
A Next-Generation Platform for Analyzing Executables
�

T. Reps
��� �

, G. Balakrishnan
�
, J. Lim

�
, and T. Teitelbaum

�
�

Comp. Sci. Dept., University of Wisconsin;
�
reps,bgogul,junghee � @cs.wisc.edu�

GrammaTech, Inc.;
�
tt � @grammatech.com

Abstract. In recent years, there has been a growing need for tools that an analyst can
use to understand the workings of COTS components, plugins, mobile code, and DLLs,
as well as memory snapshots of worms and virus-infected code. Static analysis provides
techniques that can help with such problems; however, there are several obstacles that must
be overcome:

– For many kinds of potentially malicious programs, symbol-table and debugging infor-
mation is entirely absent. Even if it is present, it cannot be relied upon.

– To understand memory-access operations, it is necessary to determine the set of ad-
dresses accessed by each operation. This is difficult because	 While some memory operations use explicit memory addresses in the instruction

(easy), others use indirect addressing via address expressions (difficult).	 Arithmetic on addresses is pervasive. For instance, even when the value of a lo-
cal variable is loaded from its slot in an activation record, address arithmetic is
performed.	 There is no notion of type at the hardware level, so address values cannot be dis-
tinguished from integer values.	 Memory accesses do not have to be aligned, so word-sized address values could
potentially be cobbled together from misaligned reads and writes.

We have developed static-analysis algorithms to recover information about the contents of
memory locations and how they are manipulated by an executable. By combining these
analyses with facilities provided by the IDAPro and CodeSurfer toolkits, we have created
CodeSurfer/x86, a prototype tool for browsing, inspecting, and analyzing x86 executables.
From an x86 executable, CodeSurfer/x86 recovers intermediate representations that are sim-
ilar to what would be created by a compiler for a program written in a high-level language.
CodeSurfer/x86 also supports a scripting language, as well as several kinds of sophisticated
pattern-matching capabilities. These facilities provide a platform for the development of
additional tools for analyzing the security properties of executables.

1 Introduction
Market forces are increasingly pushing companies to deploy COTS software when
possible—for which source code is typically unavailable—and to outsource develop-
ment when custom software is required. Moreover, a great deal of legacy code—for
which design documents are usually out-of-date, and for which source code is some-
times unavailable and sometimes non-existent—will continue to be left deployed. An
important challenge during the coming decade will be how to identify bugs and security
vulnerabilities in such systems. Methods are needed to determine whether third-party
and legacy application programs can perform malicious operations (or can be induced
to perform malicious operations), and to be able to make such judgments in the absence
of source code.

Portions of this paper have appeared in [3, 4].

Recent research in programming languages, software engineering, and computer
security has led to new kinds of tools for analyzing code for bugs and security vul-
nerabilities [25, 40, 20, 14, 8, 5, 10, 27, 17, 9]. In these tools, static analysis is used to
determine a conservative answer to the question “Can the program reach a bad state?”3

In principle, such tools would be of great help to an analyst trying to detect malicious
code hidden in software, except for one important detail: the aforementioned tools all
focus on analyzing source code written in a high-level language. Even if source code
were available, there are a number of reasons why analyses that start from source code
do not provide the right level of detail for checking certain kinds of properties, which
can cause bugs, security vulnerabilities, and malicious behavior to be invisible to such
tools. (See � 2.)

In contrast, our work addresses the problem of finding bugs and security vulnera-
bilities in programs when source code is unavailable. Our goal is to create a platform
that carries out static analysis on executables and provides information that an analyst
can use to understand the workings of potentially malicious code, such as COTS com-
ponents, plugins, mobile code, and DLLs, as well as memory snapshots of worms and
virus-infected code. A second goal is to use this platform to create tools that an analyst
can employ to determine such information as

– whether a program contains inadvertent security vulnerabilities
– whether a program contains deliberate security vulnerabilities, such as back doors,

time bombs, or logic bombs. If so, the goal is to provide information about activa-
tion mechanisms, payloads, and latencies.
We have developed a tool, called CodeSurfer/x86, that serves as a prototype for a

next-generation platform for analyzing executables. CodeSurfer/x86 provides a secu-
rity analyst with a powerful and flexible platform for investigating the properties and
possible behaviors of an x86 executable. It uses static analysis to recover intermedi-
ate representations (IRs) that are similar to those that a compiler creates for a program
written in a high-level language. An analyst is able to use (i) CodeSurfer/x86’s GUI,
which provides mechanisms to understand a program’s chains of data and control de-
pendences, (ii) CodeSurfer/x86’s scripting language, which provides access to all of the
intermediate representations that CodeSurfer/x86 builds, and (iii) GrammaTech’s Path
Inspector, which is a model-checking tool that uses a sophisticated pattern-matching
engine to answer questions about the flow of execution in a program.

Because CodeSurfer/x86 was designed to provide a platform that an analyst can use
to understand the workings of potentially malicious code, a major challenge is that the
tool must assume that the x86 executable is untrustworthy, and hence symbol-table and
debugging information cannot be relied upon (even if it is present). The algorithms used
in CodeSurfer/x86 provide ways to meet this challenge.

Although the present version of CodeSurfer/x86 is targeted to x86 executables, the
techniques used [3, 34, 37, 32] are language-independent and could be applied to other
types of executables. In addition, it would be possible to extend CodeSurfer/x86 to

3 Static analysis provides a way to obtain information about the possible states that a pro-
gram reaches during execution, but without actually running the program on specific inputs.
Static-analysis techniques explore the program’s behavior for all possible inputs and all pos-
sible states that the program can reach. To make this feasible, the program is “run in the
aggregate”—i.e., on descriptors that represent collections of memory configurations [15].

2

use symbol-table and debugging information in situations where such information is
available and trusted—for instance, if you have the source code for the program, you
invoke the compiler yourself, and you trust the compiler to supply correct symbol-table
and debugging information. Moreover, the techniques extend naturally if source code
is available: one can treat the executable code as just another IR in the collection of
IRs obtainable from source code. The mapping of information back to the source code
would be similar to what C source-code tools already have to perform because of the use
of the C preprocessor (although the kind of issues that arise when debugging optimized
code [26, 43, 16] complicate matters).

The remainder of paper is organized as follows: � 2 illustrates some of the advan-
tages of analyzing executables. � 3 describes CodeSurfer/x86. � 4 gives an overview of
the model-checking facilities that have been coupled to CodeSurfer/x86. � 5 discusses
related work.

2 Advantages of Analyzing Executables

This section discusses why an analysis that works on executables can provide more ac-
curate information than an analysis that works on source code.4 An analysis that works
on source code can fail to detect certain bugs and vulnerabilities due to the WYSIN-
WYX phenomenon: “What You See Is Not What You eXecute” [4], which can cause
there to be a mismatch between what a programmer intends and what is actually exe-
cuted by the processor. The following source-code fragment, taken from a login pro-
gram, illustrates the issue [29]:

memset(password, ‘ � 0’, len);
free(password);

The login program temporarily stores the user’s password—in clear text—in a dynam-
ically allocated buffer pointed to by the pointer variable password. To minimize the
lifetime of the password, which is sensitive information, the code fragment shown above
zeroes-out the buffer pointed to by password before returning it to the heap. Unfortu-
nately, a compiler that performs useless-code elimination may reason that the program
never uses the values written by the call on memset, and therefore the call on memset
can be removed—thereby leaving sensitive information exposed in the heap. This is
not just hypothetical; a similar vulnerability was discovered during the Windows secu-
rity push in 2002 [29]. This vulnerability is invisible in the source code; it can only be
detected by examining the low-level code emitted by the optimizing compiler.

A second example where analysis of an executable does better than typical source-
level analyses involves pointer arithmetic and an indirect call:
int (*f)(void);
int diff = (char*)&f2 - (char*)&f1; // The offset between f1 and f2
f = &f1;
f = (int (*)())((char*)f + diff); // f now points to f2
(*f)(); // indirect call;

Existing source-level analyses (that we know of) are ill-prepared to handle the above
code. The conventional assumption is that arithmetic on function pointers leads to un-
defined behavior, so source-level analyses either (a) assume that the indirect function

4 Terms like “an analysis that works on source code” and “source-level analyses” are used as a
shorthand for “analyses that work on IRs built from the source code.”

3

call might call any function, or (b) ignore the arithmetic operations and assume that the
indirect function call calls f1 (on the assumption that the code is ANSI-C compliant).
In contrast, the analysis described by Balakrishnan and Reps [3] correctly identifies f2
as the invoked function. Furthermore, the analysis can detect when arithmetic on ad-
dresses creates an address that does not point to the beginning of a function; the use of
such an address to perform a function “call” is likely to be a bug (or else a very subtle,
deliberately introduced security vulnerability).

A third example involves a function call that passes fewer arguments than the proce-
dure expects as parameters. (Many compilers accept such (unsafe) code as an easy way
of implementing functions that take a variable number of parameters.) With most com-
pilers, this effectively means that the call-site passes some parts of one or more local
variables of the calling procedure as the remaining parameters (and, in effect, these are
passed by reference—an assignment to such a parameter in the callee will overwrite the
value of the corresponding local in the caller.) An analysis that works on executables
can be created that is capable of determining what the extra parameters are [3], whereas
a source-level analysis must either make a cruder over-approximation or an unsound
under-approximation.

��� ���������� �	
��� ��

��� ������
��
������
��
��
������
��
����
������
��

�

��� � �����

��� �
�
��
��� �
�
��

��� �
�
��������	���
��
� ���
��
���
�����
��
�
����
������
!�

�

� �� "��#$���%&'	
�
� �� "��#$���%('	
�
� �� ��)	
"��#$���%('
#���

��)
� �� ��)	
"��#$���%&'
#���

��)
����

%������
*
*
*

+ �������
#����,

-����, ���
�
�����
#���

��# #���

��#
� �� ��#	
��# � �� ��#	
��#
���

��#	
.

#���

��)

Fig. 1. Example of unexpected behavior due to compiler
optimization. The box at the top right shows two variants
of code generated by an optimizing compiler for the pro-
log of callee. Analysis of the second of these reveals
that the variable local necessarily contains the value 5.

A final example is shown
in Fig. 1. The C code on
the left uses an uninitial-
ized variable (which trig-
gers a compiler warning,
but compiles successfully).
A source-code analyzer must
assume that local can
have any value, and there-
fore the value of v in main
is either 1 or 2. The as-
sembly listings on the right
show how the C code could
be compiled, including two
variants for the prolog of
function callee. The Mi-
crosoft compiler (cl) uses
the second variant, which
includes the following strength reduction:

The instruction sub esp,4 that allocates space for local is replaced by
a push instruction of an arbitrary register (in this case, ecx).

An analysis of the executable can determine that this optimization results in local
being initialized to 5, and therefore v in main can only have the value 1.

To summarize, the advantage of an analysis that works on executables is that an
executable contains the actual instructions that will be executed, and hence provides
information that reveals the actual behavior that arises during program execution. This
information includes

– memory-layout details, such as (i) the positions (i.e., offsets) of variables in the
runtime stack’s activation records, and (ii) padding between structure fields.

4

– register usage
– execution order (e.g., of actual parameters)
– optimizations performed
– artifacts of compiler bugs

Access to such information can be crucial; for instance, many security exploits depend
on platform-specific features, such as the structure of activation records. Vulnerabilities
can escape notice when a tool does not have information about adjacency relationships
among variables.

In contrast, there are a number of reasons why analyses based on source code do
not provide the right level of detail for checking certain kinds of properties:

– Source-level tools are only applicable when source is available, which limits their
usefulness in security applications (e.g., to analyzing code from open-source projects).

– Analyses based on source code typically make (unchecked) assumptions, e.g., that
the program is ANSI-C compliant. This often means that an analysis does not ac-
count for behaviors that are allowed by the compiler (e.g., arithmetic is performed
on pointers that are subsequently used for indirect function calls; pointers move off
the ends of arrays and are subsequently dereferenced; etc.)

– Programs typically make extensive use of libraries, including dynamically linked li-
braries (DLLs), which may not be available in source-code form. Typically, source-
level analyses are performed using code stubs that model the effects of library calls.
Because these are created by hand they are likely to contain errors, which may cause
an analysis to return incorrect results.

– Programs are sometimes modified subsequent to compilation, e.g., to perform opti-
mizations or insert instrumentation code [41]. (They may also be modified to insert
malicious code.) Such modifications are not visible to tools that analyze source.

– The source code may have been written in more than one language. This com-
plicates the life of designers of tools that analyze source code because multiple
languages must be supported, each with its own quirks.

– Even if the source code is primarily written in one high-level language, it may con-
tain inlined assembly code in selected places. Source-level analysis tools typically
either skip over inlined assembly code [13] or do not push the analysis beyond sites
of inlined assembly code [1].

Thus, even if source code is available, a substantial amount of information is hidden
from analyses that start from source code, which can cause bugs, security vulnerabil-
ities, and malicious behavior to be invisible to such tools. Moreover, a source-level
analysis tool that strives to have greater fidelity to the program that is actually executed
would have to duplicate all of the choices made by the compiler and optimizer; such an
approach is doomed to failure.

3 Analyzing Executables in the Absence of Source Code
To be able to apply techniques like the ones used in [25, 40, 20, 14, 8, 5, 10, 27, 17, 9],
one already encounters a challenging program-analysis problem. From the perspective
of the compiler community, one would consider the problem to be “IR recovery”: one
needs to recover intermediate representations from the executable that are similar to
those that would be available had one started from source code. From the perspective of
the model-checking community, one would consider the problem to be that of “model

5

extraction”: one needs to extract a suitable model from the executable. To solve the
IR-recovery problem, several obstacles must be overcome:

– For many kinds of potentially malicious programs, symbol-table and debugging
information is entirely absent. Even if it is present, it cannot be relied upon.

– To understand memory-access operations, it is necessary to determine the set of
addresses accessed by each operation. This is difficult because

� While some memory operations use explicit memory addresses in the instruc-
tion (easy), others use indirect addressing via address expressions (difficult).

� Arithmetic on addresses is pervasive. For instance, even when the value of a
local variable is loaded from its slot in an activation record, address arithmetic
is performed.

� There is no notion of type at the hardware level, so address values cannot be
distinguished from integer values.

� Memory accesses do not have to be aligned, so word-sized address values could
potentially be cobbled together from misaligned reads and writes.

For the past few years, we have been working to create a prototype next-generation
platform for analyzing executables. The tool set that we have developed extends static
vulnerability-analysis techniques to work directly on executables, even in the absence
of source code. The tool set builds on (i) recent advances in static analysis of program
executables [3], and (ii) new techniques for software model checking and dataflow anal-
ysis [7, 36, 37, 32]. The main components of the tool set are CodeSurfer/x86, WPDS++,
and the Path Inspector:

– CodeSurfer/x86 recovers IRs from an executable that are similar to the IRs that
source-code-analysis tools create—but, in many respects, the IRs that CodeSurfer/x86
builds are more precise. CodeSurfer/x86 also provides an API to these IRs.

– WPDS++ [31] is a library for answering generalized reachability queries on weighted
pushdown systems (WPDSs) [7, 36, 37, 32]. This library provide a mechanism for
defining and solving model-checking and dataflow-analysis problems. To extend
CodeSurfer/x86’s analysis capabilities, the CodeSurfer/x86 API can be used to ex-
tract a WPDS model from an executable and to run WPDS++ on the model.

– The Path Inspector is a software model checker built on top of CodeSurfer and
WPDS++. It supports safety queries about a program’s possible control configura-
tions.

In addition, by writing scripts that traverse the IRs that CodeSurfer/x86 recovers, the
tool set can be extended with further capabilities (e.g., decompilation, code rewriting,
etc.).

Fig. 2 shows how these components fit together. CodeSurfer/x86 makes use of both
IDAPro [30], a disassembly toolkit, and GrammaTech’s CodeSurfer system [13], a
toolkit originally developed for building program-analysis and inspection tools that ana-
lyze source code. These components are glued together by a piece called the Connector,
which uses two static analyses—value-set analysis (VSA) [3] and aggregate-structure

6

identification (ASI) [34] to recover information about the contents of memory locations
and how they are manipulated by an executable.5

����������

	�
���� �

	��� ��

����������

���������

���

��
�
������
� ������
� �������������
� ����������
� ������
���
� � ����� �
���

� � � ��

	�
��
�!� �

 ����
����������

� ����"��#�����!� �
� ����"��#���������$���"
� ����%�&
����%�� �'#&
����
���
�����������!� ������

� ��
���#�������
� ������������
����
���

����
(�� �
���

 ���� �
���

 ��"
���������

) ��� ���
���

* �++

����������,�-.

� ��

Fig. 2. Organization of CodeSurfer/x86 and companion tools.

An x86 executable is first disassembled using IDAPro. In addition to the disassem-
bly listing, IDAPro also provides access to the following information:
Statically known memory addresses and offsets: IDAPro identifies the statically known

memory addresses and stack offsets in the program, and renames all occurrences
of these quantities with a consistent name. This database is used to define the set of
data objects in terms of which (the initial run of) VSA is carried out; these objects
are called a-locs, for “abstract locations”. VSA is an analysis that, for each instruc-
tion, determines an over-approximation of the set of values that each a-loc could
hold.

Information about procedure boundaries: X86 executables do not have information about
procedure boundaries. IDAPro identifies the boundaries of most of the procedures
in an executable.6

Calls to library functions: IDAPro discovers calls to library functions using an algo-
rithm called Fast Library Identification and Recognition Technology (FLIRT) [23].
IDAPro provides access to its internal resources via an API that allows users to

create plug-ins to be executed by IDAPro. CodeSurfer/x86 uses a plug-in to IDAPro,
called the Connector, that creates data structures to represent the information that it ob-
tains from IDAPro (see Fig. 2); VSA and ASI are implemented using the data structures

5 VSA also makes use of the results of an additional static-analysis phase, called affine-relation
analysis (ARA), which, for each program point, identifies affine relationships [33] that hold
among the values of registers; see [3, 32].

6 IDAPro does not identify the targets of all indirect jumps and indirect calls, and therefore
the call graph and control-flow graphs that it constructs are not complete. However, the in-
formation computed during VSA is used to augment the call graph and control-flow graphs
on-the-fly to account for indirect jumps and indirect calls.

7

created by the Connector. The IDAPro/Connector combination is also able to create the
same data structures for DLLs, and to link them into the data structures that represent
the program itself. This infrastructure permits whole-program analysis to be carried
out—including analysis of the code for all library functions that are called.

CodeSurfer/x86 makes no use of symbol-table or debugging information. Instead,
the results of VSA and ASI provide a substitute for absent or untrusted symbol-table
and debugging information. Initially, the set of a-locs is determined based on the static
memory addresses and stack offsets that are used in instructions in the executable. Each
run of ASI refines the set of a-locs used for the next run of VSA.

Because the IRs that CodeSurfer/x86 recovers are extracted directly from the exe-
cutable code that is run on the machine, and because the entire program is analyzed—
including any libraries that are linked to the program—this approach provides a “higher
fidelity” platform for software model checking than the IRs derived from source code
that other software model checkers use [25, 40, 20, 14, 8, 5, 10, 27, 17, 9].

CodeSurfer/x86 supports a scripting language that provides access to all of the
IRs that CodeSurfer/x86 builds for the executable. This provides a way to connect
CodeSurfer/x86 to other analysis tools, such as model checkers (see � 4), as well as to
implement other tools on top of CodeSurfer/x86, such as decompilers, code rewriters,
etc. It also provides an analyst with a mechanism to develop any additional “one-off”
analyses he needs to create.

3.1 Memory-Access Analysis in the Connector

The analyses in CodeSurfer/x86 are a great deal more ambitious than even relatively
sophisticated disassemblers, such as IDAPro. At the technical level, CodeSurfer/x86
addresses the following problem:
Given a stripped executable

�
, identify the

– procedures, data objects, types, and libraries that it uses
and

– for each instruction � in
�

and its libraries
– for each interprocedural calling context of �
– for each machine register and a-loc �

statically compute an accurate over-approximation to
– the set of values that � may contain when � executes
– the instructions that may have defined the values used by �
– the instructions that may use the values defined by execution of �

and provide effective means to access that information both interactively and under
program control.

Value-Set Analysis. VSA [3] is a combined numeric and pointer-analysis algorithm
that determines an over-approximation of the set of numeric values and addresses (or
value set) that each a-loc holds at each program point. The information computed during
VSA is used to augment the call graph and control-flow graphs on-the-fly to account
for indirect jumps and indirect function calls.

VSA is related to pointer-analysis algorithms that have been developed for programs
written in high-level languages, which determine an over-approximation of the set of
variables whose addresses each pointer variable can hold:

8

VSA determines an over-approximation of the set of addresses that each data
object can hold at each program point.

At the same time, VSA is similar to range analysis and other numeric static-analysis
algorithms that over-approximate the integer values that each variable can hold:

VSA determines an over-approximation of the set of integer values that each
data object can hold at each program point.
The following insights shaped the design of VSA:

– A non-aligned access to memory—e.g., an access via an address that is not aligned
on a � -byte word boundary—spans parts of two words, and provides a way to forge
a new address from parts of old addresses. It is important for VSA to discover
information about the alignments and strides of memory accesses, or else most
indirect-addressing operations appear to be possibly non-aligned accesses.

– To prevent most loops that traverse arrays from appearing to be possible stack-
smashing attacks, the analysis needs to use relational information so that the values
of a-locs assigned to within a loop can be related to the values of the a-locs used in
the loop’s branch condition (see [3, 33, 32]).

– It is desirable for VSA to track integer-valued and address-valued quantities simul-
taneously. This is crucial for analyzing executables because

� integers and addresses are indistinguishable at execution time, and
� compilers use address arithmetic and indirect addressing to implement such

features as pointer arithmetic, pointer dereferencing, array indexing, and ac-
cessing structure fields.

Moreover, information about integer values can lead to improved tracking of address-
valued quantities, and information about address values can lead to improved track-
ing of integer-valued quantities.

VSA produces information that is more precise than that obtained via several more
conventional numeric analyses used in compilers, including constant propagation, range
analysis, and integer-congruence analysis. At the same time, VSA provides an analog
of pointer analysis that is suitable for use on executables.
Aggregate-Structure Identification. One of the major stumbling blocks in analysis
of executables is the difficulty of recovering information about variables and types,
especially for aggregates (i.e., structures and arrays). CodeSurfer/x86 uses an iterative
strategy for recovering such information; with each round, it refines its notion of the
program’s variables and types.

Initially, VSA uses a set of variables (“a-locs”) that are obtained from IDAPro.
Because IDAPro has relatively limited information available at the time that it applies
its variable-discovery heuristics (i.e., it only knows about statically known memory
addresses and stack offsets), what it can do is rather limited, and generally leads to a
very coarse-grained approximation of the program’s variables.

Once a given run of VSA completes, the value-sets for the a-locs at each instruction
provide a way to identify an over-approximation of the memory accesses performed at
that instruction. This information is used to refine the current set of a-locs by running
a variant of the ASI algorithm [34], which identifies commonalities among accesses to
different parts of an aggregate data value. ASI was originally developed for analysis of
Cobol programs: in that context, ASI ignores all of the type declarations in the program,
and considers an aggregate to be merely a sequence of bytes of a given length; an

9

aggregate is then broken up into smaller parts depending upon how the aggregate is
accessed by the program. In the context in which we use ASI—namely, analysis of x86
executables—ASI cannot be applied until the results of VSA are already in hand: ASI
requires points-to, range, and stride information to be available; however, for an x86
executable this information is not available until after VSA has been run.

ASI exploits the information made available by VSA (such as the values that a-locs
can hold, sizes of arrays, and iteration counts for loops), which generally leads to a
much more accurate set of a-locs than the initial set of a-locs discovered by IDAPro.
For instance, consider a simple loop, implemented in source code as

int a[10], i;
for (i = 0; i < 10; i++)

a[i] = i;

From the executable, IDAPro will determine that there are two variables, one of size 4
bytes and one of size 40 bytes, but will provide no information about the substructure
of the 40-byte variable. In contrast, in addition to the 4-byte variable, ASI will correctly
identify that the 40 bytes are an array of ten 4-byte quantities.

The Connector uses a refinement loop that performs repeated phases of VSA and
ASI (see Fig. 2). The ASI results are used to refine the previous set of a-locs, and the
refined set of a-locs is then used to analyze the program during the next round of VSA.
The number of iterations is controlled by a command-line parameter.

ASI also provides information that greatly increases the precision with which VSA
can analyze the contents of dynamically allocated objects (i.e., memory locations allo-
cated using malloc or new). To see why, recall how the initial set of a-locs is identified
by IDAPro. The a-loc abstraction exploits the fact that accesses to program variables in
a high-level language are either complied into static addresses (for globals, and fields of
struct-valued globals) or static stack-frame offsets (for locals and fields of struct-valued
locals). However, fields of dynamically allocated objects are accessed in terms of offsets
relative to the base address of the object itself, which is something that IDAPro knows
nothing about. In contrast, VSA considers each malloc site � to be a “memory region”
(consisting of the objects allocated at �), and the memory region for � serves as a
representative for the base addresses of those objects. This lets ASI handle the use of
an offset from an object’s base address similar to the way that it handles a stack-frame
offset—with the net result that ASI is able to capture information about the fine-grained
structure of dynamically allocated objects. The object fields discovered in this way be-
come a-locs for the next round of VSA, which will then discover an over-approximation
of their contents.

ASI is complementary to VSA: ASI addresses only the issue of identifying the
structure of aggregates, whereas VSA addresses the issue of (over-approximating) the
contents of memory locations. ASI provides an improved method for the “variable-
identification” facility of IDAPro, which uses only much cruder techniques (and only
takes into account statically known memory addresses and stack offsets). Moreover,
ASI requires more information to be on hand than is available in IDAPro (such as the
sizes of arrays and iteration counts for loops). Fortunately, this is exactly the information
that is available after VSA has been carried out, which means that ASI can be used in
conjunction with VSA to obtain improved results: after a first round of VSA, the results

10

of ASI are used to refine the a-loc abstraction, after which VSA is run again—generally
producing more precise results.

3.2 CodeSurfer/x86

The value-sets for the a-locs at each program point are used to determine each point’s
sets of used, killed, and possibly-killed a-locs; these are emitted in a format that is
suitable for input to CodeSurfer.

CodeSurfer is a tool for code understanding and code inspection that supports both
a graphical user interface (GUI) and an API (as well as a scripting language) to provide
access to a program’s system dependence graph (SDG) [28], as well as other infor-
mation stored in CodeSurfer’s IRs.7 An SDG consists of a set of program dependence
graphs (PDGs), one for each procedure in the program. A vertex in a PDG corresponds
to a construct in the program, such as an instruction, a call to a procedure, an actual
parameter of a call, or a formal parameter of a procedure. The edges correspond to data
and control dependences between the vertices [21]. The PDGs are connected together
with interprocedural edges that represent control dependences between procedure calls
and entries, data dependences between actual parameters and formal parameters, and
data dependences between return values and receivers of return values.

Dependence graphs are invaluable for many applications, because they highlight
chains of dependent instructions that may be widely scattered through the program.
For example, given an instruction, it is often useful to know its data-dependence pre-
decessors (instructions that write to locations read by that instruction) and its control-
dependence predecessors (control points that may affect whether a given instruction
gets executed). Similarly, it may be useful to know for a given instruction its data-
dependence successors (instructions that read locations written by that instruction) and
control-dependence successors (instructions whose execution depends on the decision
made at a given control point).

CodeSurfer’s GUI supports browsing (“surfing”) of an SDG, along with a variety
of operations for making queries about the SDG—such as slicing [28] and chopping
[35].8 The GUI allows a user to navigate through a program’s source code using these
dependences in a manner analogous to navigating the World Wide Web.

CodeSurfer’s API provides a programmatic interface to these operations, as well
as to lower-level information, such as the individual nodes and edges of the program’s
SDG, call graph, and control-flow graph, and a node’s sets of used, killed, and possibly-
killed a-locs. By writing programs that traverse CodeSurfer’s IRs to implement addi-
tional program analyses, the API can be used to extend CodeSurfer’s capabilities.

7 In addition to the SDG, CodeSurfer’s IRs include abstract-syntax trees, control-flow graphs
(CFGs), a call graph, VSA results, the sets of used, killed, and possibly killed a-locs at each in-
struction, and information about the structure and layout of global memory, activation records,
and dynamically allocated storage.

8 A backward slice of a program with respect to a set of program points
�

is the set of all program
points that might affect the computations performed at

�
; a forward slice with respect to

�
is

the set of all program points that might be affected by the computations performed at members
of

�
[28]. A program chop between a set of source program points

�
and a set of target

program points � shows how
�

can affect the points in � [35]. Chopping is a key operation in
information-flow analysis.

11

CodeSurfer/x86 provides some unique capabilities for answering an analyst’s ques-
tions. For instance, given a worm, CodeSurfer/x86’s analysis results have been used
to obtain information about the worm’s target-discovery, propagation, and activation
mechanisms by

– locating sites of system calls,
– finding the instructions by which arguments are passed, and
– following dependences backwards from those instructions to identify where the

values come from.
Because the techniques described in � 3.1 are able to recover quite rich information
about memory-access operations, the answers that CodeSurfer/x86 furnishes to such
questions account for the movement of data through memory—not just the movement
of data through registers, as in some prior work (e.g., [18, 11]).

3.3 Goals, Capabilities, and Assumptions

A few words are in order about the goals, capabilities, and assumptions underlying
CodeSurfer/x86.

The constraint that symbol-table and debugging information are off-limits compli-
cated the task of creating CodeSurfer/x86; however, the results of VSA and ASI provide
a substitute for such information. This allowed us to create a tool that can be used when
symbol-table and debugging information is absent or untrusted.

Given an executable as input, the goal is to check whether the executable con-
forms to a “standard” compilation model—i.e., a runtime stack is maintained; activation
records (ARs) are pushed onto the stack on procedure entry and popped from the stack
on procedure exit; each global variable resides at a fixed offset in memory; each local
variable of a procedure � resides at a fixed offset in the ARs for � ; actual parameters of

� are pushed onto the stack by the caller so that the corresponding formal parameters
reside at fixed offsets in the ARs for � ; the program’s instructions occupy a fixed area
of memory, are not self-modifying, and are separate from the program’s data. If the
executable conforms to this model, CodeSurfer/x86 creates an IR for it. If it does not
conform to the model, then one or more violations will be discovered, and correspond-
ing error reports are issued.

The goal for CodeSurfer/x86 is to provide (i) a tool for security analysis, and (ii) a
general infrastructure for additional analysis of executables. Thus, as a practical mea-
sure, when the system produces an error report, a choice is made about how to accom-
modate the error so that analysis can continue (i.e., the error is optimistically treated as
a false positive), and an IR is produced; if the analyst can determine that the error report
is indeed a false positive, then the IR is valid.

The analyzer does not care whether the program was compiled from a high-level
language, or hand-written in assembly code. In fact, some pieces of the program may
be the output from a compiler (or from multiple compilers, for different high-level lan-
guages), and others hand-written assembly code. Still, it is easiest to talk about the
information that VSA and ASI are capable of recovering in terms of the features that
a high-level programming language allows: VSA and ASI are capable of recovering
information from programs that use global variables, local variables, pointers, struc-
tures, arrays, heap-allocated storage, pointer arithmetic, indirect jumps, recursive pro-

12

cedures, indirect calls through function pointers, virtual-function calls, and DLLs (but,
at present, not run-time code generation or self-modifying code).

Compiler optimizations often make VSA and ASI less difficult, because more of
the computation’s critical data resides in registers, rather than in memory; register op-
erations are more easily deciphered than memory operations.

The major assumption that we make about IDAPro is that it is able to disassemble
a program and build an adequate collection of preliminary IRs for it. Even though (i)
the CFG created by IDAPro may be incomplete due to indirect jumps, and (ii) the call-
graph created by IDAPro may be incomplete due to indirect calls, incomplete IRs do
not trigger error reports. Both the CFG and the call-graph are fleshed out according to
information recovered during the course of VSA/ASI iteration. In fact, the relationship
between VSA/ASI iteration and the preliminary IRs created by IDAPro is similar to the
relationship between a points-to-analysis algorithm in a C compiler and the preliminary
IRs created by the C compiler’s front end. In both cases, the preliminary IRs are fleshed
out during the course of analysis.

4 Model-Checking Facilities
Model checking [12] involves the use of sophisticated pattern-matching techniques to
answer questions about the flow of execution in a program: a model of the program’s
possible behavior is created and checked for conformance with a model of expected be-
havior (as specified by a user query). In essence, model-checking algorithms explore the
program’s state-space and answer questions about whether a bad state can be reached
during an execution of the program.

For model checking, the CodeSurfer/x86 IRs are used to build a weighted pushdown
system (WPDS) [7, 36, 37, 32] that models possible program behaviors. WPDSs gener-
alize a model-checking technology known as pushdown systems (PDSs) [6, 22], which
have been used for software model checking in the Moped [39, 38] and MOPS [10] sys-
tems. Compared to ordinary (unweighted) PDSs, WPDSs are capable of representing
more powerful kinds of abstractions of runtime states [37, 32], and hence go beyond the
capabilities of PDSs. For instance, the use of WPDSs provides a way to address certain
kinds of security-related queries that cannot be answered by MOPS.

WPDS++ [31] is a library that implements the symbolic algorithms from [37, 32] for
solving WPDS reachability problems. We follow the standard approach of using a PDS
to model the interprocedural CFG (one of CodeSurfer/x86’s IRs). The stack symbols
correspond to program locations; there is only a single PDS state; and PDS rules encode
control flow as follows:

Rule Control flow modeled
��������� 	
������� Intraprocedural CFG edge �	��
��������� 	�������������������� Call to from � that returns to �����!"�#� 	
���$� Return from a procedure at exit node !

In a configuration of the PDS, the symbol at the top of the stack corresponds to the cur-
rent program location, and the rest of the stack holds return-site locations—this allows
the PDS to model the behavior of the program’s runtime execution stack.

An encoding of the interprocedural CFG as a PDS is sufficient for answering queries
about reachable control states (as the Path Inspector does; see below): the reachability
algorithms of WPDS++ can determine if an undesirable PDS configuration is reachable.

13

However, WPDS++ also supports weighted PDSs, which are PDSs in which each rule
is weighted with an element of a (user-defined) semiring. The use of weights allows
WPDS++ to perform interprocedural dataflow analysis by using the semiring’s extend
operator to compute weights for sequences of rule firings and using the semiring’s com-
bine operator to take the meet of weights generated by different paths [37, 32]. (When
the weights on rules are conservative abstract data transformers, an over-approximation
to the set of reachable concrete configurations is obtained, which means that counterex-
amples reported by WPDS++ may actually be infeasible.)

The advantage of answering reachability queries on WPDSs over conventional
dataflow-analysis methods is that the latter merge together the values for all states as-
sociated with the same program point, regardless of the states’ calling context. With
WPDSs, queries can be posed with respect to a regular language of stack configurations
[7, 36, 37, 32]. (Conventional merged dataflow information can also be obtained [37].)

CodeSurfer/x86 can also be used in conjunction with GrammaTech’s Path Inspector
tool. The Path Inspector provides a user interface for automating safety queries that are
only concerned with the possible control configurations that an executable can reach.
The Path Inspector checks sequencing properties of events in a program, which can be
used to answer such questions as “Is it possible for the program to bypass the authen-
tication routine?” (which indicates that the program may contain a trapdoor), or “Can
this login program bypass the code that writes to the log file?” (which indicates that the
program may be a Trojan login program).

With the Path Inspector, such questions are posed as questions about the existence
of problematic event sequences; after checking the query, if a problematic path exists, it
is displayed in the Path Inspector tool. This lists all of the program points that may occur
along the problematic path. These items are linked to the source code; the analyst can
navigate from a point in the path to the corresponding source-code element. In addition,
the Path Inspector allows the analyst to step forward and backward through the path,
while simultaneously stepping through the source code. (The code-stepping operations
are similar to the single-stepping operations in a traditional debugger.)

The Path Inspector uses an automaton-based approach to model checking: the query
is specified as a finite automaton that captures forbidden sequences of program loca-
tions. This “query automaton” is combined with the program model (a WPDS) using
a cross-product construction, and the reachability algorithms of WPDS++ are used to
determine if an error configuration is reachable. If an error configuration is reachable,
then witnesses (see [37]) can be used to produce a program path that drives the query
automaton to an error state.

The Path Inspector includes a GUI for instantiating many common reachability
queries [19], and for displaying counterexample paths in the disassembly listing. In
the current implementation, transitions in the query automaton are triggered by pro-
gram points that the user specifies either manually, or using result sets from CodeSurfer
queries. Future versions of the Path Inspector will support more sophisticated queries in
which transitions are triggered by matching an AST pattern against a program location,
and query states can be instantiated based on pattern bindings.

14

5 Related Work

Previous work on analyzing memory accesses in executables has dealt with memory
accesses very conservatively: generally, if a register is assigned a value from memory,
it is assumed to take on any value. VSA does a much better job than previous work
because it tracks the integer-valued and address-valued quantities that the program’s
data objects can hold; in particular, VSA tracks the values of data objects other than
just the hardware registers, and thus is not forced to give up all precision when a load
from memory is encountered.

The basic goal of the algorithm proposed by Debray et al. [18] is similar to that
of VSA: for them, it is to find an over-approximation of the set of values that each
register can hold at each program point; for us, it is to find an over-approximation of
the set of values that each (abstract) data object can hold at each program point, where
data objects include memory locations in addition to registers. In their analysis, a set of
addresses is approximated by a set of congruence values: they keep track of only the
low-order bits of addresses. However, unlike VSA, their algorithm does not make any
effort to track values that are not in registers. Consequently, they lose a great deal of
precision whenever there is a load from memory.

Cifuentes and Fraboulet [11] give an algorithm to identify an intraprocedural slice
of an executable by following the program’s use-def chains. However, their algorithm
also makes no attempt to track values that are not in registers, and hence cuts short the
slice when a load from memory is encountered.

The two pieces of work that are most closely related to VSA are the algorithm for
data-dependence analysis of assembly code of Amme et al. [2] and the algorithm for
pointer analysis on a low-level intermediate representation of Guo et al. [24]. The al-
gorithm of Amme et al. performs only an intraprocedural analysis, and it is not clear
whether the algorithm fully accounts for dependences between memory locations. The
algorithm of Guo et al. [24] is only partially flow-sensitive: it tracks registers in a flow-
sensitive manner, but treats memory locations in a flow-insensitive manner. The al-
gorithm uses partial transfer functions [42] to achieve context-sensitivity. The transfer
functions are parameterized by “unknown initial values” (UIVs); however, it is not clear
whether the the algorithm accounts for the possibility of called procedures corrupting
the memory locations that the UIVs represent.

References

1. PREfast with driver-specific rules, October 2004. WHDC, Microsoft Corp.,
http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx.

2. W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data dependence analysis of assembly
code. Int. J. Parallel Proc., 2000.

3. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Comp.
Construct., pages 5–23, 2004.

4. G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. WYSINWYX: What You See
Is Not What You eXecute. In IFIP Working Conf. on Verified Software: Theories, Tools,
Experiments, 2005.

5. T. Ball and S.K. Rajamani. The SLAM toolkit. In Computer Aided Verif., volume 2102 of
Lec. Notes in Comp. Sci., pages 260–264, 2001.

15

6. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model checking. In Proc. CONCUR, volume 1243 of Lec. Notes in Comp. Sci.,
pages 135–150. Springer-Verlag, 1997.

7. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent
programs with procedures. In Princ. of Prog. Lang., pages 62–73, 2003.

8. W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic programming errors.
Software–Practice&Experience, 30:775–802, 2000.

9. H. Chen, D. Dean, and D. Wagner. Model checking one million lines of C code. In Network
and Dist. Syst. Security, 2004.

10. H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. In Conf. on Comp. and Commun. Sec., pages 235–244, November 2002.

11. C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executables. In Int.
Conf. on Softw. Maint., pages 188–195, 1997.

12. E.M. Clarke, Jr., O. Grumberg, and D.A. Peled. Model Checking. The M.I.T. Press, 1999.
13. CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.
14. J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, and H. Zheng.

Bandera: Extracting finite-state models from Java source code. In Int. Conf. on Softw. Eng.,
pages 439–448, 2000.

15. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In Princ. of Prog. Lang., pages
238–252, 1977.

16. D.S. Coutant, S. Meloy, and M. Ruscetta. DOC: A practical approach to source-level debug-
ging of globally optimized code. In Prog. Lang. Design and Impl., 1988.

17. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial
time. In Prog. Lang. Design and Impl., pages 57–68, New York, NY, 2002. ACM Press.

18. S.K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In Princ. of
Prog. Lang., pages 12–24, 1998.

19. M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state
verification. In Int. Conf. on Softw. Eng., 1999.

20. D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In Op. Syst. Design and Impl., pages 1–16, 2000.

21. J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in
optimization. Trans. on Prog. Lang. and Syst., 3(9):319–349, 1987.

22. A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to model checking push-
down systems. Elec. Notes in Theor. Comp. Sci., 9, 1997.

23. Fast Library Identification and Recognition Technology, DataRescue sa/nv, Liège, Belgium,
http://www.datarescue.com/idabase/flirt.htm.

24. B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August. Practical and
accurate low-level pointer analysis. In 3nd Int. Symp. on Code Gen. and Opt., pages 291–
302, 2005.

25. K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
Softw. Tools for Tech. Transfer, 2(4), 2000.

26. J.L. Hennessy. Symbolic debugging of optimized code. Trans. on Prog. Lang. and Syst.,
4(3):323–344, 1982.

27. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Princ. of Prog.
Lang., pages 58–70, 2002.

28. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. Trans.
on Prog. Lang. and Syst., 12(1):26–60, January 1990.

29. M. Howard. Some bad news and some good news. October 2002. MSDN,
Microsoft Corp., http://msdn.microsoft.com/library/default.asp?url=/library/en-

16

us/dncode/html/secure10102002.asp.
30. IDAPro disassembler, http://www.datarescue.com/idabase/.
31. N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ library for weighted pushdown

systems, 2004. http://www.cs.wisc.edu/wpis/wpds++/.
32. A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In Computer

Aided Verif., 2005.
33. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In European Symp. on Pro-

gramming, 2005.
34. G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application to

program analysis. In Princ. of Prog. Lang., pages 119–132, 1999.
35. T. Reps and G. Rosay. Precise interprocedural chopping. In Found. of Softw. Eng., 1995.
36. T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their application to

interprocedural dataflow analysis. In Static Analysis Symp., 2003.
37. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their applica-

tion to interprocedural dataflow analysis. Sci. of Comp. Prog. To appear.
38. S. Schwoon. Moped system. http://www.fmi.uni-stuttgart.de/szs/tools/moped/.
39. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of Munich,

Munich, Germany, July 2002.
40. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection of

buffer overrun vulnerabilities. In Network and Dist. Syst. Security, February 2000.
41. D.W. Wall. Systems for late code modification. In R. Giegerich and S.L. Graham, editors,

Code Generation – Concepts, Tools, Techniques, pages 275–293. Springer-Verlag, 1992.
42. R.P. Wilson and M.S. Lam. Efficient context-sensitive pointer analysis for C programs. In

Prog. Lang. Design and Impl., pages 1–12, 1995.
43. P.T. Zellweger. Interactive Source-Level Debugging of Optimized Programs. PhD thesis,

Univ. of California, Berkeley, 1984.

17

