The Question

Under what conditions, if any, are people capable of manifold learning in a semi-supervised setting?

Manifold Learning

Consider a semi-supervised learning (SSL) task where the unlabeled examples are distributed along a lower dimensional plane, or manifold, in feature space. A manifold learner can take advantage of the underlying structure to propagate the label.

An Example: Face Recognition

Projecting two series of 1000 images, each image 30x40 grayscale pixels or 1200 dimensions, down to 2 dimensions reveals the underlying manifolds.

The Experiment

139 participants in a SSL categorization task.

Manipulations:

- the number of labeled examples $(2^l, 4^l)$,
- the underlying distribution used (grid^U, moons^U),
- whether graph neighbors were highlighted (h)

The task interface with highlighting and example stimuli.

Humans Learn Using Manifolds, Reluctantly

Bryan R. Gibson, Xiaojin Zhu, Timothy T. Rogers, Charles W. Kalish, Joseph Harrison University of Wisconsin-Madison, USA

Conditions, Behavior and Predictions

A set of simple classifiers simulated using a single Gaussian Process (GP) with different covariance functions, providing predictions for each condition.

Analysis

GP model accuracy in predicting human majority vote per condition.

	(graph)	(1NN, ℓ_2)	(1NN, ℓ_1)	(multi-v)	(multi-h)	(single-v)	(sing
2^l grid ^U	0.81	0.94	0.84	0.86	0.58	0.85	0.61
2^l moons $^{ m U}$	0.47	0.84	0.62	0.74	0.42	0.79	0.45
2^l moons $^{\mathrm{U}}$ h	0.50	0.78	0.56	0.76	0.36	0.76	0.39
4^l grid $^{ m U}$	0.54	0.61	0.64	0.64	0.50	0.60	0.51
4^l moons $^{\mathrm{U}}$	0.64	0.62	0.60	0.69	0.47	0.38	0.45
4^l moons $^{\mathrm{U}}$ h	0.97	0.76	0.54	0.64	0.31	0.65	0.26
4^l moons ^U h ^R	0.68	0.63	0.44	0.56	0.40	0.59	0.42

Percentage of participants likely using each model per condition (argmax thresholded at 75%, 'other' indicates that no model was a good fit)

	(graph)	(1NN, ℓ_2)	$(1NN,\ell_1)$	(multi-v)	(multi-h)	(single-v)	(single-
2^l grid ^U	0.12	0.00	0.12	0.25	0.25	0.12	0.00
2^l moons $^{ m U}$	0.00	0.12	0.00	0.25	0.25	0.25	0.00
2^l moons $^{\mathrm{U}}$ h	0.12	0.00	0.00	0.38	0.25	0.00	0.00
4^l grid $^{ m U}$	0.00	0.05	0.09	0.00	0.00	0.18	0.09
4^l moons $^{\mathrm{U}}$	0.25	0.25	0.12	0.12	0.00	0.04	0.08
4^l moons $^{\mathrm{U}}$ h	0.39	0.09	0.09	0.04	0.04	0.00	0.13
4^l moons $^{\mathrm{U}}\mathbf{h}^{\mathrm{R}}$	0.13	0.03	0.07	0	0	0.07	0.03

gle-h)

-h) other 0.12 0.12 0.25 0.59 0.38 0.22 0.67

Observations

$4^{ m l}+{ m h} ightarrow$	manifold learning!
$4^l \longrightarrow$	no manifold learning
2^l + h \rightarrow	no manifold learning
2^l \rightarrow	no manifold learning

Learning or Following?

It is reasonable to ask, are participants learning the manifold or are they blindly following the highlighting?

- 1 2^{l} moons^Uh \rightarrow no manifold learning, 4^{l} moons^Uh \rightarrow manifold learning, even though both had the same highlighting.
- 2 Participants perform 'leaps-of-faith'.

A 'leap-of-faith' occurs when a participant classifies x as class y while all x's neighbors are either unlabeled or have labels other than y.

 4^{l} moons^Uh: average of 17 leaps-of-faith out of about 78 classifications.

Blindly following the highlighting would yield zero leaps-of-faith.

3 Is the underlying manifold structure irrelevant?

A new random manifold graph is created by taking a random permutation of the 4^{l} moons^Uh graph and mapping the *i*'th unlabeled point to the new permutation while keeping the adjacency matrix the same. 4^lmoons^Uh^Rand 4^lmoons^Uhboth have two connected components with consistent labeled points.

Blindly following means participants are more likely to classify unlabeled points the same as a labeled point the nearer the two are along the graph. This correlation should be the same for 4^{l} moons^Uh^R and 4^{l} moons^Uh, but it wasn't.

The underlying manifold is relevant. The correlation between label propagation and distance along the graph from a labeled point is not the same for a random graph $(4^{l} \text{moons}^{U} h^{R})$ and manifold graph $(4^{l} \text{moons}^{U} h)$.

Evidence indicates participants are not blindly following the highlighting!

Model Selection

Using Bayesian model selection to explain the human behaviors, we can calculate the evidence $p(y_{1:l}|x_{1:l},k)$ on labeled data for each kernel k used in the GP. The model selected is the one with the highest evidence.

The (graph) model is not the most likely model in 2^l moons^Uh while it is in 4^l moons^Uh, which matches participant behavior.

	$2^l \text{moons}^{\text{U}} h$	4 ^l moons ^U h
(graph)	0.249	0.0626
(1NN,l2)	0.250	0.0591
(1NN,l2)	0.250	0.0625
(multi-v)	0.250	0.0625
(multi-h)	0.250	0.0625
(single-v)	0.249	0.0341
(single-h)	0.249	0.0342

The Punchline

People can learn the half-moons dataset, if we give them 4 (not just 2) labeled points and give them clues about the graph.

> Research supported in part by NSF IIS-0916038, NSF IIS-0953219, NSF DRM/DLS-0745423, and AFOSR FA9550-09-1-0313.