary only so long as the ratio between
the two is maintained. As the parameters σ̂0 and σ̂1 are now tied,
the parameter set becomes θ̂r = {w0,µ0,µ1,σ}. Reformulating the
optimization function and solving for σ we find the new update
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equations

σ̂2 =
1
nU

 n∑
i=nL+1

(
γi(xi − µ0)

2 + r2(1 − γi)(xi − µ1)
2
) (5.8)

γi =
w0N(xi; µ̂0, σ̂2)

w0N(xi; µ̂0, σ̂2) + (1 −w0)N(xi; µ̂1, (σ̂/r)2)
. (5.9)

Updates for means and weight are the same as in (5.4) and (5.6).

constrained weight (θ̂w) : The weight parameter ŵ0 is fixed at the initial-
ization value learned on L. In this case it is the frequency of each
class which is considered most important to retain from the labeled
data. All other updates remain unchanged.

The above models each fix one property. We also consider cognitive
models which constrain multiple parameters. For example, the model θ̂σ,w

has only two parameters which are free to vary: {µ̂0, µ̂1}, with ŵ0, σ̂2
0 and σ̂2

1

fixed. This results in 5 additional models: {θ̂σ,w, θ̂r,w, θ̂µ,w/σ, θ̂µ,w/r, θ̂µ,σ, θ̂µ,r}.
The model θ̂µ,w/σ is constrained in means and weight while standard de-
viations are allowed to vary. The model θ̂µ,w/r is constrained in means
and weight while ratio of standard deviations is allowed to vary.

The final cognitive model we examined (propL) is not probabilistic.
In this model, the learner simply calculates the proportion of negative to
positive items seen in L. When the learner is then presented with U, they
attempt to place a boundary in feature space such that this proportion
of negative to positive items is preserved. If the distribution generating
unlabeled items is different from that generating the labeled items, the
boundary learned on the labeled data will not necessarily be the same
one applied to the unlabeled data. This model, θ̂propL has only a single
parameter n0/nL, with the boundary b̂ induced from this ratio:

b̂ = x(j) :
j

nU
=
n0

nL
, j ∈ [1,nU] (5.10)
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where b ∈ [0, 1] and {x(1), x(2), ..., x(nU)} are the items inU, sorted by feature
value. Note that this model is related to the cognitive models which
preserve the GMM weight w0. However, since this is not a GMM and
classification is simply performed by a step function placed at the learned
boundary b, the resulting behavior may be different.

With these cognitive models in hand we now discuss how we compared
their performance to human behavioral data in order to assess which was
the best match.

5.3 Human Experiment and Choosing a
Diagnostic Dataset

We designed an experiment which attempted to discriminate which of our
proposed models was a best fit to human behavior in the 1D classification
task. An important aspect of this design was the construction of the
dataset.

A dataset had to be found which would maximally discriminate pre-
dictions made by our various models, so that it was as clear as possible
which model most strongly matched human behavior. This step was simi-
lar in flavor to the machine teaching task proposed in Zhu (2013). In that
setting, a teacher attempts to design an optimal dataset to teach a (po-
tentially unknown) learner a target hypothesis. The difference here was
that we did not have a target we wished our learners to learn, but instead
simply wanted our proposed learners to differ as much as possible in
their resulting predictions. The similarity was in the search over potential
datasets.

To find a good dataset, first a labeled set L of nL = 50 labeled pairs
were drawn from θL = {w0 = 0.75,µ0 = 0.4,σ0 = 0.12,µ1 = 0.8,σ1 = 0.06}.
A heuristic search was then made over a sparse grid of parameter settings
θU, varying in all parameters. At each setting a potential unlabeled set Ũ
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Figure 5.1: Stimuli at x = 0, 0.25, 0.75 and 1 respectively.

of nU = 300 was drawn. All cognitive models were then trained on L and
predictions made on that Ũ. We heuristically selected the dataset L+ Ũ
with the aim to produce the largest combined pairwise difference between
predictions, and therefore largest discriminative power. Additionally,
parameters which produced more than one decision boundary in the
target range x ∈ [0, 1] were avoided.

In the end the parameters selected from which U was drawn were
θU = {w0 = 0.25,µ0 = 0.3,σ0 = 0.05,µ1 = 0.6,σ1 = 0.1}. Plots of the
chosen underlying distributions are shown in Figure 5.2. Importantly
note that the labeled and unlabeled distributions varied in all parameters.
Figure 5.2 also shows the estimated distributions and boundaries resulting
from training each of the cognitive models on the selected dataset.

Procedure

Using this chosen dataset, we performed a human experiment where
49 undergraduate students, participating for partial course credit, were
asked to learn a timed classification task. The 1D stimuli used were Gabor
patch images varying in only the frequency dimension, with fixed rotation
(Figure 5.1). Each participant was asked to classify the nL = 50 labeled
images, each classification followed by feedback indicating whether they
were correct or incorrect. The participant was then asked to classify the
nU = 300 unlabeled stimuli, with no feedback given. All participants
classified the same set of stimuli, each a randomized ordering.
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Figure 5.2: Above, the ground truth labeled distributions (in blue and red)
and unlabeled distribution (in black). Below, the trained models and most
central prediction boundary indicated by a dotted line. The boundary for
propL falls at 0.65.

Evaluation Criteria

We call the measurement we used to evaluate our models “agreement”.
This refers to how well a cognitive model’s classification predictions agree
with observed human behavior. Each participant k ∈ {1, . . . ,K} was asked
to classify the set of labeled and unlabeled items in a randomized ordering
(L,U)(k). For each participant kwe considered the first 50 + 200 items as
a training set (L,U)(k)train and the remaining 100 items as a test set U(k)

test.
Though there is certainly no reason to assume that humans will not con-
tinue learning on the test set, we did make the assumption that after 200
unlabeled examples, the learned boundary will have stabilized.

Each of our proposed modelsmwas then trained on (L,U)(k)train pro-
ducing θ̂(m,k). For the GMM models we used the constrained versions
of EM described above while propL was calculated directly. We can then
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determine the predicted boundary b̂(m,k) for each trained model on each
dataset. For each of these modelm and dataset k pairs we could then make
predictions ŷ(m,k) = 1

{
x
(k)
i 6 b̂(m,k)

}
, i = 201, . . . , 300 and calculate:

agreement(m,k) = 1
ntest

ntest∑
i=1

1

{
ŷ
(m,k)
i = y

(k)
i

}
(5.11)

and total mean-agreement for each model over all K participants:

mean-agreement(m) =
1
K

K∑
k=1

agreement (m,k) (5.12)

The mean agreement scores were then used to determine which model
was the best fit over all.

Results

Using the method described above, we found that the maximum mean-
agreement score is 0.7 for the completely unconstrained model θ̂SSL, simply
standard SSL (Figure 5.3, top). A repeated measures one-way ANOVA
showed significant difference between model agreements per subject,
F(12, 624) = 26.68,p = 2 × 10−16. Additionally, the unconstrained SSL
model, θ̂SSL, was a significantly better fit to human behavior than all
other models (post-hoc multiple comparison test with Holm correction,
p 6 0.05), save one, SSL constrained by ratio of standard deviations (θ̂r,
p = 0.11).

If we look at which model had the best agreement per participant, un-
constrained SSL θ̂SSL was the clear winner, having the highest agreement
on 71% of participants (Figure 5.3, bottom).



49

Figure 5.3: Top: mean agreement scores calculated for each model. Bottom:
number of participants for which each model is the best match (highest
agreement).

5.4 Discussion

The question we set out to answer was what causes the category shifts
seen in many semi-supervised learning studies? The two hypotheses
were 1) heuristic: that humans notice and track some properties or set
of parameters of the distribution from which labeled items are sampled,
and then seek to preserve these properties when integrating information
derived from unlabeled items and 2) SSL: that humans are true semi-
supervised learners, sensitive to all properties.

In this particular categorization task, our results supported the latter
hypothesis: humans are sensitive to all parameters and do not constrain
their search of the parameter space. They are sensitive to all changes in
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the unlabeled data distribution as they try to find the category structure
most likely to have generated all observations, labeled and unlabeled.

This result should be of interest to both the CP and ML communities.
From the CP perspective we can compare these results to those regard-
ing the distinction between generative and discriminative learning Hsu
and Griffiths (2010). Recall that to perform categorization, a generative
learner attempts to model the full generating distribution p(x,y) while
the discriminative learner only attempts to learn a discriminating function
p(y | x). Several studies have shown that humans are capable of both
types of learning Rips (1989); Smith and Sloman (1994); Hsu and Griffiths
(2010). In our task where the underlying generating distribution is impor-
tant due to its non-iid nature, the generative learning model is preferred.
Our results argue that humans do in fact use a generative model for this
particular task, as the SSL model is a better fit than the propL model, a
discriminative model. It may be that in other tasks, where discrimina-
tion between hypothesized models, or models not in the GMM family, is
still possible, this result may not be the case. Additional investigation is
required to confirm that our conclusion generalizes to other situations.

From the ML perspective this result matches the intuition that, for best
performance on transfer learning, the learner should not be constrained a
priori without specific knowledge of the relation between the source do-
main and the target domain. The learner should be allowed to explore the
full parameters space when attempting to find the best fit approximation.

Finally, though the evidence points to the unconstrained hypothesis
dominating over all, no significant difference was found between it and the
model constrained by ratio of standard deviations. The difference here is
subtle and additional work is necessary to distinguish whether this model
is in fact a good approximation of human behavior or just an artifact of
the current study.
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6 semi-supervised effects due to network
structure of unlabeled data: manifold learning
(Gibson et al., 2010)

In the preceding studies we have seen that unlabeled data can affect human
learning, and that models making use of SSL assumptions can be used
to designed which reproduce the behavior Another SSL assumption that
yet been fully discussed is the manifold assumption: that data is generated
from a distribution which lies along a lower dimensional manifold in the
higher dimensional feature space. In this study we examined whether
humans are capable of perceiving such manifolds and making use of them
in a classification task. We found that, given enough labeled data as well
as hints regarding the manifold, humans are capable of propagating labels
along a manifold.

My contribution to this work involved creating a novel experimental inter-
face and stimuli set and performing the human experiment showing that humans
can learn using manifolds, given sufficient labeled data and hints regarding the
manifold structure.

6.1 Can Humans Learn Using Manifolds?

Consider a classification task where a learner is given a small set of labeled
training items {(xi,yi)}i∈L, L = 1, . . . ,nL with x ∈ R2, y ∈ {−1, 1} In addi-
tion, the learner is given some unlabeled items {xi}i∈U,U = {nL+1, . . . ,n},
without corresponding labels. Importantly, the labeled and unlabeled
items are distributed in a peculiar way in the feature space: they lie on
smooth, lower dimension manifolds, such as those schematically shown
in Figure 6.1(a). The question is: given both the labeled and unlabeled
data, how will the learner classify the unlabeled data {xi}i∈U? Will the
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learner ignore the distribution information of the unlabeled data, and sim-
ply use the labeled data to form a decision boundary as in Figure 6.1(b)?
Or will the learner propagate labels along the nonlinear manifolds as in
Figure 6.1(c)?

(a) the data (b) supervised learning (c) manifold learning

Figure 6.1: On a dataset with manifold structure, supervised learning and
manifold learning make dramatically different predictions. Large symbols
represent labeled items, dots unlabeled items.

When the learner is a ML algorithm, this question has been addressed
by semi-supervised learning (Chapelle et al., 2006; Zhu and Goldberg,
2009). The designer of the algorithm can choose to make the manifold
assumption, also known as graph-based semi-supervised learning, which
states that the labels vary slowly along the manifolds or the discrete graph
formed by connecting nearby items. Consequently, the learning algorithm
will predict Figure 6.1(c). The mathematics of manifold learning is well-
understood (Belkin et al., 2006; Sindhwani et al., 2005; Zhou et al., 2004; Zhu
et al., 2003). Alternatively, the designer can choose to ignore the unlabeled
data and perform supervised learning, which results in Figure 6.1(b).

When the learner is a human being, however, the answer is not so
clear. Consider that the human learner does not directly see how the
items are distributed in the feature space (such as Figure 6.1(a)), but only
a set of items (such as those in Figure 6.2(a)). The underlying manifold
structure of the data may not be immediately obvious. Thus there are
many possibilities for how the human learner will behave: 1) They may
completely ignore the manifold structure and perform supervised learning;



53

2) They may discover the manifold under some learning conditions and
not others; or 3) They may always learn using the manifold.

For readers not familiar with manifold learning, the setting might seem
artificial. But in fact, many natural stimuli we encounter in everyday life
are distributed on manifolds. An important example is face recognition,
where different poses (viewing angles) of the same face produce different
2D images. These images can be quite different, as in the frontal and
profile views of a person. However, if we continuously change the viewing
angle, these 2D images will form a one-dimensional manifold in a very
high dimensional image space. This example illustrates the importance
of a manifold to facilitate learning: if we can form and maintain such a
face manifold, then with a single label (e.g., the name) on one of the face
images, we can recognize all other poses of that person by propagating
the label along the manifold. The same is true for visual object recognition
in general. Other more abstract stimuli form manifolds, or the discrete
analogue, graphs. For example, text documents in a corpus occupy a
potentially nonlinear manifold in the otherwise very high dimensional
space used to represent them, such as the “bag of words” representation.

There exists little empirical evidence addressing the question of whether
human beings can learn using manifolds when classifying objects, and
the few studies we are aware of come to opposing conclusions. For in-
stance, Wallis and Bülthoff (2001) created artificial image sequences where
a frontal face is morphed into the profile face of a different person. When
participants were shown such sequences during training, their ability to
match frontal and profile faces during testing was impaired. This might
be evidence that people depend on manifold structure stemming from
temporal and spatial proximity to perform face recognition. On the other
hand, Vandist et al. (2009) conducted a categorization experiment where
the true decision boundary is at 45 degrees in a 2D stimulus space (i.e.,
an information integration task). They showed that when the two classes
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are elongated Gaussian, which are parallel to, and on opposite sides of,
the decision boundary, unlabeled data does not help learning. If we view
these two elongated Gaussian as linear manifolds, this result suggests that
people do not generally learn using manifolds.

This study sought to understand under what conditions, if any, people
are capable of manifold learning in a semi-supervised setting. The study
has important implications for CP: first, if people are capable of learning
manifolds, this suggests that manifold-learning models that have been
developed in ML can provide hypotheses about how people categorize
objects in natural domains like face recognition, where manifolds appear
to capture the true structure of the domain. Second, if there are reliable
methods for encouraging manifold learning in people, these methods can
be employed to aid learning in other domains that are structured along
manifolds. For ML, our study will help in the design of algorithms which
can decide when to invoke the manifold learning assumption.

6.2 Human Manifold Learning Experiments

We designed and conducted a set of experiments to study manifold learn-
ing in humans, with the following design considerations. First, the task
was a “batch learning” paradigm in which participants viewed all labeled
and unlabeled items at once (in contrast to “online” or sequential learning
paradigm where items appear one at a time). Batch learning allows us to
compare human behavior against well-established ML models that typi-
cally operate in batch mode. Second, we avoided using faces or familiar 3D
objects as stimuli, despite their natural manifold structures as discussed
above, because we wished to avoid any bias resulting from strong prior
real-world knowledge. Instead, we used unfamiliar stimuli, from which
we could add or remove a manifold structure easily. This design should
allow our experiments to shed light on people’s intrinsic ability to learn
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using a manifold.

Participants and Materials

In the first set of experiments, 139 university undergraduates participated
for partial course credit. A computer interface was created to represent
a table with three bins, as shown in Figure 6.2(a). Unlabeled cards were
initially placed in a central white bin, with bins to either side colored
red and blue to indicate the two classes y ∈ {−1, 1}. Each stimulus is a
card. Participants sorted cards by clicking and dragging with a mouse.
When a card was clicked, other similar cards could be “highlighted” in
gray (depending on condition). Labeled cards were pinned down in their
respective red or blue bins and could not be moved, indicated by a “pin”
in the corner of the card. The layout of the cards was such that all cards
remained visible at all times. Unlabeled cards could be re-categorized
at any time by dragging from any bin to any other bin. Upon sorting all
cards, participants would click a button to indicating completion.

Two sets of stimuli were created. The first, used solely to acquaint
the participants with the interface, consisted of a set of 20 cards with an-
imal line drawings on a white background. The images were chosen to
approximate a linear continuum between fish and mammal, with shark,
dolphin, and whale at the center. The second set of stimuli used for the
actual experiment was composed of 82 “crosshair” cards, each with a
pair of perpendicular, axis-parallel lines, all of equal length, crossing on a
white background. Four examples are shown in Figure 6.2(b). Each card
therefore can be encoded as x ∈ [0, 1]2, whose two features representing
the positions of the vertical and horizontal lines, respectively.
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(0, 0.1) (1, 0.9) (0.39, 0.41) (0.61, 0.59)

Figure 6.2: Experimental interface (with highlighting shown), and example
crosshair stimuli.

Procedure

Each participant was given two tasks to complete:
Task 1 was a practice task to familiarize the participant with the in-

terface. The participant was asked to sort the set of 20 animal cards into
two categories, with the two ends of the continuum (a clown fish and a
dachshund) labeled. Participants were told that when they clicked on a
card, highlighting of similar cards might occur. In reality, highlighting
was always shown for the two nearest-neighboring cards (on the defined
continuum) of a clicked card. Importantly, we designed the dataset so that,
near the middle of the continuum, cards from opposite biological classes
would be highlighted together. For example, when a dolphin was clicked,
both a shark and a whale would be highlighted. The intention was to
indicate to the participant that highlighting is not always a clear give-away
for class labels. At the end of task 1 their fish vs. mammal classification
accuracy was presented. No time limit was enforced.

Task 2 asked the participant to sort a set of 82 crosshair cards into
two categories. The set of cards, the number of labeled cards, and the
highlighting of cards depended on condition. The participant was again
told that some cards might be highlighted, whether the condition actually
provided for highlighting or not. The participant was also told that cards
that shared highlighting may not all have the same classification. Again,
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no time limit was enforced. After they completed this task, a follow up
questionnaire was administered.

Conditions

Each of the 139 participants was randomly assigned to one of 6 conditions,
shown in Figure 6.3, which varied according to three manipulations:

The number of labeled items l can be 2 or 4 (2l vs. 4l). For conditions
with two labeled items, the labeled items are always (x1,y1 = −1), (x2,y2 =

1); with four labeled items, they are always (x1,y1 = −1), (x2,y2 = 1), (x3,y3 =

1), (x4,y4 = −1). The features of x1 . . . x4 are those given in Figure 6.2(b).
We chose these four labeled points by maximizing the prediction differ-
ences made by seven ML models, as discussed in the next section.

Unlabeled items are distributed on a uniform grid or manifolds (gridU

vs. moonsU). The items x5 . . . x82 were either on a uniform grid in the 2D
feature space, or along two “half-moons”, which is a well-studied dataset
in the semi-supervised learning community. No linear boundary can sep-
arate the two moons in feature space. x3 and x4, if unlabeled, are the same
as in Figure 6.2(b).

Highlighting similar items or not (the suffix h). For the moonsU condi-
tions, the neighboring cards of any clicked card may be highlighted. The
neighborhood is defined as within a radius of ε = 0.07 in the Euclidean
feature space. This value was chosen as it includes at least two neighbors
for each point in the moonsU dataset. To form the unweighted graph shown
in Figure 6.3, an edge is placed between all neighboring points.

The rationale for comparing these different conditions will become
apparent as we consider how different machine-learning models perform
on these datasets.
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Figure 6.3: The six experimental conditions. Large symbols indicate la-
beled items, dots unlabeled items. Highlighting is represented as graph
edges.

6.3 Model Predictions

We hypothesized that human participants consider a set of models ranging
from simple to sophisticated, and that they would perform model selection
based on the training data given to them. We started by considering seven
typical ML models to motivate our choice, and present the models we
actually used later on. The seven models are:

(graph) Graph-based semi-supervised learning (Belkin et al., 2006; Zhu et al.,
2003), which propagates labels along the graph. It reverts to super-
vised learning when there is no graph (i.e., no highlighting).

(1NN,`2) 1-nearest-neighbor classifier with `2 (Euclidean) distance.
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(1NN,`1) 1-nearest-neighbor classifier with `1 (Manhattan) distance. These
two models are similar to exemplar models in psychology (Nosofsky,
1986).

(multi-v) multiple vertical linear boundaries.

(multi-h) multiple horizontal linear boundaries.

(single-v) a single vertical linear boundary.

(single-h) a single horizontal linear boundary.

Figure 6.4 shows the label predictions made by these 7 models on four of
the six conditions. Their predictions on 2lmoonsU are identical to 2lmoonsUh,
and on 4lmoonsU are identical to 4lmoonsUh, except that “(graph)” is not
available.

For conceptual simplicity and elegance, instead of using these disparate
models we adopted a single model capable of making all these predictions.
In particular, we used a Gaussian Process (GP) with different kernels (i.e.,
covariance functions) k to simulate the seven models.1 In particular, we
found seven different kernels k to match GP classification to each of the
seven model predictions on all 6 conditions. This is somewhat unusual in
that our GPs were not learned from data, but by matching other model
predictions. Nonetheless, it is a valid procedure to create seven different
GPs which would later be compared against human data.

For models (1NN,`2), (multi-v), (multi-h), (single-v), and (single-h),
we used diagonal RBF kernels diag(σ2

1,σ2
2) and tuned σ1,σ2 on a coarse

parameter grid to minimize classification disagreement w.r.t. the corre-
sponding model prediction on all 6 conditions. For model (1NN,`1) we
used a Laplace kernel and tune its bandwidth. For model (graph), we pro-
duced a graph kernel k̃ following the Reproducing Kernel Hilbert Space

1For details on GPs see standard textbooks such as Rasmussen and Williams (2006).
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trick in Sindhwani et al. (2005). That is, we extended a base RBF kernel k
with a graph component:

k̃(x, z) = k(x, z) − k>x (I+ cLK)−1cLkz (6.1)

where x, z are two arbitrary items (not necessarily on the graph), kx =

(k(x, x1), . . . ,k(x, xl+u))> is the kernel vector between x and all l+u points
x1 . . . xl+u in the graph, K is the (l+ u)× (l+ u) Gram matrix with Kij =
k(xi, xj), L is the unnormalized graph Laplacian matrix derived from
unweighted edges on the εNN graph defined earlier for highlighting, and
c is the parameter that we tuned. We took the base RBF kernel k to be the
tuned kernel for model (1NN,`2). It can be shown that k̃ is a valid kernel
formed by warping the base kernel k along the graph, see Sindhwani et al.
(2005) for technical details. We used the GP classification implementation
with Expectation Propagation approximation (Rasmussen and Williams,
2007). In the end, our seven GPs were able to exactly match the predictions
made by the seven models in Figure 6.4.
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Figure 6.4: Predictions made by the seven models on 4 of the 6 conditions.
Rows correspond to 2lgridU, 2lmoonsUh, 4lgridU & 4lmoonsUh respectively
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6.4 Behavioral Experiment Results

Using the models described in the previous section, we can compare
human categorization behaviors to model predictions. We first consider
the aggregate behavior for all participants within each condition. One
way to characterize this aggregate behavior is the “majority vote” of the
participants on each item. That is, if more than half of the participants
classified an item as y = 1, the majority vote classification for that item is
y = 1, and so on. The first row in Figure 6.5 shows the majority vote for
each condition. In these and all further plots, blue circles indicate y = −1,
red pluses y = 1, and green stars ambiguous, meaning the classification
into positive or negative is half-half. We also compute how well the seven
GPs predict human majority votes. The accuracies of these GP models are
shown in Table 6.1.2
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Figure 6.5: Human categorization results. (First row) the majority vote
of participants within each condition. (Bottom three rows) a sample of
responses from 18 different participants.

2The condition 4lmoonsUhR will be explained later in Section 6.5.
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(graph) (1NN,`2) (1NN,`1) (multi-v) (multi-h) (single-v) (single-h)
2lgridU 0.81 0.94 0.84 0.86 0.58 0.85 0.61
2lmoonsU 0.47 0.84 0.62 0.74 0.42 0.79 0.45
2lmoonsUh 0.50 0.78 0.56 0.76 0.36 0.76 0.39
4lgridU 0.54 0.61 0.64 0.64 0.50 0.60 0.51
4lmoonsU 0.64 0.62 0.60 0.69 0.47 0.38 0.45
4lmoonsUh 0.97 0.76 0.54 0.64 0.31 0.65 0.26
4lmoonsUhR 0.68 0.63 0.44 0.56 0.40 0.59 0.42

Table 6.1: GP model accuracy in predicting human majority vote for each
condition.

Of course, a majority vote only reveals average behavior. We have ob-
served that there are wide participant variabilities. Participants appeared
to find the tasks difficult, as their self-reported confidence scores were
fairly low in all conditions. It was also noted that strategies for completing
the task varied widely, with some participant simply categorizing cards in
the order they appeared on the screen, while others took a much longer,
studied approach. Most interestingly, different participants seem to use
different models, as the individual participant plots in the bottom three
rows of Figure 6.5 suggest. We would like to be able to make a claim about
what model, from our set of models, each participant used for classifi-
cation. In order to do this, we compute per participant accuracies of the
seven models on that participant’s classification. We then find the model
Mwith the highest accuracy for the participant, out of the seven models.
If this highest accuracy is above 0.75, we declare that the participant is po-
tentially using modelM; otherwise no model is deemed a good fit and we
say the participant is using some “other” model. We show the proportion
of participants in each condition attributed to each of our seven models,
plus “other”, in Table 6.2.

Based on Figure 6.5, Table 6.1, and Table 6.2, we make some observa-
tions:

1. When there are only two labeled points, the unlabeled distribution
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(graph) (1NN,`2) (1NN,`1) (multi-v) (multi-h) (single-v) (single-h) other
2lgridU 0.12 0 0.12 0.25 0.25 0.12 0 0.12
2lmoonsU 0 0.12 0 0.25 0.25 0.25 0 0.12
2lmoonsUh 0.12 0 0 0.38 0.25 0 0 0.25
4lgridU 0 0.05 0.09 0 0 0.18 0.09 0.59
4lmoonsU 0.25 0.25 0.12 0.12 0 0.04 0.08 0.38
4lmoonsUh 0.39 0.09 0.09 0.04 0.04 0 0.13 0.22
4lmoonsUhR 0.13 0.03 0.07 0 0 0.07 0.03 0.67

Table 6.2: Percentage of participants potentially using each model

does not encourage humans to perform manifold learning (comparing
2lgridU vs. 2lmoonsU). That is, they do not follow the possible implicit graph
structure (2lmoonsU). Instead, in both conditions they prefer a simple single
vertical or horizontal decision boundary, as Table 6.2 shows.3

2. With two labeled points, even if they are explicitly given the graph
structure in the form of highlighting, participants still do not perform
manifold learning (comparing 2lmoonsU vs. 2lmoonsUh). It seems they are
“blocked” by the simpler vertical or horizontal hypothesis, which perfectly
explains the labeled data.

3. When there are four labeled points but no highlighting, the dis-
tribution of unlabeled data still does not encourage people to perform
manifold learning (comparing 4lgridU vs. 4lmoonsU). This further suggests
that people can not easily extract manifold structure from unlabeled data
in order to learn, when there is no hint to do so. However, most par-
ticipants have given up the simple single vertical or horizontal decision
boundary, because it contradicts with the four labeled points.

4. Finally, when we provide the graph structure, there is a marked
switch to manifold learning (comparing 4lmoonsU vs. 4lmoonsUh). This

3The two rows in Table 6.1 for these two conditions are therefore misleading, as it
averages classification made with vertical and horizontal decision boundaries. Also note
that in the 2lconditions (multi-v) and (multi-h) are effectively single linear boundary
models (see Figure 6.4) and differ from (single-v) and (single-h) only slightly due to the
training method used.
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suggests that a combination of the elimination of preferred, simpler hy-
potheses, together with a stronger graph hint, finally gives the originally
less preferred manifold learning model a chance of being used. It is under
this condition that we observed human manifold learning behavior.

6.5 Humans do not Blindly Follow Suggestions

Do humans really learn using manifolds? Could they have adopted a
“follow-the-highlighting” procedure to label the manifolds 100% correctly:
in the beginning, click on a labeled card x to highlight its neighboring
unlabeled cards; pick one such neighbor x ′ and classify it with the label of
x; now click on (the now labeled) x ′ to find one of its unlabeled neighbors
x ′′, and repeat? Because our graph has disconnected components with
consistently labeled seeds, this procedure will succeed. The procedure is
known as propagating-1NN in semi-supervised learning (Algorithm 2.7,
Zhu and Goldberg, 2009). In this section we present three arguments that
humans are not blindly following the highlighting.

First, participants in 2lmoonsUh did not learn the manifold while those
in 4lmoonsUh did, even though the two conditions have the same εNN
highlighting.

Second, a necessary condition for follow-the-highlighting is to always
classify an unlabeled x ′ according to a labeled highlighted neighbor x.
Conversely, if a participant classifies x ′ as class y ′, while all neighbors
of x ′ are either still unlabeled or have labels other than y ′, she could not
have been using follow-the-highlighting on x ′. We say she has taken a
leap-of-faith on x ′. The 4lmoonsUh participants had an average of 17 leaps-of-
faith among about 78 classifications,4 while strict follow-the-highlighting
procedure would yield zero leaps-of-faith.

4The individual number of leaps-of-faith were 0, 1, 2, 4, 10, 13, 13, 14, 14, 15, 15, 16,
18, 19, 20, 21, 22, 24, 25, 27, 33, 36, and 36 respectively, for the 23 participants.
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Third, the basic challenge of follow-the-highlighting is that the under-
lying manifold structure of the stimuli may have been irrelevant. Would
participants have shown the same behavior, following the highlighting,
regardless of the actual stimuli? We therefore designed the following
experiment. Take the 4lmoonsUh graph which has 4 labeled nodes, 78 un-
labeled nodes, and an adjacency matrix (i.e., edges) defined by εNN, as
shown in Figure 6.3. Take a random permutation π = (π1, . . . ,π78). Map
the feature vector of the ith unlabeled point to xπi , while keeping the
adjacency matrix the same. This creates the random-looking graph in
Figure 6.6(a) which we call 4lmoonsUhR condition (the suffix R stands for
random), which is equivalent to the 4lmoonsUh graph in structure. In par-
ticular, there are two connected components with consistent labeled seeds.
However, now the highlighted neighbors may look very different than the
clicked card.

If we assume humans blindly follow the highlighting (perhaps noisily),
then we predict that they are more likely to classify those unlabeled points
nearer (in shortest path length on the graph, not Euclidean distance) a
labeled point with the latter’s label; and that this correlation should be
the same under 4lmoonsUhR and 4lmoonsUh. This prediction turns out to be
false. 30 additional undergraduates participated in the new 4lmoonsUhR

condition. Figure 6.6(b) shows the above behavioral evaluation, which
does not exhibit the predicted correlation, and is clearly different from the
same evaluation for 4lmoonsUh in Figure 6.6(c). Again, this is evidence that
humans are not just following the highlighting. In fact, human behavior
in 4lmoonsUhR is similar to 4lmoonsU. That is, having random highlighting is
similar to having no highlighting in how it affects human categorization.
This can be seen from the last rows of Tables 6.1 and 6.2, and Figure 6.6(d).5

5In addition, if we create a GP from the Laplacian of the random highlighting graph,
the GP accuracy in predicting 4lmoonsUhR human majority vote is 0.46, and the percentage
of participants in 4lmoonsUhR who can be attributed to this model is 0.
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Figure 6.6: The 4lmoonsUhR experiment with 30 participants. (a) The behav-
ioral evaluation for 4lmoonsUhR, where the x-axis is the shortest path length
of an unlabeled point to a labeled point, and the y-axis is the fraction
of participants who classified that unlabeled point consistent with the
nearest labeled point. (b) The same behavioral evaluation for 4lmoonsUh. (c)
The 4lmoonsUhR condition itself. (d) The majority vote in 4lmoonsUhR.

6.6 Discussion

These results suggest that people can perform manifold learning, but only
when there is no alternative, simpler explanation of the data, and people
need strong hints about the graph structure.

We propose that Bayesian model selection is one possible way to ex-
plain these human behaviors. Recall we defined seven Gaussian Processes,
each with a different kernel. For a given GP with kernel k, the evidence
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p(y1:l | x1:l,k) is the marginal likelihood on labeled data, integrating out
the hidden discriminant function sampled from the GP. With multiple can-
didate GP models, one may perform model selection by selecting the one
with the largest marginal likelihood. From the absence of manifold learn-
ing in conditions without highlighting or with random highlighting, we
speculate that the GP with the graph-based kernel k̃ (6.1) is special: it is ac-
cessible in a participant’s repertoire only when strong hints (highlighting)
exists and agrees with the underlying unlabeled data manifold structure.
Under this assumption, we can then explain the contrast between the lack
of manifold learning in 2lmoonsUh, and the presence of manifold learn-
ing in 4lmoonsUh. On one hand, for the 2lmoonsUh condition, the evidence
for the seven GP models on the two labeled points are: (graph) 0.249,
(1NN,`2) 0.250, (1NN,`1) 0.250, (multi-v) 0.250, (multi-h) 0.250, (single-v)
0.249, (single-h) 0.249. The graph-based GP has slightly lower evidence
than several other GPs, which may be due to our specific choice of kernel
parameters in (6.1). In any case, there is no reason to prefer the GP with
a graph kernel, and we do not expect humans to learn on manifold in
2lmoonsUh. On the other hand, for 4lmoonsUh, the evidence for the seven
GP models on those four labeled points are: (graph) 0.0626, (1NN,`2)
0.0591, (1NN,`1) 0.0625, (multi-v) 0.0625, (multi-h) 0.0625, (single-v) 0.0341,
(single-h) 0.0342. The graph-based GP has a small lead over other GPs. In
particular, it is better than the evidence 1/16 for kernels that treat the four
labeled points essentially independently. The graph-based GP obtains
this lead by warping the space along the two manifolds so that the two
positive (resp. negative) labeled points tend to co-vary. Thus, there is a
reason to prefer the GP with a graph kernel, and we do expect humans to
learn on manifold in 4lmoonsUh.

We also explored the convex combination of the seven GPs as a richer
model for human behavior: k(λ) =

∑7
i=1 λiki, where λi > 0,

∑
i λi = 1.

This allows a weighted combination of kernels to be used, and is more
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powerful than selecting a single kernel. Again, we optimize the mix-
ing weights λ by maximizing the evidence p(y1:l | x1:l,k(λ)). This is a
constrained optimization problem, and can be easily solved up to local
optimum (because evidence is in general non-convex) with a projected
gradient method, given the gradient of the log evidence. For the 2lmoonsUh

condition, in 100 trials with random starting λ values, the maximum ev-
idence always converges to 1/4, while the optimum λ is not unique and
occupies a subspace (0, λ2, λ3, λ4, λ5, 0, 0) with λ2 + λ3 + λ4 + λ5 = 1 and
mean (0, 0.27, 0.25, 0.22, 0.26, 0, 0). Note the weight for the graph-based
kernel λ1 is zero. In contrast, for the 4lmoonsUh condition, in 100 trials λ
overwhelmingly converges to (1, 0, 0, 0, 0, 0, 0) with evidence 0.0626. i.e., it
again suggests that people would perform manifold learning in 4lmoonsUh.

Of course, this Bayesian model selection analysis is over-simplified.
For instance, we did not consider people’s prior p(λ) on GP models, i.e.,
which model they would prefer before seeing the data. It is possible that
humans favor models which produce axis-parallel decision boundaries.
Defining and incorporating non-uniform p(λ) priors is a topic for future
research.
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7 influencing human behavior: via prior
unlabeled data exposure (pending publication)

Imagine a child playing in a classroom. She is about to take a lesson on
categorizing things by “sink or float.” On the table are numerous objects
such as wood, metal, plastic bottles, rocks, heavy things, light things, and
so on. The teacher has not arrived yet; and there is no tub of water to
experiment with. She can explore the objects but nothing will tell her
whether each object sinks or floats. Can just playing with these objects,
experience prior to teaching, speed up her learning of the categorization
on sink or float once the lesson starts?

This work focused on such human categorization tasks. A learner, the
child in our example, must learn a mapping f : X 7→ Y from item to category
label. In our classroom story, the examples are the objects and the labels are
sink or float. Playing with the objects before the lesson can be considered
as exposure to unlabeled data in that they are presented without category
labels. The lesson itself will be labeled, where examples are presented along
with their corresponding labels according to the underlying concept. The
question becomes: what effect does the unlabeled data have on the speed
with which the supervised categorization task is learned?

My contribution to this work involved constructing and performing a hu-
man experiment showing that the speed of human learning on a supervised task
can be affected by prior unlabeled experience.

Existing SSL literature in CP assumes that the learner is aware of an
upcoming category learning task, and that labeled data always come first
to define such a supervised learning task, while unlabeled data is either
inter-mixed with labeled data, or comes after labeled data as test items Zhu
et al. (2007); Vandist et al. (2009); Gibson et al. (2010); Rogers et al. (2010);
Zhu et al. (2010); Kalish et al. (2011); Zhu et al. (2011).

We felt that in many situations, it is far easier (and more natural) to
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expose a human student to unlabeled experience first rather than later.
This exposure can happen even before the student is aware of any future
classification task. In ML, it is known that several SSL models can take ad-
vantage of prior exposure of unlabeled data sampled iid from the marginal
p(x) to facilitate future classification using p(y | x). For instance, the unla-
beled data can be used to determine the parameters of a Gaussian Mixture
Model (GMM), and future labeled data only needs to map each mixture
component to a label. However, it was not clear whether human learners
benefit from such prior exposure to unlabeled data too, as this “unlabeled
data before labeled data” setting is uncommon in the CP literature.

Taking this one step further, we felt that it was also unnecessary to
restrict ourselves to conventional SSL assumptions and only expose the
student to iid unlabeled data sampled from p(x). Taking cues from recent
advances in computational teaching models such as curriculum learn-
ing Bengio et al. (2009); Khan et al. (2011), we considered whether we
could design a special unlabeled data sequence that is particularly good at
guiding future supervised learning? Note that the crucial difference with
respect to curriculum learning is that our sequence was unlabeled rather
than labeled. This was uncharted territory: not only was there no previous
cognitive study of such a setting, but also there were no ML SSL models
specifically designed for this setting.

We called this setting Semi-Supervised Teaching (SST). In SST, the world
generates labeled training items and future test items as iid samples from
an unobserved joint distribution p(x,y). The learner’s goal is to learn
a good classifier f : X 7→ Y to perform well on future test items. This
aspect is identical to standard supervised learning. However, there is also
a helpful teacher who knows p(x,y), and who wants to help the learner
learn faster by exposing the learner to selected unlabeled items before
(supervised) learning starts. These unlabeled items need not follow the
marginal distribution p(x).
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The closest work to SST is perhaps the Test-Item Effect from Zhu et al.
(2010) discussed in Section 3.1. That study involved how predicting the
category of test items, without receiving corrective feedback, can drastically
change a human’s category decision boundary. In ML terms, merely ap-
plying a classifier f to the test set (without knowing the true label of the
test items) changes f itself. The argument there was that Test-Item Effect
can be beneficial as a way to correct undesirable biases in previous human
category learning, if the teacher can design an appropriate test set. The
main difference between Test-Item Effect and SST is that SST presents un-
labeled data before supervised learning. This seemingly minor distinction
has major ramifications. In Test-Item Effect, the learner needs to apply
her current classifier to the test items x and predict a label f(x). This is
equivalent to doing homework on the test items without feedback. In
contrast, in SST the learner need not know about future categorization
tasks; she does not have a classifier f already, and she does not need to
do the homework of categorizing the unlabeled items x to f(x). Instead,
she merely needs to observe the unlabeled items x. This opens up some
interesting possibilities. For example, although not studied in this work,
it might be possible to present the unlabeled data passively, or subcon-
sciously, to the learner in order to achieve increased speed on subsequent
supervised learning.

Having defined SST, the immediate questions were: Does SST have
any effect on humans in reality, be it positive or negative? If so, could
we explain it with a computational model? This work answered both
questions affirmatively. Our contributions were two-fold: 1) we performed
a human experiment which shows that unlabeled data does have an effect
on subsequent categorization learning in humans, but that learning is
significantly affected only by the distribution of the unlabeled data but
not the order of the unlabeled. and 2) we showed that we can model this
behavior using standard SSL models.
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7.1 Human Experiment

To study if unlabeled prior experience has any effect on subsequent human
category learning, we conducted the following new behavioral experiment.

Participants and Procedure

−8 −6 −4 −2 0 2 4 6 8

Figure 7.1: Range of example stimuli with corresponding x values.

80 undergraduate university students participated in the study in ex-
change for partial course credit. They were each presented with a series
of 410 stimuli varying in shape according to a single parameter x ∈ [−8, 8]
(Figure 7.1). Each participant performed the following sequence of tasks:

1. Instructional one-back task (t = 1–10)

a) stimulus xt presented on screen

b) participant responds same / different compared to xt−1

c) correct one-back response displayed

2. unlabeled exposure (one-back task) (t = 11–310)

a) stimulus xt presented on screen

b) participant responds same / different compared to xt−1

3. supervised learning task (t = 311–410)

a) stimulus xt presented on screen

b) participant predicts binary class label ŷt
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c) correct / incorrect feedback by comparing ŷt to yt

In order for the unlabeled data to have an effect, we need to ensure
that the human learner is paying attention to the data (rather than, say,
clicking through stimuli without attending). To enforce this attention to
the stimuli, a meaningful response regarding the stimuli was asked from
the learner. However, being unlabeled, these items must be presented
without any information on the subsequent categorization task, so asking
the learner to provide a category label ŷ was not appropriate. Instead,
participants were asked to perform a “one-back” comparison. Participants
needed to determine if the current item xt was identical to the immediately
previous item xt−1, responding same or different. It is important to keep
in mind that these one-back responses are completely different from the
subsequent categorization labels1.

In task 1, the 10 unlabeled items shown to participants corresponded
to the extremes of the stimuli range (x = {−8, 8}), accompanied by instruc-
tions on how to perform the one-back comparison.

In task 2, each participant was exposed to 300 unlabeled items, corre-
sponding to one of four conditions to be described shortly. Participants
performed the one-back comparison to ensure attention.

In task 3, participants categorized 100 items drawn iid uniformly from
the stimuli space x ∈ [−8, 8]. Each participant was presented with each
item xt and asked to predict a binary category label ŷt for that item. The
participant was then told whether their ŷt was correct or incorrect com-
pared to the true labeled yt, determined by a boundary fixed at x = −1.6.

1For the one-back task, unlabeled data needed to be constructed such that identical
items appear in sequence with reasonable frequency. To accomplish this, for each dataset,
300 unlabeled items were first created according to condition. From this sequence 120
items (40%) were randomly selected to be identical one-back trials. These selected items
where then copied, overwriting the next item in the sequence, resulting in a dataset of
300 items with 40% identical one-back pairs. Note this procedure does not significantly
change the distribution or order of unlabeled items with respect to the subsequent
supervised task.
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With this feedback, the participant was expected to gradually learn the
true decision boundary.

To summarize, unlabeled data exposure happens in tasks 1 and 2, and
supervised category learning happens in task 3.

Conditions

To determine whether this unlabeled exposure had an effect of subsequent
supervised learning, participants were randomly split into four conditions.
These conditions varied how items were generated for the unlabeled ex-
posure task, specifically in how the unlabeled items were distributed and
ordered (see Figure 7.2). In all conditions, the same stimuli were used for
the final supervised task.

The 4 conditions were as follows:

• The trough condition was motivated by earlier work on human SSL
showing that unlabeled data drawn from a mixture model p(x) could
reinforce a previously learned boundary, if the boundary coincides
with the trough in p(x) Zhu et al. (2007). In this condition unlabeled
examples were drawn iid from a 2-component GMM with the same
weights and variances {w = 0.5, σ2 = 0.64} but different means:
µtrough = {−4.8, 1.6}. Note that the decision boundary of the subse-
quent task 3 falls between the modes. The expectation was that this
condition would help supervised learning in task 3.

• The peak condition was similar except that the GMM was shifted
µpeak = {−1.6, 4.8}. The left peak, not the trough, coincided with task
3 decision boundary. We expected that this condition would harm
supervised learning in task 3.

• The uniform condition was included as a control. In this condition
unlabeled examples were drawn iid from uniform[−8, 8]. We expect
this condition to neither help nor harm learning in task 3.
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Figure 7.2: Plots describing the four conditions of the human experiment.
Each column corresponds to one condition. The top row shows the un-
derlying distributions p(x) from which unlabeled items are drawn in each
condition. The bottom row shows the order of unlabeled items as dis-
played to the learner over time. The dashed line in all plots indicates the
true decision boundary in the subsequent categorization task. Note that
unlabeled items in the uniform and converge conditions are both drawn
from a uniform distribution over the stimuli space, but that the ordering
of the data over time is very different.

• The converge condition was inspired by curriculum learning, where
sequential ordering of labeled examples from hard to easy is im-
portant in guiding a learner toward the decision boundary Bengio
et al. (2009); Khan et al. (2011). This condition differed from cur-
riculum learning in that no labels were provided with the examples.
To the best of our knowledge no study had looked at the effect of
unlabeled data ordering on subsequent category learning. Unla-
beled data in this condition was created by first sampling unlabeled
items x ∼ uniform[−8, 8] just as in the uniform condition. We then
ordered the unlabeled items such that they “converged” over time
towards the subsequent decision boundary. Standard SSL models
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that assume unlabeled data are exchangeable would perceive no
difference between the uniform and converge conditions. Since our
“curriculum learning” was unlabeled, it was not clear how human
learners will perform in this condition.

Results

As we were interested in the effect of exposure to unlabeled data on the
speed of learning the categorization task, simple accuracy is not appropriate.
Instead we used a logistic mixed effects model. With this we could look
at both initial accuracy (intercept) and the speed of learning. Using this
test we found a significant differences in both initial accuracy and speed
of learning between the “trough” and “peak” conditions (p < 0.001). The
distribution of the unlabeled experience did have an effect on subsequent
learning. This followed our expectations from standard SSL models and
prior experiments.

While there were some indications that the ordering of the data in
the “converge” condition did influence the learner, we did not find a
significant difference between the “uniform” and “converge” conditions.
The ordering of the unlabeled data did not have a significant effect on the
speed of learning.

7.2 Modeling

Having shown that humans are affected by prior unlabeled items, we
constructed a computational model which reproduced a difference in
behavior between conditions similar to that seen in humans. We chose
to model human behavior using a DPMM for two reasons: 1) this was
shown to be the best fit to human behavior in Chapter 4 and 2) the learner,
prior to the labeled task, had no reason to assume any fixed number of
components, making a GMM inappropriate. Additionally, the DPMM
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is flexible enough to allow each item to be its own component, making
modeling using KDE unnecessary.

Being a non-parametric model, the only tuning necessary for the DPMM
was to set the mixture hyperparameter which specifies how likely a new
cluster or partition will be created for each item observed. Training on the
310 unlabeled items plus the first 50 labeled items, we chose from a set of
potential values the mixture hyperparameter setting which provided the
largest agreement with human behavior on the last 100 labeled items in
each dataset. The best agreement was found at α = 5.

Using this hyperparameter setting, we trained four separate DPMM
models, one for each condition, producing predicted labels on all test sets.
We then compared model predictions between conditions using the same
methods used when evaluating human performance.

The results indicated behavior very similar to that seen in humans: 1)
a significant difference between trough and peak conditions (p < 0.00003)
and 2) no statistically significant difference between uniform and con-
verge. This second finding is not surprising as the DPMM treats items
as exchangable such that ordering information is discarded. If there had
been a difference in human performance between uniform and converge,
a standard DPMM would no longer be a viable model.

7.3 Discussion

In this work we proposed the concept of Semi-Supervised Teaching: the
construction of an unlabeled dataset which could potentially speed learn-
ing on a subsequent labeled task. We showed that SST is relevant to human
category learning, as the latter is influenced by distribution (and possibly
ordering) of prior unlabeled data exposure. We also showed that this
difference in behavior can be modelled using a SSL DPMM.
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8 influencing human behavior: co-training
constraints (zhu, gibson, rogers, 2011)

Though human learning abilities are remarkable in many respects, they
are also constrained in ways that may seem puzzling to machine learning.
As one example, people can have difficulty learning nonlinear decision
boundaries without extensive supervision (Love, 2002). As another exam-
ple, psychologists often distinguish between feature dimensions that are
“separable” versus “integral”. For separable features (e.g. color and shape),
people can selectively attend to one dimension without processing the
other. For integral dimensions (e.g. color saturation and brightness) they
cannot. In learning problems that are identical from a machine-learning
point of view, humans can show quite different patterns of behavior de-
pending on whether the dimensions are integral or separable. For instance,
people have difficulty learning non-axis-parallel boundaries for separa-
ble but not for integral feature dimensions (Nosofsky and Palmeri, 1996;
Ashby and Maddox, 1990).

This work considered whether these characteristics of human learning
can be altered by leveraging insights from a machine learning algorithm,
namely Co-Training. Co-Training uses unlabeled data to improve learning
by encouraging agreement among multiple “base” machine learners, each
exposed to a different “view” of the data (see below). The classic Co-
Training algorithm (Blum and Mitchell, 1998) and its extensions such
as Co-EM (Nigam and Ghani, 2000), Tri-Training (Zhou and Li, 2005),
and multiview learning (Brefeld et al., 2006) have enjoyed considerable
empirical success and theoretical justification (Johnson and Zhang, 2007;
Balcan and Blum, 2010) in machine learning.

One often under-appreciated fact about Co-Training is that it has a
different inductive bias, and so can produce quite different classification
results from supervised learning. Figure 8.1(a) shows a “diamond” dataset
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Figure 8.1: On this “diamond” dataset, supervised learning and Co-
Training, both with 1NN classifiers, produce drastically different outcomes.

with four clusters, with just one labeled item from each class (blue and red
points). The task is to classify the unlabeled items (black dots). Supervised
learning with the 1-nearest-neighbor (1NN) algorithm1 learns a diagonal
decision boundary in Figure 8.1(b). In contrast, with the same 1NN as
base learners the Co-Training algorithm learns a very different solution
(Figure 8.1(c)), grouping the top and bottom clusters together in the red
class, and the left and right clusters in the blue class.

The linearly non-separable classification achieved by Co-Training is just
the kind of solution that human beings have difficulty learning without
extensive supervision (Love, 2002). In this work we considered whether
the Co-Training algorithm can be used to design a collaboration policy for
human participants that will promote learning of such “difficult” classifi-
cations over the linearly separable outcomes that individuals are prone
to acquire on their own. Under this policy, each individual in the col-
laboration is treated as a “base” learner; each is exposed to a different
“view” of the data; and the learning set-up is designed to promote agree-
ment among the collaborators. We empirically assessed behavior in such
teams for learning problems with both psychologically-separable and in-

11NN classifiers are closely related to the Generalized Context Model (Nosofsky,
1986) in CP which we discussed in Chapter 2.
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tegral stimulus dimensions, and compared performance to individual
learners and to teams collaborating under an alternative policy. In sim-
ple learning problems like that shown in Figure 8.1 we will see that our
Co-Training collaboration policy leads participants to learn classifications
typically thought to be very difficult for humans, and also to show more
homogeneous behavior for stimuli defined along separable versus integral
dimensions. Though we do not extend the approach to a real-world learn-
ing problem here, we will consider how the approach might be used to
design collaboration policies for such problems in cases where individuals
have difficulty learning the appropriate classifications.

My contribution to this work consisted of implementation of a novel exper-
imental interface, the design and norming of two stimuli datasets, overseeing the
experiment itself and finally performing the analysis showing that, using a vari-
ation of the classic Co-Training constraints, we can elicit behavior from human
collaborators that is not observed without these constraints.

8.1 Review of the Co-Training Algorithm

We first review the classic Co-Training algorithm of Blum and Mitchell
(1998) as it is closely related to our policy. Assume that each item is
parametrized by a feature vector x and has a corresponding class label
y. The input consists of labeled items {(xi,yi)}i∈L, L = {1, . . . ,nL} and
unlabeled items {xi}i∈U, U = {nL + 1 . . .n}. The goal is to learn a classifier
f : x 7→ y using both the labeled and unlabeled data.

Further assume that the feature vector can be split into two parts (called
“views”): x =

(
x(1)

x(2)

)
. The Co-Training algorithm trains two base learners

f(1) : x(1) 7→ y and f(2) : x(2) 7→ y, each working exclusively on one view.
In the beginning, these two base learners are trained on the labeled data.
More specifically, f(1) is trained with the first view of the labeled data
(x(1)

1 ,y1) . . . (x(1)
nL ,ynL). Subsequently, whenever f(1) encounters an item x
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Algorithm 5: The Co-Training algorithm
Input: labeled and unlabeled data where each item has two views;

learning speed s.
Initialize L1 = L2 =labeled data
repeat

Train f(1) from L1, f(2) from L2.
Classify unlabeled items with f(1), f(2) separately.
Add f(1)’s top smost confident predictions

(x, f(1)(x)) to L2, and vice versa.
Remove these items from the unlabeled data.

until unlabeled data is exhausted;

during training or prediction, it always works with the first view x(1) of
the item only and disregards the second view x(2). f(2) operates similarly,
working only with the second view. The ingenuity is in how the unlabeled
data is utilized in an iterative fashion: At each iteration, f(1) classifies a
few unlabeled items that it is most confident about and passes these and
their predicted labels as additional training data to f(2). Simultaneously,
f(2) reciprocates. Co-Training then updates both base learners with this
additional “pseudo-labeled” data. This repeats until the unlabeled data
is exhausted. A slightly simplified version of Blum and Mitchell’s Co-
Training algorithm is given in Algorithm 5. To classify a new test item x̃,
one can compare the predictions f(1)(x̃(1)) and f(2)(x̃(2)) and pick the one
with higher confidence.

Co-Training is a “wrapper” method in that the two base learners f(1)

and f(2) can be any learning systems. The only requirement is that each
base learner has a notion of confidence, which is used to select which
unlabeled items to turn into pseudo labeled data for the other view. Im-
portantly for this work, being a wrapper method enables Co-Training to
treat two human collaborators as the base learners.

It is important to understand the conditions under which Co-Training
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will succeed. We present the sufficient conditions in the original analy-
sis (Blum and Mitchell, 1998), but with new interpretations geared toward
our collaboration policy for human learning.

The conditions are:

1. The unlabeled data distribution and the target concept f are com-
patible under the two views. In particular, let p(x) be the marginal
distribution of items. We require that with probability one, x ∼ p(x)
satisfies f(1)(x(1)) = f(2)(x(2)). That is, no item shall have conflicting
labels between the two views.

2. Each base learner is able to learn the target concept under its view,
given enough labeled data. This refers to standard supervised learn-
ing, where the amount of labeled data required may be much larger
than in Co-Training.

3. The two views are conditionally independent given the class label:
p(x(2) | x(1),y) = p(x(2) | y). If one knows the class y, then knowing
the features in one view x(1) does not help one guess the other view
x(2). This condition ensures that the most confident items from
f(1)’s perspective do not “pile up on top of each other” from f(2)’s
perspective. Rather, they spread out and provide representative
(pseudo) training data for the second view.

In subsequent sections, we will see how consideration of these conditions
shape our collaboration policy.

The reader might wonder why Co-Training keeps the two views sep-
arate. Why not stack the two views back into x =

(
x(1)

x(2)

)
, and train a

supervised learner on x? One reason is their inductive biases leading
to different classifiers for the same data, as shown in Figure 8.1. To see
why this happens, consider how the base learners respond to the bottom
and right clusters. For the bottom cluster, the x-axis view will be highly
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confident that the items belong to the red class because from this view
they are nearly identical to the labeled red item. In contrast, the class of
the right cluster will be uncertain from this view, since these items are
not particularly similar to either labeled item. So, the x-view learner may
choose to label some bottom cluster items and pass these to the y-view
learner. For the y-view learner, the reverse pattern occurs: the right cluster
items very likely belong to the blue class, whereas the class of the bottom
cluster items is uncertain. Each view is confident about the items for which
the opposing view is uncertain. Thus the two views, working together,
converge on the solution shown in Figure 8.1(c). Such difference between
supervised learning and Co-Training is general and can be observed with
other datasets and choices of base learners. Another example is given in
the last section.

8.2 Human Collaboration Policies

We now consider how these ideas from Co-Training can be used to shape a
policy for human collaboration. The task we consider is category learning:
Two human collaborators are given a number of labeled training items
{(xi,yi)}i∈L and together must label the unlabeled items {xi}i∈U. One
may view the labeled training items as teaching experiences given to the
collaborators, e.g., by a teacher or a senior worker. It is reasonable to
assume that in many cases the availability of teaching is limited. Therefore,
the goal is for the dyad to grasp the target concept using as little teaching
experience as possible. We assume that the collaborators can see all of
the unlabeled items upfront, which is known as transduction in machine
learning.2

Our main interest is in exploring different collaboration policies between
2However, the dyad is also capable of making inductive inferences when faced with

new test items later on.
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the two learners and how these policies affect the learning outcomes.
One obvious policy is to allow the two collaborators full access to the
data {(xi,yi)}i∈L, {xi}i∈U, and to allow them to fully interact with each
other (in terms of discussions, gesturing, etc.). We call this the “full-
collaboration” policy. Another policy might be to isolate the learners
so that they each have full independent access to the data but cannot
communicate or interact. We call this the “no-collaboration” policy.

We introduce a third policy, described in Algorithm 6 and explained
below, that is inspired by and closely follows the Co-Training machine
learning algorithm. This policy splits each item’s feature vector into two
views: x =

(
x(1)

x(2)

)
. The intention is to allow each collaborator only one of the

views. In contrast to machine learning, however, it is sometimes impossible
to create artificial stimuli with a single view. For instance, the often used
Gabor patches (Vandist et al., 2009) vary in frequency and orientation, and
it is impossible to depict an orientation without any information about
frequency or vice versa. In this case, our policy constructs artificial stimuli
that vary along the “viewed” dimension while holding a constant value
on the “hidden” dimension (specifically the mean µ of the values on the
missing view). So if Alice and Bob are the two collaborators, Alice might
see the stimuli as x(1) or

( x(1)

µ(2)

)
, while Bob sees them as x(2) or

(
µ(1)

x(2)

)
. Both

Alice and Bob also see the labels for the labeled data.
Alice and Bob cannot directly communicate. Instead, at each iteration

the policy requires both Alice and Bob to label the s unlabeled items that
each is most confident about. After they have both finished, the policy
shows Bob’s chosen items and labelings (xB1,yB1) . . . (xBs,yBs) to Alice.
Note that, although Bob labeled these item from his view, Alice sees them
from her own view. Alice understands that the labels come from Bob, but
– in contrast to machine learning – it is up to her whether to believe Bob’s
labelings (i.e., whether to use them as pseudo labeled data). At the same
time, Alice’s labelings are shown to Bob. The policy then removes any
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Algorithm 6: The Co-Training collaboration policy
Input: labeled and unlabeled data, learning speed s.
Present the first-view data to Alice, second-view to Bob.
repeat

Let Alice label her smost confident unlabeled
items; same for Bob.

Show Bob’s labelings (xB1,yB1) . . . (xBs,yBs) to
Alice, and vice versa.

Remove {xA1 . . . xAs} ∪ {xB1 . . . xBs} from the
unlabeled data.

until unlabeled data is exhausted;

unlabeled item that has been labeled by either Alice or Bob, and proceeds
to the next iteration. This repeats until the unlabeled data is exhausted. In
the end, each unlabeled item has received a label from Alice or Bob. In the
rare cases when both Alice and Bob label the same item differently, the
policy breaks the tie arbitrarily.

The only communication that is allowed in the Co-Training policy is la-
bel exchange.3 In this sense, Co-Training falls between the no-collaboration
and full-collaboration policies. Our main question is whether the Co-
Training policy leads learners toward different classification outcomes
than the no-collaboration and full-collaboration policies. We hypothesize
that human behavior in the Co-Training policy will be well-predicted by
the behavior of the Co-Training algorithm in machine learning, whereas
participants will primarily learn linear category boundaries in the other
two collaboration conditions. This is not a trivial hypothesis given the
differences between human and machine learning discussed above, and
the general difficulty human beings have in learning nonlinear decision
boundaries without extensive supervision.

3In theory, Alice and Bob could agree on a coding scheme a priori and encode further
information with their choices of items and labelings. We do not consider that possibility
here.
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8.3 Human Experiments

We designed and conducted a series of experiments to compare human cat-
egory learning behaviors under the three collaboration policies introduced
in the previous section.

Participants and Materials

Across three separate experiments a total of 324 undergraduate students
participated for course credit under IRB approval. We programmed net-
worked software to run on a pair of computers so that two participants
in separate rooms could collaborate according to the Co-Training policy,
preventing any communication between them except that explicitly al-
lowed by the software. The software also runs on a single computer for
the full-collaboration and no-collaboration policies. The software was im-
plemented in the ActionScript programming language and runs in Flash
Player.

The category learning task was implemented as a card sorting game,
see Figure 8.2. Each item x is represented as a card. The user interface
contains a central bin holding the unlabeled cards as well as a bin to the
left and to the right into which labeled cards are placed. In the beginning,
only the initially-labeled cards are shown in the left or right bins. The
participants’ task is to sort all cards in the central bin into the left or right
bins. Before starting the experiments, participants were told whether or
not they would be working with a partner, and were instructed to begin
with the card they were most confident about.

We assessed learning behavior in all collaboration conditions with two
stimulus sets. Both included items defined over two continuous perceptual
features, but differed in the psychological separability of the dimensions.
The “separable” set contained Gabor patches varying in spatial frequency
and orientation of the grating (Vandist et al., 2009; Ashby and Maddox,
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Figure 8.2: Experimental inter-
face

(0.15, 0.5) (0.5, 0.85) (0.85, 0.5) (0.5, 0.15)

separable stimuli

integral stimuli

Figure 8.3: Sample stimuli

1990). These dimensions are considered separable because it is possible for
people to attend to one dimension to the exclusion of the other (Shepard,
1964). The “integral” set contained colored squares of a fixed hue but
varying in saturation and brightness. These dimensions are considered
to be integral because it is difficult for people to attend to one dimension
without also processing the other (Lockhead, 1966). Extensive research
has shown that people respond differently to stimuli defined on separa-
ble versus integral dimensions in supervised and unsupervised learning
tasks (Ashby and Maddox, 1990; Love, 2002; Nosofsky and Palmeri, 1996).

In both cases a stimulus is parametrized by x =
(
x1
x2

)
∈ [0, 1]2. The range

of values on each was determined in extensive pilot testing to ensure that
participants could discriminate important distances along all dimensions.
For Gabor patches, the frequencies were calculated using λ = (x1 ∗ 5/34)+
2/17, and the orientations were calculated using θ = x2 ∗ 100, varying
from 0 to 100 degrees clockwise from horizontal. For colored squares, the
brightness was calculated using b = x1 ∗ 0.5 + 0.25 and the saturation
was calculated using c = x2 ∗ 0.9 + 0.5. Figure 8.3 shows four stimuli
corresponding to the cluster centers in Figure 8.1(a), in both the separable
and integral stimulus spaces.
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The Diamond Dataset and Co-Training Conditions

Most of our experiments employ the diamond dataset shown in Fig-
ure 8.1(a). It consists of n = 80 items evenly divided into 4 clusters.
All clusters have radius 0.1. Items within a cluster lie on a regular grid.
The two views are the x-axis and y-axis coordinates paired with the mean
value of 0.5 on the hidden dimension as previously discussed.

We constructed this dataset with the aim of satisfying the three techni-
cal conditions for the Co-Training algorithm. Condition 1 is easy to verify:
there exists at least one target concept f, shown in Figure 8.1(c), that is
consistent with the marginal p(x). In other words, no item receives con-
tradictory labels across the two views (note this is not true for the concept
in Figure 8.1(b)). From the Figure we can also verify that Condition 3 is
approximately true:4 For both classes, knowing an item’s x-axis position
tells us little about its y-axis position and vice versa.

Condition 2 cannot be verified by consideration of the stimulus set
alone. It stipulates that each base learner in Co-Training must, with full
supervision and sufficient labeled data, be capable of learning the target
concept from only one view. Because the base learners in our study are
human beings, we need to determine empirically whether this condition
holds. Our first experiment addresses this question.

[Experiment 1] 13 participants were divided into two groups: 7 in the
first-view group and 6 in the second-view group. Each worked alone as a
base learner, and viewed stimuli from the “integral” stimulus set. Partic-
ipants in the first-view condition saw items varying in the x dimension
but fixed at 0.5 on the y dimension, whereas those in the second-view
condition saw items varying along the y dimension and fixed at 0.5 in
the x dimension, effectively collapsing the dataset into one dimension as
shown in Figure 8.4. Participants viewed four labeled items corresponding
to the four cluster centers in Figure 8.1(a), and were asked to classify the

4It would be exactly true if the clusters were squares, not circles.
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Figure 8.4: In Experiment 1 each participant worked with only one view
of the dataset. There were four labeled items. Points dithered to show
overlap.

remaining 76 items. Note that this labeled data is twice what is provided
in Co-Training. The purpose of the study is to verify that, when provided
with this supervised experience, human learners are capable of learning
the target concept as it is projected in one view.

Result: The average classification accuracy on the unlabeled items was
quite high: 98.9% in the first-view group and 94.7% in the second-view
group. These results suggest that people were able to learn the target
concept f using only one view in a supervised learning setting given four
labeled training items, thus verifying the final technical condition of Co-
Training. Another pilot study also showed that in Experiment 1, humans
cannot learn the concept in Figure 8.1(c) if they saw only the two labeled
items in Figure 8.1(a) instead of the four. However, as we show next, they
will be able to learn it from two labeled items if they perform Co-Training
label exchange.

8.4 Results under Different Policies

[Experiment 2] Our second experiment compares human learning on
the diamond dataset under the Co-Training, full-collaboration, and no-
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collaboration policies, now using just two labeled items as in Figure 8.1(a).
These three policies were implemented as follows:

Co-Training (C): Two partners sit in separate rooms working on a shared
categorization task. Each partner sees one of the views and no commu-
nication is permitted except through the labeling of cards. Each partner
labels one card (s = 1) and is then asked to wait for the other partner. The
card labeled by the other partner is highlighted and automatically moves
from the unlabeled bin to the appropriate labeled bin. If the partners
have by chance labeled the same card, that card is automatically moved
from the labeled bin, across the unlabeled bin, into the other labeled bin.
This process of labeling followed by viewing is repeated until all cards are
labeled.

Full-collaboration (F): Two partners sit side-by-side before a single com-
puter working on the same categorization task. They are able to view
both features on each card simultaneously. No restriction is made on their
communication.

No-collaboration (N): A single participant categorizes all cards while
viewing both features simultaneously.

Each collaboration policy was paired with the separable (S) or integral
(I) stimuli, resulting in 6 conditions. Participants were assigned randomly
to conditions as follows: 21 dyads for CS, 25 dyads for CI; 20 dyads for FS,
26 dyads for FI; 45 singles for NS, and 34 singles for NI.

To summarize the results of a given dyad or individual, we classified
each cluster in the diamond dataset as either “red” or “blue” based on a
simple majority vote (i.e. the cluster was designated red if more than 50% of
the items in it were classified as red, and blue otherwise). Thus there were
24 = 16 different possible patterns for the four clusters. Table 8.1 shows
the proportion of participants whose behavior matched each of these
patterns across the different conditions. For example, in the CS condition,
17/21 ≈ 0.8 fraction of dyads produced the “cross” pattern.
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pattern
cross horz vert diag other

condition
CS 0.80 0.10 0 0.10 0
CI 0.68 0.04 0.04 0.20 0.04
FS 0.05 0.25 0.35 0.30 0.05
FI 0 0.08 0 0.92 0
NS 0.07 0.42 0.18 0.31 0.02
NI 0 0 0 1.00 0

Table 8.1: The fraction of patterns in cluster-level majority classification.
“Other” includes the remaining 16 − 4 = 12 possible patterns. Boldface
indicates the largest fraction within a condition.

Several observations can be made from Table 8.1. First, the Co-Training
policy robustly produces the nonlinear “cross” pattern in about three quar-
ters of the dyads. This pattern was rarely observed in the full-collaboration
and the no-collaboration policies (χ2 test, p� 0.01), which both mainly
produce linear decision boundaries. This is the main finding of our work:
the Co-Training human collaboration policy leads to outcomes dramati-
cally different from no-collaboration and full-collaboration policies, and
consistent with that predicted by the machine learning algorithm.

Second, in the full-collaboration and no-collaboration policies, partici-
pants showed quite different behaviors for stimuli defined over separable
versus integral dimensions, producing axis-parallel boundaries with sep-
arable dimensions and “integrated” oblique boundaries with integral
dimensions. This pattern has been previously documented in a variety of
work in cognition. In Co-Training, however, the separability of the stimu-
lus dimensions does not affect behavior (CS vs. CI, χ2 test, p = 0.5). This is
not surprising given that each person sees only one view, but it suggests
an interesting application of the policy: Co-Training can enforce consistent
classification regardless of the separability of the stimulus dimensions.
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Figure 8.5: Differences between humans and machines (aggregated over
CS and CI). (a) The first unlabeled items (black dots) chosen by the first-
view partners. (b) Same, but for the second-view. (c) Per-item average
labels.

Additionally, there was no significant difference between full- and
no-collaboration (χ2 test, p = 0.7). Thus the differences observed under
the Co-Training policy were not simply the result of having two individ-
uals working together. Although the Co-Training human collaboration
outcome fits machine learning model predictions at the cluster level, we
observed some subtle differences suggesting that machine learning algo-
rithms like 1NN may not be the ideal models for human base learners. One
difference concerns the unlabeled items that humans label first. Machine
base learners would label the items they are most confident about, which
will likely be an item that overlaps with a labeled item under that view.
Participants in our experiments did not always pick such overlapping
items, but seemed to settle for items loosely similar to labeled ones, see
Figure 8.5(a) and (b).

Another difference is in how sure the humans are. For each unlabeled
item, we may average its classification across all dyads in the Co-Training
conditions where, if the average is close to −1 (blue) or 1 (red), all dyads
label it consistently; 0 if they are quite unsure. Figure 8.5(c) shows this
per-item average using a color coding. Items in the top and left clusters
(with labeled items) are very certain, while those in the bottom and right
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clusters are relatively uncertain (though they do have the correct per-item
majority vote label). Typical machine Co-Training learners will have higher
certainty on these clusters.

8.5 A Counter-Example

[t] Finally, we investigated human behavior under the Co-Training policy
in a learning problem that violates Co-Training’s technical conditions. The
new dataset was identical to the diamond dataset except that the unlabeled
items were distributed on a grid, see Figure 8.6(a). The dataset therefore
violates Condition 1: items near the four corners receive conflicting labels
between the two views.

[Experiment 3] 24 dyads worked on this counter-example under the
Co-Training policy with the separable stimuli. Apart from the distribution
of the unlabeled items, all aspects of the study were identical to Experi-
ment 2. Figure 8.6(b) shows the per-item average labels in Experiment 3.
Classification decisions in this study were clearly less certain than those
observed in Experiment 2 (see corresponding items in Figure 8.5(c)). To
compare with the CS row in Table 8.1, we also computed the majority
vote pattern for every dyad on each of the four rectangular “clusters” in
Figure 8.6(a). The proportion of dyads showing each pattern were: cross
0.00, horz 0.21, vert 0.17, diag 0.33, other 0.29. No dyad produced the
cross pattern on this dataset. Thus human Co-Training outcomes depends
critically upon the distribution of the unlabeled items.

8.6 Discussion

We showed that, when collaborating according to a novel policy inspired by
Co-Training, two human learners behave differently than individual learn-
ers or learning pairs collaborating in an unconstrained manner. Specifically,
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Figure 8.6: The counter-example

they jointly acquire a nonlinear labeling on the diamond dataset that is
highly consistent with the behavior of the machine learning algorithm,
yet unusual for human category learning generally. We have also shown
that the behaviors elicited by the policy depend upon the distribution of
the unlabeled data.

This work employed very simple stimuli constructed to highlight the
differences between Co-Training and other learning models. The question
thus arises, what relevance do these results have for real-world learning
tasks? We believe there are several potentially important implications.
First, under the Co-Training policy each participant need view only a subset
of an item’s features. For problems where the number of relevant features
are overwhelming, the policy may provide an efficient way of dividing
the problem up so as to make best use of costly human effort. Second, in
Co-Training each learner is satisfied with the final result (meaning there is
little conflict between the labels given by one partner and the other), even
though jointly the team arrives at a solution that would seem unlikely had
they both viewed the full features. Co-Training thus provides a means of
promoting agreement among team members for classification solutions
that otherwise might cause disagreement. Third, the only communication
required is label-exchange, which might be useful in situations where
communication is costly. Fourth, each learner is “blind” to some of the



95

feature dimensions. The policy might therefore prove useful in sensitive
classification tasks where data security is an issue.

Of course, all of these applications depend upon there being real-world
tasks of interest that meet the technical conditions that allow Co-Training
to work. In this vein, it is worth noting that Co-Training does apply to
other datasets beyond the “diamond” set used here. For example, here is
a 2D dataset with 8 clusters, two of them initially labeled:

( • +
• •
• •

o •

)
. The

outcome
( + +
o o

+ +
o o

)
is predicted by the Co-Training machine algorithm,

and we have observed this behavior in preliminary human studies. To
determine whether Co-Training has application for a real dataset, the task
organizer must be able to assess whether the problem meets Co-Training’s
technical conditions, and must also be able to find views of the data that
exploit Co-Training’s properties. These constitute interesting problems for
machine learning in their own right, and are a focus for future research.
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9 discussion, future work and summary

Here I collect potential real world applications, a motivating goal that
remains to be addressed, some of the limitations of the work as it stands,
and a few of the lessons learned regarding humans as learners viewed
from a machine learning point of view. I then go on to discuss potential
future work and finally summarize my contributions as presented in the
preceding chapters.

Real World Applications

Over the course of these studies the “How might we apply this work to a
real world setting?” has come up repeatedly. This is a common question
asked of basic research. The research presented has had two motivations:
1) to better understand human learning behavior and 2) to attempt to
influence this behavior. The work can be applied to real world settings in
both ways as well, with the clearest applications in education.

Chapter 4 indicates that one should take care when creating a test
set to evaluate a learner on a learned concept. The ordering of the test
items (as well as the distribution, as shown by Zhu et al. (2007)) can
change the learned concept, in an unintentional way. If, however, the
evaluator wanted to purposefully change the learned concept without
introducing new labels, the distribution and order could be manipulated
intentionally. Though there must certainly be non-malicious motivations
for such an intervention, it is useful to be able to recognize instances where
evaluation data could be manipulated intentionally to confuse the learner
in a predefined way.

If there is a learning task which is dependent on discriminating classes
of objects, the results of Chapter 7 make it clear that care should be taken
not to expose the learner previously to items whose apparent distributions
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might contradict useful assumptions in the supervised task. The results
presented there assume that boundaries fall in low density regions, but
it may be that there are other properties of the data that humans will be
sensitive to, judging by the results in Chapter 5. Certainly distributions
which disagree in some way with the underlying concept (e.g. trough
shifted away from the boundary) should be avoided as these may interfere
with the speed of learning. Additionally, as was mentioned, exposure to
unlabeled items could be designed to deliberately speed later learning, a
clear application in education.

Chapter 6 suggests that if there was a learning task where following
an underlying manifold would be useful, such as tracking changes of
an observed object over time, it is important to stress this information
to the learner, and not assume that they will pick up on it on their own.
This is certainly true of novel or synthetic stimuli. Another application
might be in a task which contains a difficult to perceive manifold structure.
Mapping this task to one with a very apparent natural manifold may make
the task easier and the manifold more apparent, e.g. following the rotation
of an object in 3 dimensions, This leads into future work and the question
of feature selection discussed in the next subsection.

The Co-Training constraints discussed in Chapter 8 are somewhat
different, and not as directly applicable to education. Here, the effects are
1) a separation of features between learners and 2) a constrained message
passing scheme. Since each learner need only view a subset of the features,
any task where the features are overwhelming, such as air-traffic control
for instance, might be split between learners while still maintaining a
complicated learned concept. Another potential application would be
in areas where there is some sensitivity to the data such that no single
learner should be allowed to view the entire feature set for any data-point.
Features could be split between collaborators while, again, maintaining
some learned concept.
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This is by no means a complete list. It is the author’s hope that the
ideas given here are simply a springboard for educators and researchers
to a larger set of potential uses.

The Two-Way Street

The motivation for this work has always been to better understand and
influence human behavior using Isl models. The work presented here is
done with respect to these goals. There was an additional motivation to
use observations of human behavior in SSL settings to suggest areas of
improvement which could be made to ML models.

This two-way street of improvement has not yet materialized, but there
is no reason to believe that it cannot be done in the future. As discussed
below, there are several limitations to the research that has been presented
here, allowing for much continued work in the area. It is still feasible with
continued investigation and, importantly, cooperation and collaboration
between the Cognitive Psychology and Machine Learning communities,
we will see insights from human learning which will inform SSL.

Limitations

While there are many results presented in the preceding chapters, there
are limitations that should be mentioned. An important one is that in the
majority of the studies mentioned, only a single synthetic stimulus type
was tested per study, with very low dimensionality (1 to 2 dimensions),
presented in a single modality (visual), to a very specific group of partici-
pants (undergraduates living in the Midwestern United States). While the
results may be significant under these particular settings, it is important to
investigate how they generalize to other settings, such as auditory stimuli,
high dimensional stimuli, real world stimuli, other demographic groups,
etc.
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Another large limitation is the task chosen to investigate, namely binary
classification. While this is a valid learning task, it is of such a basic nature
that it is difficult if not impossible to directly translate the results given
here to more complex tasks e.g. learning to solve algebraic equations or
learning to play a musical instrument.

Investigating the same research questions under very different settings
is a potentially fruitful avenue left for future work.

Human Learning Considerations

Humans are interesting learners to work with and study. Machine Learn-
ing agents are infinitely patient, do exactly as told and make no alterations
or interpretations of the input data or output labels unless instructed to
do so. The same is not necessarily true of humans.

We saw in Chapter 4 and Zhu et al. (2007) that humans do not neces-
sarily perceive distances in a perceptual space as they may be intended.
Depending on the stimuli used, the stimuli space may be warped such
that equal distances defined in two regions of space may not be perceived
as being equal. Some regions of space may be stretched while others are
shrunk, leading to surprising asymmetries like those seen in 4.1.

Humans may also induce features not intended by the researcher. As
an example, in the study of manifolds in Chapter 6, participants reported
seeing rotated letter “T”s and “L”s in the stimuli consisting of a single ver-
tical and single horizontal line. These representations were not intended
and could have a potential effect on the results of the study. It’s for this
reason that Gabor patches, like those seen in Chapter 5 are commonly
used, as they are believed to correspond to visual feature detectors in a
fairly straightforward way. Similarly, humans may infer changes in one fea-
ture based on changes seen in another, as in the color swatch stimuli used
in Chapter 8. A tremendous amount care must be made when selecting
stimuli for human experiments to avoid any unintentional complications.
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Another consideration with regard to stimuli is in feature selection. It
is often assumed that the learner is given a set of features, all of which are
important. This of course is not an assumption a human learner should feel
safe making in the real world. It is still not entirely clear how humans do
feature selection; similarly how they perform feature integration, creating
new features through combinations of existing features. In fact, some of
the SSL assumptions discussed, such as the smoothness assumption made
use of in the manifold learning case, can simply be seen as an additional
feature, picked out from the many available. In this case the additional
feature is the identities of the neighbors of any particular item.

A large consideration when choosing candidates to model human
performance is that humans primarily appear to learn online, that is they
consider stimuli sequentially, rather than in batch, considering all items
at once. Even when presented with a batch of data, humans by necessity
must attend to and perceive a single stimuli at a time. Machine learners
are capable of considering items either online or batch. Models which
only learn in batch mode may not be likely candidates for human learning
unless there is some way of modifying them to do or approximate online
learning.

Finally, machine learners are infinitely patient in that they will consider
any number of stimuli, so long as memory and computational constraints
are not exceeded. The machine learner will also perceive all available
features for each stimuli and perfectly remember them indefinitely unless
asked to do otherwise. Human learners will not necessarily cooperate
quite so willingly or exactly. A human learner has a limited attention span,
usually require some motivation to attend to a task (beyond being told they
should), and will, in the vast majority of individuals, not be able to either
perceive or remember all available features without extensive training.
For instance, when presenting the learner with prior unlabeled items
in Chapter 7, a separate task had to be designed to improve confidence



101

that the human learners were actually attending to, and encoding, the
unlabeled examples.

While none of these issues are impossible to overcome, special consider-
ation needs to be made when designing human experiments to account for
them. Many of the issues, like the stretching of perceptual space or feature
selection, could benefit from additional research and may be opportunities
for the influence of CP on ML.

9.1 Future Work

As has been mentioned before, there is a tremendous amount work left
to be done in the investigation of how humans make use of combinations
of labeled and unlabeled data when learning. Some of this work regards
larger, overall questions, such as how humans do feature selection, how
human perceptual space can be warped for different stimuli, and what the
differences truly are between human perception of separable vs. integral
feature dimensions. Other work involves addressing the limitations of
our experiments discussed above, in particular the “single dataset” issue,
where it is necessary to see if the effects seen generalize to other stimuli,
other modalities, etc. Still other future work is specific to each of the
experiments described.

Chapter 4: Order Effects

In this study only the three models discussed in Chapter 2 were compared
to human behavior. It remains to be seen if other models making use
of more advanced SSL assumptions, such as manifolds or large margin
separation can be formulated to be susceptible to the same sort of effects
and then compared with human behavior.
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Chapter 5: What Parameters are Learned?

It may be that in other tasks, where discrimination between hypothesized
models, or models not in the GMM family, is still possible, the result found
(that all parameters were learned from unlabeled data) may not be the
case. Additional investigation is required to confirm that our conclusion
generalizes to other situations.

Chapter 6: Manifold Learning

This experiment suffered the most from the issues related to human percep-
tion of stimuli. It would be particularly useful to confirm the results seen
with a more accepted set of stimuli, such as Gabor patches. Additionally,
in this experiment, as in others, there was no consideration given to which
model participants would prefer before seeing the data. It is possible that
humans favor models which produce axis-parallel decision boundaries.
Defining and incorporating non-uniform priors over the models is a topic
for future research.

Chapter 7: Prior Unlabeled Data

This experiment was one for which the real-world application was the
most apparent: exposing a learner to unlabeled data prior to the super-
vised task. What is not clear is what sort of exposure would be adequate
to influence human learning. Would simply being exposed visually to
unlabeled data (e.g. representative items displayed on wallpaper in a
room a student is playing) be enough to illicit improved learning perfor-
mance? Or would the learner need more engaged interaction (e.g. playing
with material representations of the stimuli, like plastic toys) to see these
effects? Additional studies looking at how these ideas might actually be
used in teaching students is an obvious and enticing line of investigation.
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Chapter 8: Co-Training Constraints

To determine whether Co-Training has application for a real task, the
supervisor of the task must be able to assess whether the problem meets
Co-Training’s technical conditions, and must also be able to find views of
the data that exploit Co-Training’s properties. These constitute interesting
problems for machine learning in their own right, and are a focus for
future research.

9.2 Key Contributions

• Showed that existing SSL models can be modified to reproduce the
Test-Item Effect observed in humans, where the learned boundary
can be affected by the order of test items presented to the learner.

• Showed that humans, when performing a 1D 2-class categorization
task, are sensitive to all parameters of the underlying distributions
and do not constrain their search of the parameter space.

• Showed that humans can learn using manifolds, given sufficient
labeled data and hints regarding the manifold structure.

• Showed that the speed of human learning on a supervised task can
be affected by prior unlabeled experience.

• Showed that, using a variation of the classic Co-Training constraints,
we can elicit behavior from human collaborators that is not observed
without these constraints.

9.3 Conclusion

It is clear that human learners are sensitive to both labeled and unlabeled
data when performing a classification task. The work presented here
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was an effort to both better understand this behavior and to attempt to
influence learning. The models described in Chapter 2 provide a strong
theoretical link between ML and CP. The results of the studies in the
following chapters go on to show empirically that ML models and their
associated SSL assumptions can be applied to human learners. While
humans remain a black box, and none of the studies described here prove
definitively that the models applied in fact match the mechanics of human
learning, they do give a strong indication of how humans learn in the
semi-supervised classification setting.



105

references

Anderson, John R. 1990. The adaptive character of thought. Hillsdale, NJ:
Erlbaum.

———. 1991. The adaptive nature of human categorization. Psychological
Review 98(3):409–429.

Ashby, F. G., and W. T. Maddox. 1990. Integrating information from
separable psychological dimensions. Journal of Experimental Psychology:
Human Perception and Performance 16(3):598–612.

Ashby, F. Gregory, and Leola A. Alfonso-Reese. 1995. Categorization
as probability density estimation. Journal of Mathematical Psychology 39:
216–233.

Balcan, Maria-Florina, and Avrim Blum. 2010. A discriminative model
for semi-supervised learning. Journal of the ACM 57(3).

Belkin, Mikhail, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold
regularization: A geometric framework for learning from labeled and
unlabeled examples. Journal of Machine Learning Research 7:2399–2434.

Bengio, Y., J. Louradour, R. Collobert, and J. Weston. 2009. Curricu-
lum learning. In The 26th international conference on machine learning, ed.
L. Bottou and M. Littman, 41–48. Omnipress.

Bishop, Christopher M. 2007. Pattern recognition and machine learning.
Springer.

Blum, Avrim, and Tom Mitchell. 1998. Combining labeled and unlabeled
data with co-training. In COLT.



106

Brefeld, Ulf, Thomas Gaertner, Tobias Scheffer, and Stefan Wrobel. 2006.
Efficient co-regularized least squares regression. In ICML. Pittsburgh,
USA.

Chapelle, Olivier, Alexander Zien, and Bernhard Schölkopf, eds. 2006.
Semi-supervised learning. MIT Press.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological) 39(1):1–38.

Fearnhead, P. 2004. Particle filters for mixture models with an unknown
number of components. Statistics and Computing 14:11–21.

Fried, L. S, and K. J Holyoak. 1984. Induction of category distributions: A
framework for classification learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition 10(2):234–257.

Gibson, Bryan R., Timothy T. Rogers, Charles W. Kalish, and Xiaojin
Zhu. 2015. What causes category-shifting in human semi-supervised
learning? In Proceedings of the 37th annual conference of the cognitive science
society (CogSci).

Gibson, Bryan R., Timothy T. Rogers, and Xiaojin Zhu. 2013. Human
semi-supervised learning. Topics in Cognitive Science 5:132–172.

Gibson, Bryan R., Xiaojin Zhu, Timothy T. Rogers, Charles W. Kalish, and
Joseph Harrison. 2010. Humans learn using manifolds, reluctantly. In
Advances in neural information processing systems (NIPS), vol. 24.

Griffiths, Thomas L., Kevin R. Canini, Adam N. Sanborn, and Daniel J.
Navarro. 2007. Unifying rational models of categorization via the hierar-
chical dirichlet process. In Proceedings of the 29th annual conference of the
cognitive science society, 323–328.



107

Griffiths, Thomas L., Adam N. Sanborn, Kevin R. Canini, Daniel J.
Navarro, and Joshua B. Tenenbaum. 2011. Nonparametric bayesian
models of categorization. In Formal approaches in categorization, ed. Em-
manuel M. Pothos and Andy J. Wills, 173–198. Oxford University Press.

Hintzman, D. L. 1986. "schema abstraction" in a multiple-trace memory
model. Psychological Review 93(4):411–428.

Hsu, Anne Showen, and Thomas E Griffiths. 2010. Effects of generative
and discriminative learning on use of category variability. In 32nd annual
conference of the cognitive science society.

Johnson, Rie, and Tong Zhang. 2007. Two-view feature generation model
for semi-supervised learning. In ICML.

Kalish, Charles W., Timothy T. Rogers, Jonathan Lang, and Xiaojin Zhu.
2011. Can semi-supervised learning explain incorrect beliefs about cate-
gories? Cognition 120(1):106–118.

Kalish, Charles W., XiaoJin Zhu, and Timothy T. Rogers. 2014. Drift in
children’s categories: when experienced distributions conflict with prior
learning. Developmental Science.

Kalish, C.W., S. Kim, and A.M. Young. 2012. How young children learn
from examples: Descriptive and inferential problems. Cognitive Science
36:1427–1448.

Khan, Faisal, Xiaojin Zhu, and Bilge Mutlu. 2011. How do humans teach:
On curriculum learning and teaching dimension. In Advances in neural
information processing systems (nips), vol. 25.

Lake, Brenden M., and James L. McClelland. 2011. Estimating the strength
of unlabeled information during semi-supervised learning. In Proceedings
of the 33rd annual conference of the cognitive science society.



108

Lockhead, G. R. 1966. Effects of dimensional redundancy on visual
discrimination. Journal of Experimental Psychology: Human Perception and
Performance 3:436–443.

Love, B. C. 2002. Comparing supervised and unsupervised category
learning. Psychonomic Bulletin and Review 9(4):829–835.

Mansinghka, Vikash K., Daniel M. Roy, Ryan Rifkin, and Josh Tenen-
baum. 2007. AClass: an online algorithm for generative classification.
In Proceedings of the 11th international conference on artificial intelligence and
statistics (AISTATS).

Medin, D.L., and M.M. Schaffer. 1978. Context theory of classification
learning. Psychological Review; Psychological Review 85(3):207.

Minda, J. P., and J. D. Smith. 2011. Prototype models of categorization:
Basic formulation, predictions, and limitations. In Formal approaches in
categorization, ed. E. M. Pothos and A. J. Wills, 40–64. Cambridge, UK:
Cambridge University Press.

Myers, J.L. 1976. Probability learning and sequence learning. In Hand-
book of learning and cognitive processes: Approaches to human learning and
motivation, ed. W.K. Estes, 171–205. Hillsdale, NJ: Erlbaum.

Nadaraya, E. A. 1964. On estimating regression. Theory of Probability and
Its Application 9:141–142.

Neal, Radford M. 1998. Markov chain sampling methods for dirichlet pro-
cess mixture models. Tech. Rep. 9815, Department of Statistics, University
of Toronto.

Nigam, Kamal, and Rayid Ghani. 2000. Analyzing the effectiveness and
applicability of co-training. In CIKM.



109

Nosofsky, R. M., and T. J. Palmeri. 1996. Learning to classify integral-
dimension stimuli. Psychonomic Bulletin and Review 3(2):222–226.

Nosofsky, Robert M. 1985. Overall similarity and the identification of
separable-dimension stimuli: A choice model analysis. Perception and
Psychophysics 38(5):415–432.

———. 1986. Attention, similarity, and the identification-categorization
relationship. Journal of Experimental Psychology: General 115(1):39–57.

———. 1991. The relation between the rational model and the context
model of categorization. Psychological Science 2(6):416–421.

———. 2011. The generalized context model: an exemplar model of
classification. In Formal approaches in categorization, ed. E. M. Pothos and
A. J. Wills, 18–39. Cambridge, UK: Cambridge University Press.

Palmeri, T. J., and M. A. Flanery. 1999. Learning about categories in the
absence of training: Profound amnesia and the relationship between
perceptual categorization and recognition memory. Psychological Science
10:526–530.

Pothos, Emmanuel M., and Andy J. Wills, eds. 2011. Formal approaches in
categorization. Oxford University Press.

Rasmussen, Carl E., and Christopher K. I. Williams. 2006. Gaussian pro-
cesses for machine learning. MIT Press.

———. 2007. GPML matlab code. http://www.gaussianprocess.org/
gpml/code/matlab/doc/, accessed May, 2010.

Rips, L. J. 1989. Similarity, typicality, and categorization. In Similarity and
analogical reasoning, ed. S. Vosniadou and A. Ortony, 21–59. New York,
NY: Cambridge University Press.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/


110

Rogers, Timothy T., Charles W. Kalish, Bryan R. Gibson, Joseph Harrison,
and Xiaojin Zhu. 2010. Semi-supervised learning is observed in a speeded
but not an unspeeded 2D categorization task. In Proceedings of the 32nd
annual conference of the cognitive science society (CogSci).

Rosch, E., C. B. Mervis, Gray, W. D., D. M. Johnson, and P. Boyes-Braem.
1976. Basic objects in natural categories. Cognitive psychology 8(3):382–439.

Sanborn, Adam N., Thomas L. Griffiths, and Daniel J. Navarro. 2006. A
more rational model of categorization. In Proceedings of the 28th annual
conference of the cognitive science society (CogSci), 726–731.

Shepard, R. N. 1964. Attention and the metric structure of the stimulus
space. Journal of Mathematical Psychology 1:54–87.

———. 1986. Discrimination and generalization in identification and
classification: Comment on nosofsky. Journal of Experimental Psychology:
General 115:58–61.

———. 1991. Integrality versus separability of stimulus dimensions:
From an early convergence of evidence to a proposed theoretical basis.
In The perception of structure: Essays in honor of Wendell R. Garner, ed. G. R.
Lockhead and J. R. Pomerantz, 53–71. American Psychological Associa-
tion.

Shi, L., N. H. Feldman, and T. L. Griffiths. 2008. Performing bayesian in-
ference with exemplar models. In Proceedings of the 30th annual conference
of the cognitive science society (CogSci), 745–750.

Sindhwani, Vikas, Partha Niyogi, and Mikhail Belkin. 2005. Beyond the
point cloud: from transductive to semi-supervised learning. In ICML05,
22nd international conference on machine learning.

Smith, E.E., and S.A. Sloman. 1994. Similarity-versus rule-based catego-
rization. Memory & Cognition 22(4):377–86.



111

Teh, Yee W. 2010. Dirichlet processes. In Encyclopedia of machine learning.
Springer.

Tenenbaum, J. B., T. L. Griffiths, and Kemp. C. 2006. Theory-based
Bayesian models of inductive learning and reasoning. Trends in Cog-
nitive Science 10(7):309–318.

Vandist, K., M. De Schryver, and Y. Rosseel. 2009. Semisupervised cat-
egory learning: The impact of feedback in learning the information-
integration task. Attention, Perception, & Psychophysics 71(2):328–341.

Vanpaemel, W., G. Storms, and B. Ons. 2005. A varying abstraction
model for categorization. In Proceedings of the 27th annual conference of the
cognitive science society (CogSci).

Vulkan, N. 2000. An economist’s perspective on probability matching.
Journal of Economic Surveys 14:101–118.

Wallis, Guy, and Heinrich H. Bülthoff. 2001. Effects of temporal asso-
ciation on recognition memory. Proceedings of the National Academy of
Sciences 98(8):4800–4804.

Wasserman, Larry. 2006. All of nonparametric statistics. New York, NY,
USA: Springer.

Zaki, S. R., and Robert. M. Nosofsky. 2007. A high-distortion enhancement
effect in the prototype-learning paradigm: Dramatic effects of category
learning during test. Memory & Cognition 35:2088–2096.

Zhou, Dengyong, Olivier Bousquet, Thomas Lal, Jason Weston, and
Bernhard Schölkopf. 2004. Learning with local and global consistency.
In Advances in neural information processing system 16.



112

Zhou, Zhi-Hua, and Ming Li. 2005. Tri-training: exploiting unlabeled
data using three classifiers. IEEE Transactions on Knowledge and Data En-
gineering 17(11):1529–1541.

Zhu, X., T. Rogers, R. Qian, and C. Kalish. 2007. Humans perform semi-
supervised classification too. In Proceedings of the 21st conference on artifi-
cial intelligence (AAAI).

Zhu, Xiaojin. 2013. Machine teaching for bayesian learners in the expo-
nential family. In Advances in neural information processing systems (NIPS).

Zhu, Xiaojin, Zoubin Ghahramani, and John Lafferty. 2003. Semi-
supervised learning using Gaussian fields and harmonic functions. In
The 20th international conference on machine learning (icml).

Zhu, Xiaojin, Bryan R. Gibson, Kwang-Sung Jun, Timothy T. Rogers,
Joseph Harrison, and Chuck Kalish. 2010. Cognitive models of test-item
effects in human category learning. In The 27th international conference on
machine learning (ICML).

Zhu, Xiaojin, Bryan R. Gibson, and Timothy T. Rogers. 2011. Co-Training
as a human collaboration policy. In The 25th conference on artificial intelli-
gence (AAAI).

Zhu, Xiaojin, and Andrew B Goldberg. 2009. Introduction to semi-
supervised learning. Morgan & Claypool.


	Contents
	List of Tables
	List of Figures
	Abstract
	Classification As Model of Human Categorization
	Review of Classification in Machine Learning and Cognitive Psychology
	Semi-Supervised Learning Assumptions
	Translating Between ML and CP

	Semi-Supervised Models of Human Categorization Behavior
	Exemplar Model as Kernel Density Estimation
	Prototype Model as Mixture of Gaussians
	Rational Model as Dirichlet Process Mixture Model

	Semi-Supervised Effects Due to Distribution of Unlabeled Data: Previous Evidence
	Experiment 1: SSL Distribution Effects
	Experiment 2: Social Categories

	Semi-Supervised Effects Due to Order of Unlabeled Data
	Human Experiment
	Model Comparison

	What Parameters Are Affected in Semi-Supervised Effects?
	Competing Hypotheses
	Constrained Expectation Maximization Models
	Human Experiment and Choosing a Diagnostic Dataset
	Discussion

	Manifold Learning in Humans
	Can Humans Learn Using Manifolds?
	Human Manifold Learning Experiments
	Model Predictions
	Behavioral Experiment Results
	Humans do not Blindly Follow Suggestions
	Discussion

	Influencing Human Behavior: Via Prior Unlabeled Data Exposure
	Human Experiment
	Modeling
	Discussion

	Influencing Human Behavior: Co-Training Constraints
	Review of the Co-Training Algorithm
	Human Collaboration Policies
	Human Experiments
	Results under Different Policies
	A Counter-Example
	Discussion

	Discussion, Future Work and Summary
	Future Work
	Key Contributions
	Conclusion

	References

