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Abstract 
Kangaroo is a wide-area data movement 
system that provides high-throughput 
data movement by overlapping CPU and 
I/O[1,2]. Though Kangaroo is a 
persistent data mover, network and/or 
disk failures can reduce data 
availability, because Kangaroo can't 
route the data around failures.  We 
demonstrate that by using multiple paths 
to the destination, we can improve 
availability without significant 
overheads.  In our improved Kangaroo, 
the sender is responsible for message 
ordering.  We also use TCP's flow 
control mechanism to implicitly route 
more data along paths that offer higher 
bandwidth. 
 
1. Introduction 
Kangaroo[1,2] is a wide-area data 
movement system developed at UW-
Madison.  Kangaroo improves the 
throughput and reliability of grid 
applications by hiding network storage 
devices behind memory and disk buffers.  
Together with Pluggable File System 
(PFS)[12], Kangaroo allows unmodified 
applications to overlap computation with 
I/O.  By removing the burden of data 
movement from the application, 
Kangaroo helps reduce the turnaround 
time of applications. 
 
Kangaroo uses a TCP-based message-
oriented protocol.  Servers exchange 
information by passing well-defined 
messages to each other.  The different 

file operations are encoded as Kangaroo 
messages and may contain control and 
data information.  Kangaroo also offers a 
highly reliable data movement 
mechanism by using a write-ahead log 
and retransmitting messages in case of 
network failures or when a server 
downstream runs out of spool space.  
However, the original Kangaroo 
prototype (hereafter referred to as vanilla 
Kangaroo) uses a static single route.  
This route is the first match that it finds 
in the Kangaroo routing table.  Since it 
uses a single route, data cannot be routed 
around failures, even if alternate routes 
exist.  This can affect the availability of 
data at the destination.  The vanilla 
implementation is also not able to 
identify operations that can be 
performed in parallel, which results in 
wasted bandwidth. 
 
In this paper, we describe the challenges 
in routing data along multiple routes to 
the destination and our approach to 
solving some of them.  Section 2 gives a 
quick overview of the original Kangaroo 
architecture and interface.  Section 3 
gives the motivation for this work and 
we describe our implementation in 
section 4. Section 5 compares the 
performance of our implementation 
(hereafter referred to as multiroute 
Kangaroo) with that of the vanilla 
implementation.  We present related 
work in Section 6, future work in 
Section 7 and conclude in Section 8. 



2. Architecture 
The vanilla Kangaroo architecture [1,2] 
is centered around a chainable series of 
servers that implement a simple interface  
  
  void kangaroo_put (host, path, offset, length, data); 
  int  kangaroo_get (host, path, offset, length, data); 
  int  kangaroo_commit(); 
  int  kangaroo_push(host, path); 
 
All the above functions except 
kangaroo_put are Remote Procedure 
Calls (RPCs).  kangaroo_put and 
kangaroo_get allow the servers to fetch 
data from any reachable host/filesystem.  
A host is reachable if it is running the 
Kangaroo server to which the caller 
machine can authenticate.  Currently, 
Kangaroo supports two forms of 
authentication–address-based and 
Globus Grid Security Infrastructure 
(GSI) [13]. 
 
kangaroo_commit ensures that all 
outstanding puts have been accepted for 
delivery.  In practice, this is achieved by 
returning to the caller only after ensuring 
that all the messages sent prior to a 
commit have been logged on persistent 
storage at the next hop.  kangaroo_push 
blocks until all outstanding puts have 
been transferred to their ultimate 
destination.  We can think of this as a 
recursive RPC, in that, each callee 
invokes push and returns when the 
server downstream returns.  A 
kangaroo_push call on the destination 
returns when all the data has made it to 
the proper file.  In other words, a 
kangaroo_commit guarantees that all the 
previously sent messages have been 
successfully spooled at the next hop 
Kangaroo server, whereas 
kangaroo_push returns only after all the 
messages are executed at the destination. 
Messages are removed from the local 

spool only after a successful 
commit/push. 
 
3. Motivation 
As mentioned briefly above, vanilla 
Kangaroo uses single static routes to the 
destination.  This can be a problem if 
one of the Kangaroo servers on the path 
runs out of disk space or if there are 
network outages.  By using multiple 
routes, we can improve the availability 
of data by routing around failures. 
 
Vanilla Kangaroo is implemented using 
a queue.  Messages are sent to the next 
hop in the order they are received.  
Parallelism, which may be present by 
way of independent operations that can 
be sent concurrently, is not exploited.  
For instance, if five applications write to 
five different files, all the puts can be 
sent with no regard to the order in which 
they arrive.  In fact, if puts to the same 
file have different offsets, they maybe 
independent (An informal study of some 
target applications reveals a large 
number of independent operations to the 
same file).  This leads to wasted 
bandwidth and could be a serious 
problem if the first Kangaroo server 
receives more messages than it can 
service, causing the applications to retry 
sending the messages later. 
 
By combining the two approaches–
multiple routes and identifying 
independent operations, we have tried to 
improve the availability.  The biggest 
challenge in using multiple routes is 
dealing with dependent operations to the 
same file, so that they are executed at the 
destination only after the messages that 
it depends on reach the destination. In 
the next Section, we describe how we 
deal with this problem. 
  



4. Implementation 
The most important challenge in making 
Kangaroo use multiple routes is the 
ordering of Kangaroo messages at the 
destination. It might seem that use of 
sequence numbers as in TCP might solve 
the problem. But this makes the receiver 
responsible for the ordering of packets. 
This will need a considerable change in 
the protocol that is used by vanilla 
Kangaroo. So, we used an approach in 
which the sender assumes the 
responsibility of ordering packets as in 
vanilla Kangaroo and does not require 
changing the existing Kangaroo 
architecture.  
 
The first Kangaroo server maintains the 
dependency information among the 
Kangaroo operations it receives in a 
dependency graph structure very similar 
to the one used in [4]. The dependency 
graph also identifies the operations that 
can be done in parallel at any instance of 
time. There is a dependency graph per 
destination/filename pair. There are 
mover threads per available route per 
file. The movers query the dependency 
graph for parallel operations and send 
them along possibly different routes. 
Once the dependency graph has run out 
of parallel operations or a specified time 
out occurs, all the movers belonging to 
the dependency graph perform a push 
operation. This ensures that all messages 
sent before the push has reached the 
destination. Once the dependency graph 
is notified of a successful push 
operation, it identifies those operations 
that were dependent on these pushed 
operations.  These operations are now 
independent and can be done 
concurrently and the movers resume the 
cycle. 
 

The Kangaroo servers may be required 
to provide different QoS guarantees for 
data from different simulations, to 
guarantee that data produced by a higher 
priority simulation reaches the 
destination first.  Currently, we send as 
much data along a route as permitted by 
the TCP buffers at the Kangaroo server.  
If the server downstream runs out of 
buffer space, a backpressure is applied 
by TCP’s flow control mechanism.  This 
makes sure that more data is sent along 
other paths that have greater bandwidth.  
This, however, will not ensure that data 
produced by higher priority simulations 
get more bandwidth than a lower priority 
one.  We are investigating different 
mechanisms to make Kangaroo servers 
aware of the different priorities allocated 
by Condor. 
 
5. Performance 
To evaluate the performance of our 
implementation, we first modeled the 
I/O needs of cmsim, an event simulator 
widely used by high-energy physicists.  
cmsim, takes as input a set of 
configuration files and produces 
anywhere between 150kB to 1MB per 
event. 
 
Each simulation normally generates 500 
or 1000 events for a total of 8M-1G of 
data over a period of 6-12 hours. We 
instrumented a simulation of 50 events 
and discovered its I/O requirements.  We 
then wrote a model of this simulator, 
which produces the same amount of 
output at the same burst rates as the 
simulation.  We did not model the input 
or CPU usage of the simulator, to keep 
the runtime low. This would not 
adversely affect our evaluation, as we 
were trying to measure the availability of 
data at the destination and not the 
response time of the simulations.  



Normally, a batch of 100-1000 
simulations use the same set of data 
files, so we assume that these files would 
be made available using a shared 
filesystem like AFS or NFS. 

 
A Fig.1. The I/O rate of cmsim was 
instrumented.  This figure shows only the output 
generated by the simulation. 

 
Fig.2. A model of the simulation, which produces 
approximately the same amount of data with 
similar burst rates.  The computation phases 
were not modeled. 
 
The output generated by cmsim is shown 
in Fig.1 and the output produced by our 
model is shown in Fig.2. The second 
figure shows that the data generated by 
our model had similar burst rates as that 
produced by the cmsim simulation.  We 
then set up three different topologies as 
shown in Figures 3 through 5.  We used 
these to measure the turnaround time of 
10 simulations run sequentially.  The 
turnaround time includes the execution 
time plus any additional time to move 
the output to its destination. 
 

We first compare the performance of 
multiroute Kangaroo with that of vanilla 
Kangaroo for sending/fetching a file.  
We sent 10 files of equal size (about 
8MB) sequentially to a destination five 
hops away.  Fig.6 shows that using only 
a single route and the same number of 
resources (movers/servers), the 
turnaround times of the applications 
using multiroute Kangaroo was better 
than while using the vanilla 
implementation.   
 
The improvement on both counts can be 
attributed to two facts –  

• The multiroute version keeps 
messages in memory and doesn't 
have to read messages back from 
the disk like vanilla does for 
every send operation. 

 
• Vanilla Kangaroo performs 

periodic commits. 
 
Fig.7 is a comparison of the two 
implementations, when used to fetch 10 
files sequentially from a Kangaroo 
server 5 hops away (Fig.3).  As can be 
seen the performance of multiroute is 
much better than vanilla.  In the vanilla 
implementation, when a get is invoked, 
each hop on the way to the source needs 
to be queried to find whether it has the 
required data cached.  If the data is 
cached at any node, it means that it is in 
transit and has probably not made it to 
the destination.  So, for this test each of 
the five hops had to be queried and since 
there was no data in transit, the data had 
to be fetched from the destination.  The 
multiroute implementation is such that if 
the data is not found in the cache of the 
first Kangaroo server (that the 
application sees), the data is fetched 
directly from the source without having 
to query any of the intervening nodes.  
So, for this test, while vanilla had to 



query five servers, multiroute had to 
query only two servers.  By reducing the 
cost of fetching a file, we make it 
attractive for applications that require 
reading in files and for which using the 
local shared file system may not be 
possible. 
 
The next test was performed on the 
topology shown in Fig.4, which is quite 
similar to what we expect to find in the 
Grid, i.e., a cluster where jobs are run 
and send the data back via two paths to 
the destination. We ran eighteen 
simulations concurrently and redirected 
the output to {dewey,doc}.cs.wisc.edu.  
While running vanilla nine simulations 
sent their output to dewey.cs.wisc.edu 
and nine others to doc.cs.wisc.edu, 
whereas all eighteen sent their output to 
both dewey.cs.wisc.edu and 
doc.cs.wisc.edu while running 
multiroute.  
  
Vanilla Kangaroo queues all messages in 
FIFO order.  This leads to head-of-line 
blocking.  The model we used for testing 
wrote out 8MB of data, all to different 
offsets and then did a rename.   
 

 
Fig.3. Topology 1 shows the application 
writing/reading from a destination five hops 
away. 
 

 
Fig.4. Topology 2 has eighteen applications 
writing to Kangaroo servers on the hep cluster.  
The data is routed through two nodes (dewey 
and doc), which send forward the messages to 
paneer, which in turn sends it the destination, 
nostos.cs.wisc.edu. 

 

 
Fig.5. Topology 3, a scaled down version of 
topology 2, was used to test how failures affected 
the availability of data. 
 
 

 
Fig.6. This figure shows the time 10 files become 
available at the destination, when sent one after 
another by an application, 5 hops away from the 
destination.  Each file was 8642560 bytes, for a 
total of 86425600 bytes. 
  
 

 
Fig.7. Shows the time taken to fetch 10 files one 
after another.  The source was 5 hops away.    



 
Fig.8. This illustrates the head-of-line blocking 
problem in the vanilla implementation.  Though 
the data belonging to the files arrive earlier than 
1650s, all the renames occur in the short interval 
1600-1700s.  This problem is not seen in the 
multiroute implementation. 
 
Therefore, the only dependency was that 
of rename on all the puts. It must be 
mentioned that the cmsim simulator 
writes out a large amount of data 
sequentially to a file.  There are no 
random writes to the output file.  We 
introduced a rename at the end to 
introduce a dependency.   The rename 
messages are sent after all the puts, and 
are inserted towards the end of the 
queue, which also contains the put 
messages of other files.  This is clearly 
brought out in Fig.8, where all the files 
become available at around the same 
time, because the renames arrive in a 
short interval of time after all the data 
messages arrive.  The graphs show that 
the turnaround time while using 
multiroute is better.  This is because both 
inter- as well as intra-file independent 
operations are sent in parallel by 
multiroute.  Quite obviously using a 
mover per route per file is better than 
using a mover per Kangaroo server.  
This eliminates the head-of-line blocking 
present in the vanilla implementation. 
 

 
Fig.9.  This figure illustrates the ability of the 
multiroute implementation to route data around 
failures. 
 
 
 
 
We performed the next test to evaluate 
the advantages of routing data around a 
failure1.  We used a scaled down version 
of the topology 2, shown in Fig.5.  The 
setup was similar, in that each node 
running the application sent their output 
to both dewey.cs.wisc.edu and 
doc.cs.wisc.edu while running 
multiroute, whereas one sent its output 
to dewey.cs.wisc.edu and the other to 
doc.cs.wisc.edu while running vanilla.  
We ran five simulations on each of the 
cluster nodes to produce a total of ten 
files, each of which produces 
approximately 8MB of data over an 
average of five minutes running time 
(The running time depends on the speed 
with which data can be forwarded to the 
Kangaroo server, which is variable).  
Since they take approximately the same 
amount of time while running on these 
nodes, it would help to think of this as a 
set of five rounds of simulations, where 
one file was produced per round at each 
of {amaryllis,bassa}.hep.wisc.edu.  We 
stopped the Kangaroo server on 
doc.cs.wisc.edu for a period of ten 
minutes two minutes after the 
                                                 
1 Data can be routed around failures only if it occurs in a 
physically distinct part of the topology.   



simulations started.  While running 
vanilla Kangaroo, when doc.cs.wisc.edu 
is shut down, only the five files being 
sent through dewey.cs.wisc.edu have an 
open path to the destination.  The data 
generated by the simulations running on 
bassa.hep.wisc.edu are spooled at the 
local Kangaroo server at 
bassa.hep.wisc.edu to be sent later.  
When the Kangaroo server on 
doc.cs.wisc.edu is restarted, this spooled 
data is sent along.  The resumption of 
the Kangaroo service on doc.cs.wisc.edu 
explains the appearance of four files 
between 600 and 800 seconds.  The plot 
of turnaround times while running 
multiroute Kangaroo is very interesting.  
During the first two minutes, when the 
Kangaroo servers on 
{dewey,doc}.cs.wisc.edu were running, 
parts of files produced at 
{amaryllis,bassa}.hep.wisc.edu were 
sent through both of them.  When 
doc.cs.wisc.edu is shutdown, the 
subsequent renames of these files don't 
succeed, because the 'push' along this 
route fails. Since, the second round of 
simulations start after the server on 
doc.cs.wisc.edu was shutdown, all data 
produced at 
{amaryllis,bassa}.hep.wisc.edu, take the 
route through dewey.cs.wisc.edu.  So, 
the first file that becomes available while 
running multiroute is from the second 
round of simulations, whereas the first 
available file while running vanilla is  
the one produced at amaryllis during the 
first round.  This explains why the first 
file becomes available before the first 
file while running multiroute.  There is 
also a greater ramp-up in the multiroute 
plot after the route through 
doc.cs.wisc.edu is re-established.  This 
can be explained by the greater number 
of movers working to move the files on 
both the routes.  Though this is a simple 

test, it clearly shows the ability of 
multiroute Kangaroo to route data 
around failures.  Of course, if a file has 
some parts of it already stored in a 
Kangaroo server that goes down, it 
doesn't become available until that 
Kangaroo server become available.  This 
is the case in vanilla as well as 
multiroute Kangaroo.  However, it is 
possible that more files get stuck at a 
node while running multiroute, if that 
server goes down.  We feel that the 
additional movers that this server will 
use when it restarts will make sure that 
all the data becomes available at the 
destination without much greater delay 
than will be experienced while running 
vanilla. 
 
We have concentrated on the 
performance improvement due to our 
design, which uses a mover per route per 
file.  The aspect of scalability of 
Kangaroo servers has not been 
investigated.  It would be interesting to 
measure the peak message processing 
ability of the servers and find out what 
the bottlenecks are.  We hope to run tests 
to help us evaluate the servers under 
load. 
 
6. Related Work 
Kangaroo is an attempt to support large-
scale file transfer (in the order of 
terabytes) services over the WAN [1, 2, 
3].  Kangaroo is a persistent data mover, 
which improves reliability and 
throughput of grid applications by hiding 
network storage devices behind memory 
and disk buffers.  
 
A network of Kangaroo servers form an 
overlay network, in that, the application 
need not be aware of the networking 
protocols, like say, TCP/IP, that 
Kangaroo uses. SMTP servers which 



store and forward mails also exploit the 
idea of overlay networks[11].  However, 
the SMTP servers were not designed to 
handle large-scale file transfer. A similar 
idea is explored in [9]. In [9], a group of 
systems form a Resilient Overlay 
Network(RON) over the internet. This 
overlay network monitors the 
characteristics of the underlying internet 
and tries to route a packet through a 
RON node if the underlying internet path 
is not optimal. In our work we use the 
Kangaroo servers to hide the latency to 
the application and concentrate on 
routing around failures. 
 
Applications that need to perform 
remote I/O, send the file operations to a 
Kangaroo server, which then is 
responsible for data movement and error 
handling.  The destination may be 
reachable using different routes and we 
are trying to add a Traffic Engineering 
module to Kangaroo, which will send 
independent packets on different routes. 
By forwarding the packets along 
different paths, we expect to see an 
increase in throughput and link 
utilization. Some packets, which are 
large enough, can be split into smaller 
pieces and the smaller packets can be 
sent on different routes.   
 
There are several aspects to our problem. 
One aspect is identifying the operations 
that are independent. There are several 
similarities between our problem of 
identifying independent operations and 
the one of identifying parallelism in 
ordinary programs. Most of the existing 
works consider creating a dependency 
graph or a tree of the instructions [4,5]. 
Such an approach has also been used in 
[6]. In [6], the authors try to improve the 
performance of the Netsolve system [7] 
by reducing communication overheads 

and scheduling operations to run in 
parallel whenever possible.  
 

The other aspect is path selection. We 
must route the data packets so that no 
link is over or under utilized. The 
evolving field of traffic engineering 
concentrates on these aspects. [8] 
provides an architecture for balancing 
the traffic load on the various links, 
routers, and switches in the network so 
that none of these components is over-
utilized or underutilized.  

There have also been studies on the 
effect of path selection on the end-to-end 
performance of the communicating 
applications. In [10] the authors have 
studied the effect of the routing 
decisions on several parameter of path 
quality and have found that in most of 
the cases there is an alternate path of 
superior quality. 
 
7. Future work 
There are a lot of interesting aspects of 
the system that have to be investigated.  
Topmost on our list is to study the 
scalability characteristics of the 
Kangaroo servers.  This would help us 
determine at what point using an 
additional route would be beneficial. The 
problem of route discovery remains 
largely unsolved.  Automating the 
calculation of the forwarding table 
would be critical as the system grows.  
Currently, all routes are entered by hand.  
Given the fact that, a Kangaroo server 
can connect to any other Kangaroo 
server on the Internet, the standard 
routing protocols like RIP cannot be 
used without modifications.  We would 
like to make Kangaroo aware of the 
priorities given out by Condor, a popular 
batch scheduling system. This would 
help in providing Quality-of-Service 



guarantees to data generated by jobs of 
higher priority.   
 
8. Conclusions 
In our work, we have focused on 
removing certain shortcomings of the 
original Kangaroo implementation.  We 
show that message ordering can be 
achieved without too much overhead in 
certain cases by making the sender 
responsible for making sure that the 
messages arrive in the right order at the 
destination.  It must be mentioned that 
our approach would prove prohibitively 
costly if all or a large number of 
messages are dependent on previous 
ones.  By incorporating the ability of 
using multiple routes, our 
implementation of Kangaroo can now 
route data around failures.  Also, by 
exploiting the inter- and intra- file 
dependencies, we greatly reduce the 
effects of head-of-line blocking present 
in the original prototype.   We also get 
rid of the excess overhead in fetching 
data that is not in transit, by having to do 
only two lookups, whereas in the 
original implementation the number of 
lookups was proportional to the number 
of hops to the source of the data. 
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