
Efficient Large-scale data movement on the Grid - Augmenting
the Kangaroo approach

Rajesh Rajamani and Gogul Balakrishnan

Computer Science Department,
University of Wisconsin-Madison

{raj,bgogul}@cs.wisc.edu

Abstract
Kangaroo is a wide-area data movement
system that provides high-throughput
data movement by overlapping CPU and
I/O[1,2]. Though Kangaroo is a
persistent data mover, network and/or
disk failures can reduce data
availability, because Kangaroo can't
route the data around failures. We
demonstrate that by using multiple paths
to the destination, we can improve
availability without significant
overheads. In our improved Kangaroo,
the sender is responsible for message
ordering. We also use TCP's flow
control mechanism to implicitly route
more data along paths that offer higher
bandwidth.

1. Introduction
Kangaroo[1,2] is a wide-area data
movement system developed at UW-
Madison. Kangaroo improves the
throughput and reliability of grid
applications by hiding network storage
devices behind memory and disk buffers.
Together with Pluggable File System
(PFS)[12], Kangaroo allows unmodified
applications to overlap computation with
I/O. By removing the burden of data
movement from the application,
Kangaroo helps reduce the turnaround
time of applications.

Kangaroo uses a TCP-based message-
oriented protocol. Servers exchange
information by passing well-defined
messages to each other. The different

file operations are encoded as Kangaroo
messages and may contain control and
data information. Kangaroo also offers a
highly reliable data movement
mechanism by using a write-ahead log
and retransmitting messages in case of
network failures or when a server
downstream runs out of spool space.
However, the original Kangaroo
prototype (hereafter referred to as vanilla
Kangaroo) uses a static single route.
This route is the first match that it finds
in the Kangaroo routing table. Since it
uses a single route, data cannot be routed
around failures, even if alternate routes
exist. This can affect the availability of
data at the destination. The vanilla
implementation is also not able to
identify operations that can be
performed in parallel, which results in
wasted bandwidth.

In this paper, we describe the challenges
in routing data along multiple routes to
the destination and our approach to
solving some of them. Section 2 gives a
quick overview of the original Kangaroo
architecture and interface. Section 3
gives the motivation for this work and
we describe our implementation in
section 4. Section 5 compares the
performance of our implementation
(hereafter referred to as multiroute
Kangaroo) with that of the vanilla
implementation. We present related
work in Section 6, future work in
Section 7 and conclude in Section 8.

2. Architecture
The vanilla Kangaroo architecture [1,2]
is centered around a chainable series of
servers that implement a simple interface

 void kangaroo_put (host, path, offset, length, data);
 int kangaroo_get (host, path, offset, length, data);
 int kangaroo_commit();
 int kangaroo_push(host, path);

All the above functions except
kangaroo_put are Remote Procedure
Calls (RPCs). kangaroo_put and
kangaroo_get allow the servers to fetch
data from any reachable host/filesystem.
A host is reachable if it is running the
Kangaroo server to which the caller
machine can authenticate. Currently,
Kangaroo supports two forms of
authentication–address-based and
Globus Grid Security Infrastructure
(GSI) [13].

kangaroo_commit ensures that all
outstanding puts have been accepted for
delivery. In practice, this is achieved by
returning to the caller only after ensuring
that all the messages sent prior to a
commit have been logged on persistent
storage at the next hop. kangaroo_push
blocks until all outstanding puts have
been transferred to their ultimate
destination. We can think of this as a
recursive RPC, in that, each callee
invokes push and returns when the
server downstream returns. A
kangaroo_push call on the destination
returns when all the data has made it to
the proper file. In other words, a
kangaroo_commit guarantees that all the
previously sent messages have been
successfully spooled at the next hop
Kangaroo server, whereas
kangaroo_push returns only after all the
messages are executed at the destination.
Messages are removed from the local

spool only after a successful
commit/push.

3. Motivation
As mentioned briefly above, vanilla
Kangaroo uses single static routes to the
destination. This can be a problem if
one of the Kangaroo servers on the path
runs out of disk space or if there are
network outages. By using multiple
routes, we can improve the availability
of data by routing around failures.

Vanilla Kangaroo is implemented using
a queue. Messages are sent to the next
hop in the order they are received.
Parallelism, which may be present by
way of independent operations that can
be sent concurrently, is not exploited.
For instance, if five applications write to
five different files, all the puts can be
sent with no regard to the order in which
they arrive. In fact, if puts to the same
file have different offsets, they maybe
independent (An informal study of some
target applications reveals a large
number of independent operations to the
same file). This leads to wasted
bandwidth and could be a serious
problem if the first Kangaroo server
receives more messages than it can
service, causing the applications to retry
sending the messages later.

By combining the two approaches–
multiple routes and identifying
independent operations, we have tried to
improve the availability. The biggest
challenge in using multiple routes is
dealing with dependent operations to the
same file, so that they are executed at the
destination only after the messages that
it depends on reach the destination. In
the next Section, we describe how we
deal with this problem.

4. Implementation
The most important challenge in making
Kangaroo use multiple routes is the
ordering of Kangaroo messages at the
destination. It might seem that use of
sequence numbers as in TCP might solve
the problem. But this makes the receiver
responsible for the ordering of packets.
This will need a considerable change in
the protocol that is used by vanilla
Kangaroo. So, we used an approach in
which the sender assumes the
responsibility of ordering packets as in
vanilla Kangaroo and does not require
changing the existing Kangaroo
architecture.

The first Kangaroo server maintains the
dependency information among the
Kangaroo operations it receives in a
dependency graph structure very similar
to the one used in [4]. The dependency
graph also identifies the operations that
can be done in parallel at any instance of
time. There is a dependency graph per
destination/filename pair. There are
mover threads per available route per
file. The movers query the dependency
graph for parallel operations and send
them along possibly different routes.
Once the dependency graph has run out
of parallel operations or a specified time
out occurs, all the movers belonging to
the dependency graph perform a push
operation. This ensures that all messages
sent before the push has reached the
destination. Once the dependency graph
is notified of a successful push
operation, it identifies those operations
that were dependent on these pushed
operations. These operations are now
independent and can be done
concurrently and the movers resume the
cycle.

The Kangaroo servers may be required
to provide different QoS guarantees for
data from different simulations, to
guarantee that data produced by a higher
priority simulation reaches the
destination first. Currently, we send as
much data along a route as permitted by
the TCP buffers at the Kangaroo server.
If the server downstream runs out of
buffer space, a backpressure is applied
by TCP’s flow control mechanism. This
makes sure that more data is sent along
other paths that have greater bandwidth.
This, however, will not ensure that data
produced by higher priority simulations
get more bandwidth than a lower priority
one. We are investigating different
mechanisms to make Kangaroo servers
aware of the different priorities allocated
by Condor.

5. Performance
To evaluate the performance of our
implementation, we first modeled the
I/O needs of cmsim, an event simulator
widely used by high-energy physicists.
cmsim, takes as input a set of
configuration files and produces
anywhere between 150kB to 1MB per
event.

Each simulation normally generates 500
or 1000 events for a total of 8M-1G of
data over a period of 6-12 hours. We
instrumented a simulation of 50 events
and discovered its I/O requirements. We
then wrote a model of this simulator,
which produces the same amount of
output at the same burst rates as the
simulation. We did not model the input
or CPU usage of the simulator, to keep
the runtime low. This would not
adversely affect our evaluation, as we
were trying to measure the availability of
data at the destination and not the
response time of the simulations.

Normally, a batch of 100-1000
simulations use the same set of data
files, so we assume that these files would
be made available using a shared
filesystem like AFS or NFS.

A Fig.1. The I/O rate of cmsim was
instrumented. This figure shows only the output
generated by the simulation.

Fig.2. A model of the simulation, which produces
approximately the same amount of data with
similar burst rates. The computation phases
were not modeled.

The output generated by cmsim is shown
in Fig.1 and the output produced by our
model is shown in Fig.2. The second
figure shows that the data generated by
our model had similar burst rates as that
produced by the cmsim simulation. We
then set up three different topologies as
shown in Figures 3 through 5. We used
these to measure the turnaround time of
10 simulations run sequentially. The
turnaround time includes the execution
time plus any additional time to move
the output to its destination.

We first compare the performance of
multiroute Kangaroo with that of vanilla
Kangaroo for sending/fetching a file.
We sent 10 files of equal size (about
8MB) sequentially to a destination five
hops away. Fig.6 shows that using only
a single route and the same number of
resources (movers/servers), the
turnaround times of the applications
using multiroute Kangaroo was better
than while using the vanilla
implementation.

The improvement on both counts can be
attributed to two facts –

• The multiroute version keeps
messages in memory and doesn't
have to read messages back from
the disk like vanilla does for
every send operation.

• Vanilla Kangaroo performs

periodic commits.

Fig.7 is a comparison of the two
implementations, when used to fetch 10
files sequentially from a Kangaroo
server 5 hops away (Fig.3). As can be
seen the performance of multiroute is
much better than vanilla. In the vanilla
implementation, when a get is invoked,
each hop on the way to the source needs
to be queried to find whether it has the
required data cached. If the data is
cached at any node, it means that it is in
transit and has probably not made it to
the destination. So, for this test each of
the five hops had to be queried and since
there was no data in transit, the data had
to be fetched from the destination. The
multiroute implementation is such that if
the data is not found in the cache of the
first Kangaroo server (that the
application sees), the data is fetched
directly from the source without having
to query any of the intervening nodes.
So, for this test, while vanilla had to

query five servers, multiroute had to
query only two servers. By reducing the
cost of fetching a file, we make it
attractive for applications that require
reading in files and for which using the
local shared file system may not be
possible.

The next test was performed on the
topology shown in Fig.4, which is quite
similar to what we expect to find in the
Grid, i.e., a cluster where jobs are run
and send the data back via two paths to
the destination. We ran eighteen
simulations concurrently and redirected
the output to {dewey,doc}.cs.wisc.edu.
While running vanilla nine simulations
sent their output to dewey.cs.wisc.edu
and nine others to doc.cs.wisc.edu,
whereas all eighteen sent their output to
both dewey.cs.wisc.edu and
doc.cs.wisc.edu while running
multiroute.

Vanilla Kangaroo queues all messages in
FIFO order. This leads to head-of-line
blocking. The model we used for testing
wrote out 8MB of data, all to different
offsets and then did a rename.

Fig.3. Topology 1 shows the application
writing/reading from a destination five hops
away.

Fig.4. Topology 2 has eighteen applications
writing to Kangaroo servers on the hep cluster.
The data is routed through two nodes (dewey
and doc), which send forward the messages to
paneer, which in turn sends it the destination,
nostos.cs.wisc.edu.

Fig.5. Topology 3, a scaled down version of
topology 2, was used to test how failures affected
the availability of data.

Fig.6. This figure shows the time 10 files become
available at the destination, when sent one after
another by an application, 5 hops away from the
destination. Each file was 8642560 bytes, for a
total of 86425600 bytes.

Fig.7. Shows the time taken to fetch 10 files one
after another. The source was 5 hops away.

Fig.8. This illustrates the head-of-line blocking
problem in the vanilla implementation. Though
the data belonging to the files arrive earlier than
1650s, all the renames occur in the short interval
1600-1700s. This problem is not seen in the
multiroute implementation.

Therefore, the only dependency was that
of rename on all the puts. It must be
mentioned that the cmsim simulator
writes out a large amount of data
sequentially to a file. There are no
random writes to the output file. We
introduced a rename at the end to
introduce a dependency. The rename
messages are sent after all the puts, and
are inserted towards the end of the
queue, which also contains the put
messages of other files. This is clearly
brought out in Fig.8, where all the files
become available at around the same
time, because the renames arrive in a
short interval of time after all the data
messages arrive. The graphs show that
the turnaround time while using
multiroute is better. This is because both
inter- as well as intra-file independent
operations are sent in parallel by
multiroute. Quite obviously using a
mover per route per file is better than
using a mover per Kangaroo server.
This eliminates the head-of-line blocking
present in the vanilla implementation.

Fig.9. This figure illustrates the ability of the
multiroute implementation to route data around
failures.

We performed the next test to evaluate
the advantages of routing data around a
failure1. We used a scaled down version
of the topology 2, shown in Fig.5. The
setup was similar, in that each node
running the application sent their output
to both dewey.cs.wisc.edu and
doc.cs.wisc.edu while running
multiroute, whereas one sent its output
to dewey.cs.wisc.edu and the other to
doc.cs.wisc.edu while running vanilla.
We ran five simulations on each of the
cluster nodes to produce a total of ten
files, each of which produces
approximately 8MB of data over an
average of five minutes running time
(The running time depends on the speed
with which data can be forwarded to the
Kangaroo server, which is variable).
Since they take approximately the same
amount of time while running on these
nodes, it would help to think of this as a
set of five rounds of simulations, where
one file was produced per round at each
of {amaryllis,bassa}.hep.wisc.edu. We
stopped the Kangaroo server on
doc.cs.wisc.edu for a period of ten
minutes two minutes after the

1 Data can be routed around failures only if it occurs in a
physically distinct part of the topology.

simulations started. While running
vanilla Kangaroo, when doc.cs.wisc.edu
is shut down, only the five files being
sent through dewey.cs.wisc.edu have an
open path to the destination. The data
generated by the simulations running on
bassa.hep.wisc.edu are spooled at the
local Kangaroo server at
bassa.hep.wisc.edu to be sent later.
When the Kangaroo server on
doc.cs.wisc.edu is restarted, this spooled
data is sent along. The resumption of
the Kangaroo service on doc.cs.wisc.edu
explains the appearance of four files
between 600 and 800 seconds. The plot
of turnaround times while running
multiroute Kangaroo is very interesting.
During the first two minutes, when the
Kangaroo servers on
{dewey,doc}.cs.wisc.edu were running,
parts of files produced at
{amaryllis,bassa}.hep.wisc.edu were
sent through both of them. When
doc.cs.wisc.edu is shutdown, the
subsequent renames of these files don't
succeed, because the 'push' along this
route fails. Since, the second round of
simulations start after the server on
doc.cs.wisc.edu was shutdown, all data
produced at
{amaryllis,bassa}.hep.wisc.edu, take the
route through dewey.cs.wisc.edu. So,
the first file that becomes available while
running multiroute is from the second
round of simulations, whereas the first
available file while running vanilla is
the one produced at amaryllis during the
first round. This explains why the first
file becomes available before the first
file while running multiroute. There is
also a greater ramp-up in the multiroute
plot after the route through
doc.cs.wisc.edu is re-established. This
can be explained by the greater number
of movers working to move the files on
both the routes. Though this is a simple

test, it clearly shows the ability of
multiroute Kangaroo to route data
around failures. Of course, if a file has
some parts of it already stored in a
Kangaroo server that goes down, it
doesn't become available until that
Kangaroo server become available. This
is the case in vanilla as well as
multiroute Kangaroo. However, it is
possible that more files get stuck at a
node while running multiroute, if that
server goes down. We feel that the
additional movers that this server will
use when it restarts will make sure that
all the data becomes available at the
destination without much greater delay
than will be experienced while running
vanilla.

We have concentrated on the
performance improvement due to our
design, which uses a mover per route per
file. The aspect of scalability of
Kangaroo servers has not been
investigated. It would be interesting to
measure the peak message processing
ability of the servers and find out what
the bottlenecks are. We hope to run tests
to help us evaluate the servers under
load.

6. Related Work
Kangaroo is an attempt to support large-
scale file transfer (in the order of
terabytes) services over the WAN [1, 2,
3]. Kangaroo is a persistent data mover,
which improves reliability and
throughput of grid applications by hiding
network storage devices behind memory
and disk buffers.

A network of Kangaroo servers form an
overlay network, in that, the application
need not be aware of the networking
protocols, like say, TCP/IP, that
Kangaroo uses. SMTP servers which

store and forward mails also exploit the
idea of overlay networks[11]. However,
the SMTP servers were not designed to
handle large-scale file transfer. A similar
idea is explored in [9]. In [9], a group of
systems form a Resilient Overlay
Network(RON) over the internet. This
overlay network monitors the
characteristics of the underlying internet
and tries to route a packet through a
RON node if the underlying internet path
is not optimal. In our work we use the
Kangaroo servers to hide the latency to
the application and concentrate on
routing around failures.

Applications that need to perform
remote I/O, send the file operations to a
Kangaroo server, which then is
responsible for data movement and error
handling. The destination may be
reachable using different routes and we
are trying to add a Traffic Engineering
module to Kangaroo, which will send
independent packets on different routes.
By forwarding the packets along
different paths, we expect to see an
increase in throughput and link
utilization. Some packets, which are
large enough, can be split into smaller
pieces and the smaller packets can be
sent on different routes.

There are several aspects to our problem.
One aspect is identifying the operations
that are independent. There are several
similarities between our problem of
identifying independent operations and
the one of identifying parallelism in
ordinary programs. Most of the existing
works consider creating a dependency
graph or a tree of the instructions [4,5].
Such an approach has also been used in
[6]. In [6], the authors try to improve the
performance of the Netsolve system [7]
by reducing communication overheads

and scheduling operations to run in
parallel whenever possible.

The other aspect is path selection. We
must route the data packets so that no
link is over or under utilized. The
evolving field of traffic engineering
concentrates on these aspects. [8]
provides an architecture for balancing
the traffic load on the various links,
routers, and switches in the network so
that none of these components is over-
utilized or underutilized.

There have also been studies on the
effect of path selection on the end-to-end
performance of the communicating
applications. In [10] the authors have
studied the effect of the routing
decisions on several parameter of path
quality and have found that in most of
the cases there is an alternate path of
superior quality.

7. Future work
There are a lot of interesting aspects of
the system that have to be investigated.
Topmost on our list is to study the
scalability characteristics of the
Kangaroo servers. This would help us
determine at what point using an
additional route would be beneficial. The
problem of route discovery remains
largely unsolved. Automating the
calculation of the forwarding table
would be critical as the system grows.
Currently, all routes are entered by hand.
Given the fact that, a Kangaroo server
can connect to any other Kangaroo
server on the Internet, the standard
routing protocols like RIP cannot be
used without modifications. We would
like to make Kangaroo aware of the
priorities given out by Condor, a popular
batch scheduling system. This would
help in providing Quality-of-Service

guarantees to data generated by jobs of
higher priority.

8. Conclusions
In our work, we have focused on
removing certain shortcomings of the
original Kangaroo implementation. We
show that message ordering can be
achieved without too much overhead in
certain cases by making the sender
responsible for making sure that the
messages arrive in the right order at the
destination. It must be mentioned that
our approach would prove prohibitively
costly if all or a large number of
messages are dependent on previous
ones. By incorporating the ability of
using multiple routes, our
implementation of Kangaroo can now
route data around failures. Also, by
exploiting the inter- and intra- file
dependencies, we greatly reduce the
effects of head-of-line blocking present
in the original prototype. We also get
rid of the excess overhead in fetching
data that is not in transit, by having to do
only two lookups, whereas in the
original implementation the number of
lookups was proportional to the number
of hops to the source of the data.

References:
[1] Douglas Thain, Jim Basney, Se-
chang son, Miron Livny, "The Kangaroo
approach to data movement on the
Grid", in Proceedings of the Tenth IEEE
symposium on High Performance
Distributed Computing, San Francisco,
CA, Aug 2001.

[2] Douglas Thain, "An Overlay
Network Architecture for Terabyte-scale
Data movement", Ph.D dissertation
proposal, October 2001.

[3] Douglas Thain, John Bent, Andrea
Arpaci-Dusseau, Remzi Arpaci-Dusseau

and Miron Livny, "Gathering at the well:
Creating communities for grid I/O", In
Proceedings of Supercomputing 2001,
Denver, Colorado, November 2001.

[4] Todd M. Austin and Gurindar S.
Sohi, “Dynamic dependency analysis of
ordinary programs”, in proceedings of
the 19th international conference on
Computer Architecture, 1992

[5] Jaime.H.Moreno and Mayan
Moudgill, Scalable instruction level
parallelism through tree instructions,
IBM research division RC 20661
(91417)

[6] Dorian Arnold, Dieter Bachmann
and Jack Dongarra, “Request
Sequencing: Optimizing Communication
for the Grid”, European Conference on
Parallel Processing

[7] H. Casanova and J. Dongarra.
“NetSolve's Network Enabled Server:
Examples and Applications” IEEE
Computational Science & Engineering,
5(3): 57-67, September 1998

[8] Chuck Semeria, "Traffic Engineering
for the New Public Network", Web
essay, http://www.juniper.net/techcenter
/techpapers/200004.html.

[9] David G. Andersen, Hari
Balakrishnan, M. Frans Kaashoek,
Robert Morris, “Resilient Overlay
Networks”, Proc. 18th ACM SOSP,
Banff, Canada, October 2001

[10] Stefan Savage, Andy Collins, Eric
Hoffman, John Snell, and Thomas
Anderson, “The end-to-end effects of
Internet path selection”, Proceedings of
the conference on Applications,
technologies, architectures, and
protocols for computer communication,
1999

http://www.juniper.net/techcenter
http://nms.lcs.mit.edu/papers/ron-sosp2001.html
http://nms.lcs.mit.edu/papers/ron-sosp2001.html
http://portal.acm.org/toc.cfm?id=316188&type=proceeding&coll=portal&dl=ACM&CFID=445811&CFTOKEN=91125677
http://portal.acm.org/toc.cfm?id=316188&type=proceeding&coll=portal&dl=ACM&CFID=445811&CFTOKEN=91125677
http://portal.acm.org/toc.cfm?id=316188&type=proceeding&coll=portal&dl=ACM&CFID=445811&CFTOKEN=91125677
http://portal.acm.org/toc.cfm?id=316188&type=proceeding&coll=portal&dl=ACM&CFID=445811&CFTOKEN=91125677

[11] RFC 821, Simple Mail Transfer
Protocol, available from www.rfc-
editor.org

[12] Pluggable File system (PFS).
www.cs.wisc.edu/condor/pfs

[13] Globus Grid Security Infrastructure
(GSI). http://www-
fp.globus.org/security/

	Abstract

