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Abstract

The goal of our work is to create tools that an analyst can aise t
understand the workings of COTS components, plugins, raobil
code, and DLLs, as well as memory snapshots of worms and virus
infected code. This paper describes how static analysigiqe®
techniques that can be used to recover intermediate repatisns
that are similar to those that can be created for a prograttewiin

a high-level language.

1. Introduction

In the past five years, there has been a considerable amotat of
search activity to develop static-analysis tools to findsband se-
curity vulnerabilities [27, 45, 25, 20, 12, 8, 14, 28, 22].whaver,
most of the effort has been on static-analysis of source, @dkthe
issue of analyzing executables has largely been ignoretielse-
curity context, this is particularly unfortunate becauserse-code
analysis can fail to detect certain vulnerabilities dudn®\VY SIN-
WYX phenomenon: YWhatYou Seels Not What You eXecute”.
That is, there can be a mismatch between what a programmer in-
tends and what is actually executed on the processor.

The following source-code fragment, taken from a login pro-
gram, is an example of such a mismatch [30]:

memset (password, ‘\0’, lemn);
free(password) ;

The login program temporarily stores the user’s passwortetear
text—in a dynamically allocated buffer pointed to by therer
variable password. To minimize the lifetime of the password,
which is sensitive information, the code fragment shownvabo
zeroes-out the buffer pointed to ssword before returning it
to the heap. Unfortunately, a compiler that performs usetesle
elimination may reason that the program never uses the value
written by the call ormemset and therefore the call omemset
can be removed, thereby leaving sensitive information sego
in the heap. This is not just hypothetical; a similar vulrdigy
was discovered during the Windows security push in 2002.[30]
This vulnerability is invisible in the source code; it canlyobe
detected by examining the low-level code emitted by thenoigtng
compiler.

* Portions of this paper have appeared in [4, 7, 38]. This rebeaas
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The WYSINWY X phenomenon is not restricted to the presence
or absence of procedure calls; on the contrary, it is pergasie-
curity vulnerabilities can exist because of a myriad of fplath-
specific details due to features (and idiosyncrasies) of tinepiler
and the optimizer. These can include (i) memory-layoutiligice .,
offsets of variables in the run-time stack’s activationareis (ARS)
and padding between fields of a struct), (ii) register usgiieexe-
cution order, (iv) optimizations, and (v) artifacts of caitep bugs.
Such information is hidden from tools that work on internageli
representations (IRs) that are built directly from the sewode.

There are a number of reasons why analyses based on source
code do not provide the right level of detail for checkingtaer
kinds of properties:

¢ Source-level tools are only applicable when source is alvka|
which limits their usefulness in security applicationgy(eto
analyzing code from open-source projects).
Analyses based on source code typically make (unchecked)
assumptions, e.g., that the program is ANSI-C complianis Th
often means that an analysis does not account for behaviors
that are allowed by the compiler (e.g., arithmetic is perfed
on pointers that are subsequently used for indirect functio
calls; pointers move off the ends of arrays and are subséguen
dereferenced; etc.)
Programs typically make extensive use of libraries, inicigd
dynamically linked libraries (DLLs), which may not be avail
able in source-code form. Typically, source-level anayaee
performed using code stubs that model the effects of library
calls. Because these are hand-crafted, they are likelyrtmizo
errors, which may cause an analysis to return incorrecttsesu
Programs are sometimes modified subsequent to compilation,
e.g., to perform optimizations or insert instrumentatiaue
[46]. (They may also be modified to insert malicious code.)
Such modifications are not visible to tools that analyze caur
The source code may have been written in more than one lan-
guage. This complicates the life of designers of tools timat a
alyze source code because multiple languages must be sup-
ported, each with its own quirks.
Even if the source code is primarily written in one high-leve
language, it may contain inlined assembly code in selected
places. Source-level analysis tools typically either shyer
inlined assembly code [18] or do not push the analysis beyond
sites of inlined assembly code [1].
Thus, even if source code is available, a substantial anafumfor-
mation is hidden from analyses that start from source cotiehw
can cause bugs, security vulnerabilities, and maliciolsatier to
be invisible to such tools. Moreover, a source-level anslysol
that strives to have greater fidelity to the program that tsaity
executed would have to duplicate all of the choices made by th
compiler and optimizer; such an approach is doomed to failur

The long-term goal of our work is to develop bug-detectiod an
security-vulnerability analyses that work on executablése ad-
vantage of this approach is that an executable containsctoala



instructions that will be executed, and hence providesrin&ion
that reveals the actual behavior that arises during prognesou-
tion. Access to such information can be crucial; for inseamaany
security exploits depend on platform-specific featureshsas the
structure of activation records. Vulnerabilities can @ecaoctice
when a tool does not have information about adjacency oelati
ships among variables.

To be able to apply techniques like the ones used in [27, 45,
25, 20, 12, 8, 14, 28, 22, 13], one already encounters a cigalle
ing program-analysis problem. From the perspective of thra-c
piler community, one would consider the problem to be “IR re-
covery”: one needs to recov@rtermediate representatiorfsom
the executable that are similar to those that would be aailsad
one started from source code. From the perspective of thelmod
checking community, one would consider the problem to bedha
“model extraction”: one needs to extract a suitaibledelfrom the
executable. Thus, our immediate goal is to advance the ctéte
art of recovering, from executables, IRs that are (a) sinhilazhose
that would be available had one started from source codgpput
expose the platform-specific details discussed above.ifRadly,
we are interested in recovering IRs that represent thevioilp in-
formation:

¢ control-flow graphs (CFGs), with indirect jumps resolved
e a call graph, with indirect calls resolved
¢ information about the program'’s variables
e possible values of pointer variables
e sets of used, killed, and possibly-killed variables forte@&G
node
¢ data dependences (including dependences between if@tsuct
that involve memory accesses)
¢ type information (e.g., base types, pointer types, anasyu
Once such IRs are in hand, we will be in a position to leverage t
substantial body of work on source-code-vulnerabilitylgsia.

In IR recovery, there are numerous obstacles that must lre ove
come. In particular, in many situations debugging infoiiorats
not available. Even if debugging information is presentannot
be relied upon if the program is potentially malicious. Hustrea-
son, we have designed IR-recovery technigues that do nobrel
debugging information being present. (Thus, throughoetpémper,
the term “executable” means a stripped executable.) Oueur
implementation of IR recovery—which is incorporated in alto
called CodeSurfer/x86 [38]—works on x86 executables; hane
the algorithms used are language-independent.

When debugging information is absent, an executable’s data
objects are not easily identifiable. Consider, for instarcelata
dependence from statemento statemenb that is transmitted by
write/read accesses on some variabl®/hen performing source-
code analysis, the programmer-defined variables provideitis
convenient compartments for tracking such data manimratiA
dependence analyzer must show thdefinest, b uses, and there
is anx-def-free path froma to b. However, in executables, memory
is accessed either directly—by specifying an absolute esdd+
or indirectly—through an address expression of the forbasg
+ index x scale + offséf, where baseand index are registers
andscaleandoffsetare integer constants. It is not clear from such
expressions what the natural compartments are that sheulddd
for analysis. Because, executables do not lr@vinsic entities that
can be used for analysis (analogous to source-level vasabh
crucial step in IR recovery is to identify variable-like eigs.

Past work on IR recovery from executables has relied on some
simple techniques for identifying variable-like entitiéSor in-
stance, IDAPro [31], a commercial disassembly toolkit,okers
variables based on statically known-addresses and staciefoff-
sets. However, this approach has certain limitations. Fstance,
it generally recovers only very coarse information aboutys.
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Figure 1. Organization of CodeSurfer/x86 and companion tools.

Moreover, this approach cannot provide any informationualtoe
fields of heap-allocated objects, which is crucial for ustinding
programs that manipulate the heap. (24.1.)

One of the main challenges in static analysis of low-leveleco
is to recover information about memory-access operatietts., (
the set of addresses accessed by each operation). Thisigsltif
because

¢ While some memory operations use explicit memory addresses
in the instruction (easy), others use indirect addressiagd-
dress expressions (difficult).

» Arithmetic on addresses is pervasive. For instance, eveamwh
the value of a local variable is loaded from its slot in anweti
tion record, address arithmetic is performed.

¢ There is no notion of type at the hardware level: addresssgalu
are not intrinsically different from integer values.

¢ Memory accesses do not have to be aligned, so word-sized ad-
dress values could potentially be cobbled together from mis
aligned reads and writes.

In our research on static analysis of low-level code, we lizwel-
oped techniques that cope with such issues.

The tool set that we have developed for analyzing execigable
builds on (i) recent advances in static analysis of prograac@ta-
bles [4, 6, 5], and (ii) new techniques for software modelokirey
and dataflow analysis [11, 39, 40, 33]. The main componerttseof
tool set areCodeSurfer/x86WPDS++ and thePath Inspector

¢ CodeSurfer/x86 recovers IRs from an executable that are sim
ilar to the IRs that source-code-analysis tools create—hut
many respects, the IRs that CodeSurfer/x86 builds are more
precise. (For instance, code from DLLs is imported into the
IRs that CodeSurfer/x86 builds, whereas the IRs that seurce
code-analysis tools create typically require hand-wrigeubs
for library routines.) CodeSurfer/x86 also provides an A®I
these IRs.

e WPDS++ [32] is a library for answering generalized reacha-

bility queries onweighted pushdown syste(gPDSs) [11, 39,

40, 33]. This library provide a mechanism for defining andrsol
ing model-checking and dataflow-analysis problems. Torekte
CodeSurfer/x86's analysis capabilities, the CodeSwaér/
API can be used to extract a WPDS model from an executable
and to run WPDS++ on the model.

The Path Inspector is a software model checker built on top of
CodeSurfer and WPDS++. It supports safety queries about a
program’s possible control configurations.

In addition, by writing scripts that traverse the IRs that
CodeSurfer/x86 recovers, the tool set can be extended wiitefr
capabilities (e.g., decompilation, code rewriting, etc.)

Fig. 1 shows how these components fit together. CodeSuser/x
makes use of both IDAPro [31], a disassembly toolkit, andntra



maTech’s CodeSurfer system [18], a toolkit originally deped
for building program-analysis and inspection tools thaalgre

modifying the control flow of the program. If the analyst who i
using the tool can determine that the error report is a fadséipe,

source code. These components are glued together by a piecehen the IR is valid.

called the Connector, which uses three static analysesregaig-
structure identification (ASI) [37], affine-relation ansily (ARA)
[35, 33], and value-set analysis (VSA) [4]—to recover imfiation

The major assumption that we make about IDAPro is that it
is able to disassemble a program and build an adequate collec
tion of preliminary IRs for it. Even though (i) the CFGs created

about the contents of memory locations and how they are maanip by IDAPro may be incomplete due to indirect jumps, and (ig th

lated by an executable. call-graph created by IDAPro may be incomplete due to imdire
Material about CodeSurfer/x86 has been presented in devera calls, incomplete IRs doot trigger error reports. The CFGs and

previous papers [4, 33, 6, 38, 5]. The present paper describe the call-graph are fleshed out according to information veged

enhancements to the abstract domains and abstract auiiththret
we have developed since the publication of [4].

The remainder of the paper is organized as folldy2sprovides
an overview of the three main analyses used in CodeSurfr/x8
variable and type discovery (ASI), VSA, and ARA3 describes

during the course of memory-access analysis. The reldtipte-
tween memory-access analysis and the preliminary IRsexntdat
IDAPro is similar to the relationship between a points-taigsis
algorithm in a compiler and the preliminary IRs created keya¢bm-
piler's front end. In both cases, the preliminary IRs arehiéesout

some of the work we have done to enhance VSA since the publica- using the results of static analysis.

tion of [4]. §4 discusses related work.

2. Overview of CodeSurfer/x86

The analyses in CodeSurfer/x86 are a great deal more anmbitio
than even relatively sophisticated disassemblers, su¢b/sBro.

The analyzer does not care whether the program was compiled
from a high-level language, or hand-written in assemblyecdd
fact, some pieces of the program may be the output from a éempi
(or from multiple compilers, for different high-level langges),
and others hand-written assembly code. Still, it is eas@salk
about the information that the tool is capable of recovenirigrms

Previous work on analyzing executables has dealt with mgmor ©f the kinds of features that high-level languages supfidstcapa-

accesses very conservatively: generally, if a registersggaed

ble of recovering information from programs that use glolzai-

a value from memory, it is assumed to take on any value [23’ ables, local Val’iables, pOinterS, structures, al’raysp-ladiacated

16]. Other research concerning data-dependence analygse
cutables has a variety of shortcomings: either the analgsier
single-procedures only [2], or handles memory locatiore flow-
insensitive manner [26], or does not account for the pdgtyilof
called procedures corrupting the memory locations beiagked
[26].

storage, pointer arithmetic, indirect jumps, recursivecpdures,

virtual functions, and indirect calls through function piars (but,

at present, not run-time code generation or self-modifgiode).
Compiler transformations do not confuse the analysis ag lon

as they conform to the aforementioned compilation modek Th

analysis is capable of handling

To address such issues, we have brought to bear a variety of ® tail recursion (it sees the loop that results from tail-cati-

static-analysis techniques. At the technical level, ourkwad-
dresses the following problem:
Given a stripped executablg (i.e., with all debugging informg
tion removed), identify the

e procedures, data objects, types, and libraries that it uses
and

e for each instructiod in E and its libraries

e for each interprocedural calling context bf

o for each machine register and variable
statically compute an accurate over-approximation to

e the set of values thdt may contain wher executes

he constraint that debugging information is unavailaldenpli-
cated the task of creating CodeSurfer/x86; however, theltses
from its various static-analysis phases provide a sulbstitr such
information. This allowed us to create a tool that can be wgeeh
debugging information is absent or untrusted.
A few words are in order about the scope of ambition, capabili
ties, and assumptions underlying CodeSurfer/x86.

mization)
e |ocal variables accessed usiegp-relative offsets or Pascal-
style displays
e applications with custom allocators (although the usertbas
identify the allocators)
Moreover, optimizations often make the task of memory-asce
analysislessdifficult: unoptimized programs generally have more
memory accesses than optimized programs. Optimizatigois ty
cally arrange to keep more of the computation’s criticaladiat
registers, rather than in memory. Operations on registersasier
to analyze than operations that access memory becausesteregi
cannot be the target of a pointer.

2.1 Variable and Type Discovery

One of the major stumbling blocks in analysis of executaides
the difficulty of recovering information about variablesdaypes,
especially for aggregates (i.e., structures and arrays).variable
and type-discovery phase of CodeSurfer/x86 recovers suok i

We assume that the executable that is being analyzed follows mation for variables that are allocated globally, locailg.( on the
a “standard compilation model”. By this, we mean that the ex- run-time stack), and dynamically (i.e., from the heap). fendtive
ecutable has procedures, ARs, a global data region, andm hea strategy is used; with each round of the analysis (congistii\SI,

might use virtual functions and DLLs; maintains a runtimackt
each global variable resides at a fixed offset in memory; ezl
variable of a procedurg resides at a fixed offset in the ARs for
f; actual parameters of are pushed onto the stack by the caller
so that the corresponding formal parameters reside at fifset®

in the ARs forf; the program’s instructions occupy a fixed area of
memory, and are not self-modifying.

During the analysis, these assumptions are checked. When vi
lations are detected, an error report is issued, and thgsaaalro-
ceeds, generally after making an optimistic choice. Fdaimse, if
the analysis finds that the return address might be modifiddrwi
a procedure, it reports the potential violation, but praisegithout

ARA, and VSA), the notion of the program’s variables and s/jze
refined.

The memory model that we use is an abstraction of the concrete
(runtime) address space, and has two parts:

Memory-regions. Although in the concrete semantics the ARs
for procedures, the heap, and the memory for global datdlgrara
of oneaddress space, for the purposes of analysis, we separate the
address space into a set of disjoint areas, which are rdftsras
memory-regionsEach memory-region represents a group of loca-
tions that have similar runtime properties. For exampleytimtime
locations that belong to the ARs of a given procedure belorogpée
memory-region. For a given program, there are three kindg-of



gions: (1)globatregions, which represent memory locations that
hold global data, (2AR-regions, which represent the locations in
the ARs of the different procedures, and 3llocregions, which
represent the locations allocated at different malloesite

which spang; andi», andls4, which spang; andl4. Because (for
a 32-bit machine) value-sets only represent addressesusnelrit
values up to 32 bits, VSA will not be able to represent the esisls
and numeric values that. andls4 hold. Reads from and writes to

A-locs. The second part of the memory model uses a set of (parts of)l1» andlss would be treated conservatively, and VSA

(proxies for) variables, which are inferred for each memm@gion.
Such objects are called-locs which stands for “abstract loca-
tions”. In addition to the a-locs identified for each memoegion,
the registers represent an additional class of a-locs.

Initially, CodeSurfer/x86 uses a set of variables (i.elocs)
that are obtained from IDAPro. Because IDAPro has relatilisi-
ited information available at the time that it applies itsiable-
discovery heuristics (i.e., it only knows about staticafiyown
memory addresses and stack offsets), what it can do is dather
ited, and generally leads to a very coarse-grained appeiomof
the program’s variables. (Sé2.1.1.)

Once a given round of VSA completes, the value-sets for
the a-locs at each instruction provide a way to identify aarov
approximation of the memory accesses performed at thatiost
tion. This information is used to refine the current set obeslby
running a variant of the ASI algorithm [37], which identifiesm-
monalities among accesses to different parts of an aggretzaa
value. (Se¢2.1.2.)

2.1.1 Limitations of IDAPro’s A-loc Identification Algorit hm

In the version of our work described in [4], IDAPro’s apprbao
recovering variables was used to instantiate the memorghwath
a-locs. IDAPro’s approach to recovering variables is basethe
following observations:

The layout of memory is known at compile time: the com-
piler decidesa priori the locations of global variables, local
variables, etc. Direct accesses to program variables are pe
formed using either absolute addresses (for globals) er off
sets relative to the frame pointer or stack pointer (forlgca
Thus, absolute addresses and offsets (generally) indioate
starting addresses of program variables.

Thus, in the version of our work described in [4], an a-locsisted
of the set of locations between two consecutive staticatigukn
addresses or stack-frame offsets.

This approach has several limitations. In particular, beea
only addresses and offsets that occur explicitly in the Eogare
considered, this approach does not identify variables dhatac-
cessed only indirectly. For instance, IDAPro can never tifien
fields of heap-allocated data objects because they are slagy
cessed by memory-access expressions that lie outside ofabe
considered: fields of dynamically allocated objects aressed in
terms of offsets relative to the base address of the objgelf,it
which is something that IDAPro knows nothing about. Morepve
IDAPTro can also have trouble with locals and globals. Fongla,
IDAPro would not discover fields of elements of an array wheyt
are accessed relative ¢ax, e.g9., by[eax] and [eax+4], rather
than being accessed relative to the stack poirgep) or frame
pointer ebp). To recover such fields, the set of values trat can
hold needs to be determined; i.e., the analysis has to looloat
than just the explicitly known addresses and stack-frarfeets.

would report thatl;» and 34 hold T (any possible address or
numeric value) at all program points. On the other hand, wihen
I, 13, andly are used as four-byte a-locs, VSA will produce more
precise (nont) value-sets.

Another limitation of relying on IDAPro’s variable-idefittation
algorithm is that the a-locs recovered are not expressigagn

¢ IDAPro’s a-locs cannot capture information about the répga
structure of arrays; an array is identified merely as a cantig
block of data.

¢ IDAPro does not identify fields of heap-allocated objectscts
information is crucial for tracking the contents of heamesl.

¢ An IDAPro a-loc can only represent a contiguous sequence
of memory locations in a memory-region, with no internal
substructure. It cannot represent non-contiguous menwry |
cations, such as the locations of (all instances of) a specifi
field in an array of structures.

This lack of expressiveness of IDAPro’s a-locs can affeet th
precision of clients of VSA, such as the dependence analyzer
CodeSurfer/x86. This uses sets of used, killed, and pgskilkéd
a-locs for each program point, generated from the result&Se,
to build a system dependence graph [29] for the executable. |
particular, IDAPro’s a-locs are too coarse-grained a regmtation
of used, killed, and possibly-killed memory locations, &hnid can
lead to extra edges in the dependence graph.

2.1.2 Aggregate Structure Identification (ASI)

ASI is a unification-based, flow-insensitive algorithm tertify
the structure of aggregates in a program. AS| was origirggiel-
oped for analysis of Cobol programs: in that context, ASbigis
the type declarations for all aggregates, and considets aggre-
gate to be merely a sequence of bytes of a given length. The ag-
gregate is then broken up into smaller parts depending onitiew
accessed by the program. The smaller parts are referrectoras

One might hope to apply ASI to an executable by treating each
memory-region as an aggregate and applying ASI (withoutgusi
VSA results). However, one of the requirements for applyh&)
is that it must be possible to extract data-access contstifagm the
program. This is possible when ASl is applied to programstemi
in a language such as Cobol: the data-access patterns aeapp
from the syntax of the constructs under consideration. Kewe
for executables the data-access patterns are not reagirexg.
For instance, the memory operafigax] can represent an access
to either a single variable or to the elements of an arraytuFor
nately, the value-sets recovered by VSA furnish informmatioat
can be used to generate ASI data-access constraints; atform
about the values that a-locs can hold (in terms of range aiutb st
information—se&3.2) provides information not only about points-
to relationships, but also about the extent and repeatingtste of
a memory-access operation.

Our extension to ASI exploits the information made avail-
able by VSA to create data structures that record the steicti

Because IDAPro does not take into account all memory-access 82ch memory-region and relationships among the memorgireg

operations in the executable, it may produce a too-coatsef se
locs, which can affect the precision of VSA. For example page
that a procedure in a program has faubyte local variableg;,

I3, I3, andly4 that are laid out next to each other. Suppose that the

compiler generates explicit accesses tandls and only generates
indirect accesses th andl4 (in terms of the addresses bf and
I3). In this case, IDAPro will only take into account the exjilic
accesses td andl;—hence, it identifies two 8-byte a-lock:,

atoms (which correspond to the newly discovered a-locds gén-
erally leads to a much more accurate set of a-locs than thelini
set of a-locs discovered by IDAPro. For instance, considémale
loop, implemented in source code as

int a[10],
for (i = 0;
ali] = i;

i;

i< 10; i++)



From the executable, IDAPro will determine that there am@veari-
ables, one of sizé bytes and one of siz#) bytes, but will provide
no information about the substructure of th@byte variable. In
contrast, in addition to thé-byte variable, ASI will correctly iden-
tify that the40 bytes are an array of teltbyte quantities.

The current version of the Connector uses a refinement loop
that performs repeated phases of ASI, ARA, and VSA (see Fig. 1
The first round of ASl is performed using the variables disced
by IDAPro. On each subsequent round, ASI is used to refine the
previous set of a-locs, and the refined set of a-locs is thed tes
analyze the program during the next round of VSA. The number o
iterations is controlled by a command-line parameter.

After the second round of ASI, the a-locs in hand permit VSA
to start to analyze the contents of dynamically allocatejgcib
(i.e., memory locations allocated using malloc or new) [BRA
considers each malloc site to be a “memory-region” (consisting
of the objects allocated at), and the memory-region fon serves
as a representative for the base addresses of those dbjEis.
lets ASI handle the use of an offset from an object’s baseesddr
similar to the way that it handles a stack-frame offset—uith
net result that the second round of ASI starts to identifyfthe-
grained structure of dynamically allocated objects. THeatfields
discovered in this way become a-locs for the second roundsef,vV
which will then discover an over-approximation of their tamts.

2.2 Value-Set Analysis (VSA)

The goal of VSA is to determine, at each program point, an-over
approximation of the set of numeric values and addresses(@e-

se) that each register and memory location (a-loc) holds. The
information computed during VSA is also used to augment étle ¢
graph and control-flow graphs to account for indirect jumpd a
indirect function calls.

VSA is a combined numeric and pointer-analysis algorithm.
VSA is related to pointer-analysis algorithms that havenbde-
veloped for programs written in high-level languages, \ntdeter-
mine an over-approximation of the set of variables whoseezdgs
each pointer variable can hold:

At each program point, VSA determines an over-approximatio
of the set of addresses that each data object can hold.

At the same time, VSA is similar to range analysis and other nu
meric static-analysis algorithms that over-approximhbteinteger
values that each variable can hold:

At each program point, VSA determines an over-approximatio
of the set of integer values that each data object can hold.

The following insights shaped the design of VSA:

A non-aligned acces® memory—e.g., an access via an ad-
dress that is not aligned on 4&byte word boundary—spans
parts of two words, and provides a way to forge a new ad-
dress fromparts of old addresses. It is important for VSA to
discover information about the alignments and strides ahme
ory accesses, or else most indirect-addressing operatipesar

to be possibly non-aligned accesses (see the discussidi.in

To prevent most loops that traverse arrays from appearing to
corrupt the stack, the analysis needs to use relationainieo
tion so that the values of a-locs assigned to within a loop can
be related to the values of the a-locs used in the loop’s branc
condition (se€2.3 and [4, 35, 33]).

It is desirable for VSA to track integer-valued and address-
valued quantitiesimultaneouslyThis is crucial for analyzing
executables because

1The implementation actually uses a more precise abstraofialynami-
cally allocated memory; see footnote 6 and [5].

= integers and addresses are indistinguishable at execution
time, and
= compilers use address arithmetic and indirect addressing
to implement such features as pointer arithmetic, pointer
dereferencing, array indexing, and accessing structudsfie
Moreover, information about integer values can lead to im-
proved tracking of address-valued quantities, and inftiona
about address values can lead to improved tracking of intege
valued quantities.
VSA produces information that is more precise than thatinbth
via several more conventional numeric analyses used in itomp
ers, including constant propagation, range analysis, atetjér-
congruence analysis. At the same time, VSA provides an gnalo
of pointer analysis that is suitable for use on executables.

2.3 Affine-Relation Analysis (ARA)

VSA is not relational; that is, it does not keep track of thia+e
tionships that hold among registers and memory locatiomsv-H
ever, when interpreting conditional branches, specificabse that
implement loops, it is important to know such relationshiigps
Hence, a separate affine-relation analysis (ARA) [35, 33jes
formed to recover affine relations that hold at conditionanch
points; those affine relations are then used by VSA whenpneer
ing conditional branches. (Currently, ARA recovers affiakations
that only involve registers.) ARA implements the affineat&n do-
main from [35], which is based on arithmetic modaf3 and hence
accounts for arithmetic overflow.

Before each call instruction, a subset of the registersvisdsan
the stack, either by the caller or the callee, and restordgataieturn.
Such registers are called toaller-saveand callee-saveegisters.
To preserve their values across a call, ARA treats callee-sad
callee-save registers as local variables of the callinggufare [33];
i.e., the values of caller-save and callee-save registnsthe call
are set to the values before the call and the values of othistees
are set to the values at the exit node of the callee.

3. Enhancements to Value-Set Analysis

VSA is a combined numeric-analysis and pointer-analysis al
gorithm that determines, at each program point, an over-
approximation of the set of numeric values and addressésdich
a-loc holds. One of the basic abstract domains used duringi¥’S
thevalue-set domaifsee§3.3), which is a safe approximation to a
set of concrete addresses and numeric values. A value-@ehép
from memory-regions tetrided intervalgsee§3.2), and associates
each memory-regiom with a strided interval that represents a set
of offsets inm. In this section, we describe strided intervals and
value-sets, and sketch how they are used to define abstaast tr
formers for x86 instructions.

3.1 Notational Conventions

We use different typefaces to make the following distintsidante-
gers ) and other mathematical expressions are written in orginar
mathematical notation (e.gl, —23', 23! — 1,1 < 2, etc.); vari-
ables that hold integers appear in italics (ex). Bounded integers,
such as unsigned numbers and signed two's-complement msmbe
as well as variables that hold such quantities, appear i (@og.,
1, —231, 23 _ 1). Fragments of C code appear in Courier (e.g.,
1, -2%,2% —1,a,if(a< b){...}z=x+y).
When the same name appears in different typefaces, our con-
vention is that the meaning changes appropriately, andz refer
to program variable:, whose signed two’s-complement value (or
unsigned value, if appropriate)is and whose integer value is
Names that denote strided intervals are also written in.bold



Let [z].» denote the congruence classiofmod m, defined as
def

[z]m = {z+ix m|i€ Z};note thafz]o = {z}.

3.2 Strided-Interval Arithmetic

A k-bit strided intervalis a triples[lb, ub] such that-2* < Ib <
ub < 2F

DEFINITION 3.1. [Meaning of a strided interval]. A k-bit strided
interval s[lb, ub] represents the set of integers

y(s[b,ub)) = {i € [-2%, 2" — 1] | Ib < i < ub,i € [Ib],}.

O

Note that a strided interval of the for@|a, a] represents the

singleton se{a}. Except where noted, we will assume that we are Eg%

working with 32-bit strided intervals.

In a strided intervas[lb, ub], s is called thestride, and[1b, ub]
is called theinterval. Strides is unsigned; boundik andub are
signed? The stride is unsigned so that each two-element sg2-of
bit numbers, including such setsfs2?®!, 23* —1}, can be denoted
exactly. For instancd,—2*, 2% — 1} is represented exactly by the
strided intervai(23? — 1)[—2%", 23" —1].

As defined above, some sets of numbers can be represente

by more than one strided interval. For instangé4[4, 14]) =
{4,8,12} = ~(4]4,12]). Without loss of generality, we will
assume that all strided intervals aeluced(i.e., upper bounds

are tight, and whenever the upper bound equals the lowerdboun

the stride isD). For exampled[4, 12] and0[12,12] are reduced
strided intervals4[4, 14] and4[12, 12] are not.

The remainder of this subsection describes abstract attbm
and bit-level operations on strided intervals for use intraios
interpretation [21].

DEFINITION 3.2. [Soundness criterion] For each op, if sis =
siy op° siz, theny(sis) D {a opb | a € y(si1) andb € y(siz2)}.
|

Sound algorithms for performing arithmetic and bit-leveéoa-
tions onintervals(i.e., strided intervals with stride) are described
in a book by H. Warren [47]. They provided a starting pointtfoe
operations that we define for strided intervals, which extérar-
ren’s operations to take strides into account.

Below, we summarize several of Warren’s interval operation
and describe how a sound stride fdg can be obtained for each
Operatiompsi c {+si’ fli7 si7 ++si’ si’ |si7 Nsi’ &si7 /\SI}.

Addition (+°)

Suppose that we have the following bounds on two two’s-

complement valueg andy: a < x < bande < y < d. With
32-bit arithmetic, the result ok + y is not always in the interval
[a + ¢, b + d] because the bound calculatioast ¢ andb + d
can overflow in either the positive or negative direction.ri&a
provides the method shown in Tab. 1 to calculate a bound eny.
Case (3) of Tab. 1 is the case in which neither bound calaulati
overflows. In cases (1) and (5) of Tab. 1, the resulixof y is
bounded byfa + ¢, b + d] even thoughboth bound calculations

overflow. Thus, we merely need to identify cases (2) and (4),

—1. The meaning of a strided interval is defined as follows:

(1) a+c< -2 b+d< 2%
(2) a+c< =2 b+d> 2%
(3) -2 <a+ec<2® b+d<2¥ atc<x+y<b+d
(4) -2 <a+c<2b4+d>2% = 2% <x4y<28 -1
(5) a+c>2b+d>2" = a+c<x+y<b+d

at+c<x+y<b+d

=
= 281 <x4+y<2¥ 1
=
=

Table 1. Cases to consider for bounding the result of adding two
signed two’s-complement humbers [47, p. 56].

[1] void addSI(int a, int b, unsigned si,

[2] int ¢, int d, unsigned s2,

[3] int& lbound, int& ubound, unsigned& s) {
[4] lbound = a + c;

[5] ubound = b + d;

[6] int u a & ¢ & ~1bound & ~(b & d & ~ubound);
[71 int v = ((a ™ ¢) | ~(a " 1lbound)) & (~b & ~d & ubound);
if(u | v < 0) { // case (2) or case (4)

s = 1;
[10] lbound = 0x80000000;
[11] ubound = Ox7FFFFFFF;
[12]
[13] else s = gcd(sl, s2);
[14] }

Figure 2. Implementation of abstract addition+{) for strided

éntervals.

In the proof of Thm. 3.4 (see below), we will make use of the
following observation:

OBSERVATION 3.3. In case (1) of Tab. 1, all three sunas+ c,
x +y, andb + d yield values that are too high ®#*? (compared
toa + ¢, x + y, andb + d, respectively) [47, p. 56]. Similarly, in
case (5), all three sums yield values that are too loveHy O

Fig. 2 shows a C procedure that uses these ideas to compute
s1[a, b] +*s2[c,d], but also takes the stridesl and s2 into
account. Thegcd (greatest common divisor) operation is used to
find a sound stride for the reslt.

THEOREM3.4. [Soundness of+%]. If sis = si; +% sia, then
v(sig) D {a+b|a € y(si1) andb € y(siz)}. O

Proof: The soundness of the interval ©if; follows from the argu-
ments given in [47]. We need to show that the stride compuyed b
procedureaddsI from Fig. 2 is sound.

In lines [9]-[11] of Fig. 2, which correspond to cases (2) and
(4), the answer is the entire intervjat2®*, 23* — 1], so the stride
of 1 is obviously sound. In all other situationg;d is used to find
the stride.

Letsi; = S]_[lb]_, ub]_], Sl = ’y(Sil), sig = Sz[lb2,ub2},
andSlh = v(si2). We consider the cases where

sizg = ng(Sl7 52)[1b1 =+ lbg, ubi + ubg}.

0 if s1=0
(ubi — Ib1)/s1  otherwise
0 if So =10
(uby — lb2)/s2  otherwise
Thus,
Sh = {lb1+z><51\0<z<b1}
= {lbl,lb1+51,.. lbl+b1><51}

in which case the bounds imposed are the extreme negative and Sk = {lbs +j X s2 | 0 S J <bs}

positive numbers (see lines [9]-[11] of Fig. 2). This can beal
by the code that appears on lines [4]-[7] of Fig. 21 I§ negative,
then case (2) holds; if is negative, then case (4) holds [47, p. 57].

270 reduce notation, we rely on context to indicate whetheypeface
conversion denotes a conversion to a signed two’s-compieraue or to
an unsigned value: if is a stride,x denotes an unsigned value;yifis an
interval boundy denotes a signed two’s-complement value.

= {lbg,lbg + s2,...,lba + b2 X 52}
andSl; +Sh = {lb] +lb2, - ,lb1 +1ba+1i X% s1 —I—j)( S2,...
lbz +b1 X 81 + b2 X 52}.

b1+

3By convention, gc@D, a) = a, gcda, 0) = a, and gcdo, 0) = 0.
4By the assumption that we work only witeducedstrided intervals, in

a strided intervals[lb, ub], s # 0 implies thats divides evenly into
(ub — Ib).



[11
[2]
[3]
[4]
[5]
[6]
[71
[8]
[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19] }
[20] m
[21]
[22]
[23] }

unsigned minOR (unsigned a, unsigned b,
unsigned c, unsigned d) {
unsigned m, temp;
m = 0x80000000;
while(m != 0) {
if(~a & ¢ & m) {
temp = (a | m) & -m;
if (temp <= b) {
a = temp;
break;

else if(a & ~c & m) {
temp = (¢ | m) & -m;
if (temp <= d) {
c = temp;
break;

—

=m > 1;

return a | c;

Figure 3. Implementation of minOR [47, p. 59].

Lets = gcd(s1, s2), s1 = s X m, andsa = s x n. We wish to
show thats divides evenly into the difference between an arbitrary
element in Sl; + Sk and the lower-bound valué; +1b;. Lete be
some element dBl; +Sk: e = (Iby +1b2) +i X s1+j X s2, where
0 < i < by and0 < j < by. The difference: — (1b1 + Ib2) is non-
negative and equals< s1 + j x s2, which equals x (i x m+j x n),
and hence is divisible by.

Moreover, by Obs. 3.3, when we compare the valu&in- Sk,
to the interval—23' 23! — 1], they are either

e all too low by23? (case (1) of Tab. 1),

e in the interval[—23! 23! — 1] (case (3) of Tab. 1), or

« all too high by2*? (case (5) of Tab. 1).
Let -2 < ¢ < 2% — 1 bee adjusted by an appropriate
multiple of 232, Similarly, let—23' < Ib < 23! — 1 belb; + Ib,
adjusted by the same multiple 8f>. (Note that, by Obs. 3.3p
is the minimum element if all elements 8f, + Sk are similarly
adjusted.) The argument that- (1b1 +1b2) is divisible bys carries
over in each case to an argument thate [lb]s. Consequently,
v(siz) D Sh + Sk, as was to be shownl

Unary Minus ( &)

Suppose that we have the following bounds on the two’s-
complement valugr: ¢ < y < d. Then—d < —y < —c. The
number—23' is representable as a 32-bit two’s-complement num-
ber, but2®' is not. Moreover, ifc = —2%!, then—c = —23' as
well, which means that we do not necessarily hage< —c (note
that—c is a two's-complement value in this expression). However,
in all other cases we haved < —y < —c; by the assumption
that we work only withreducedstrided intervals, is[c, d] the up-
per boundd is achievable, which allows us to retairas the stride

of (s[c,d]):

_ 0[—231, —231] ifc=d=—-2%
il(S[C, d]) = S[fdv 7(:} if ¢ 7é 7231
1[-2%',23" — 1] otherwise

Subtraction ( %), Increment (++°), and Decrement (%)

The +% and § operations on strided intervals can be used to
implement other arithmetic operations, such as subtmadtid),
increment ¢-+°*), and decrement ( *), as follows:

x-Sy = x+9(3y)
++%x = x+%0[1,1]
-—S'x = x450[-1,-1]

[11
[2]
[3]
[4]
[5]
[6]
[71
[8]
[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17] }
[18] m
[19]
[20]
[211 }

unsigned maxOR(unsigned a, unsigned b,
unsigned c, unsigned d) {
unsigned m, temp;
m = 0x80000000;
while(m != 0) {
if(b & d & m) {
temp = (b - m) | (m - 1);
if (temp >= a) {
b = temp;
break;

temp = (d - m) | (m - 1);
if (temp >= ¢) {

d = temp;

break;

-

=m > 1;

return b | d;

Figure 4. Implementation of maxOR [47, p. 60].

Bitwise Or (|)

Following Warren, [47, p. 58-63], we develop the algoritton|f'
(bitwise-or on strided intervals) by first examining how toubd
bitwise-or onunsignedvalues and then using this as a subroutine
in the algorithm for®. Suppose that we have the following bounds
on unsigned valueg andy: a < x < bande < y < d.
The two algorithms from Warren’s book given in Figs. 3 and 4
provide bounds on the minimum and maximum possible values,
respectively, thak | y can attain.

Warren argues [47, p. 58-59], that the minimum possibleevalu
of x|y can be found by scanning andc from left-to-right, and
finding the leftmost position at which either

* a0 of a can be changed tb, and all bits to the right set t0,

yielding a numben’ such that’ < band(a’|c) < (a|c), or
* a0 of ¢ can be changed tb, and all bits to the right set t0,
yielding a number’ such that’ < d and(a|c’) < (a|c).

This is implemented by functioninOR of Fig. 4. For instance,
suppose that we have

0000101 = a <x < b =0001001

0010011 = ¢ <y <d =0101001.
We rejecta’ = 0010000 becaused010000 £ 0001001 =
b; however, we find that’ = 0010100 meets the condition
0010100 < 0101001 = d, and

(a]c') = (0000101 |0010100)
0010101
0010111
(0000101 | 0010011)
(ale. o
Note that Warren's algorithm relies on the assumption thé i
working on intervals with strides of. For instance, we could
select the new contribution to the lower boueti= 0010100 >
0010011 = ¢, without having to worry about whether a stride
value repeatedly added éomight missc’.

The algorithm to find the maximum possible value xof y
(Fig. 4) has a similar flavor [47, p. 60].

Tab. 2 shows the method that Warren gives for finding bounds
on the bitwise-or of two signed two’s-complement valuesndy,
wherea < x < bandc <y < d[47, p. 63]. The method calls the
procedures from Figs. 3 and 4, which find bounds on the biteise
of two unsigned values.

Functionntz of Fig. 5 counts the number of trailing zeroes of
its argumentk. At line [3] of Fig. 5,y is set to a mask that identifies
the trailing zeroes ok [47, p. 11], i.e.y is set to the binary number
0717, wherei + j = 32 and; equals the number of trailing zeroes

Al



a [ b [ c [d [signedminOR [signedmaxOR

< 0]<0]<0]<0]minOR(a,b,c,d) maxOR(a, b, c,d)
<0|<0|<0|>0|a —1

< 0[<0[>0][>0][minOR(a,b,c,d) maxOR(a, b, c,d)
<0[>0|<0|<0fc —1

< 0|>0]|<0]|>0|min(a,c) maxOR(0,b,0,d)
< 0[>0]>0[>0[minOR(a, 0xFFFFFFFF, c, d) | maxOR(0,b, c,d)
> 0[>0]|< 0[< 0|minOR(a,b,c,d) maxOR(a, b, c,d)
> 0[>0][<0[>0[{minOR(a,b,c, 0xFFFFFFFF) maxOR(a,b,0,d)
>0[>0][>0[>0[minOR(a,b,c,d) maxOR(a, b, c,d)

Table 2. Signed minOR(a, b, c,d) and maxOR(a, b, c,d)
[47, p. 63]. Warren’s method uses unsignechOR andmax0R to
find bounds on the bitwise-or of two signed two’s-complemetit
uesx andy, wherea < x < bandc <y < d. (Becausa < b
andc < d, the nine cases shown above are exhaustive.)

[1] int ntz(unsigned x) {

[2] int n;

[3] int y = -x & (x-1);
[4] n = 0;

[5] while(y != 0) {
[6] n=n+1;

[71 y=y> 1;

[8]

[9] return n;

[101 }

Figure 5. Counting trailing O’s ofx [47, p. 86].

in x. The trailing ones of are then counted in the while-loop in
lines [5]-[8].

We now turn to the algorithm for bitwise-or on strided inter-
vals (*). Suppose that we want to perfors[a, b] |* s2[c, d].
As illustrated by the topmost set shown in Fig. 6, all eleraént
v(s1[a, b]) share the sam& = ntz(s:) low-order bits: because
thet; low-order bits of strides; are all0, repeated addition of;
to a cannot affect the; low-order bits. Similarly, all elements in
v(sz2[c, d]) share the samie = ntz(s») low-order bits.

As illustrated by the third set shown in Fig. 6, all values in
the answer strided interval share the sanh@wv-order bits, where
t = min(t1, t2). Consequently, we may take= 2' (=1 << t)
as the stride of the answer, and the value of the shaled-order
bits can be calculated by = (a & mask) | (c & mask), where
mask = (1 << t) — 1.

The32 —t high-order bits are handled by masking out theaw-
order bits, and then applying the method from Tab. 2 for figdin
bounds on the bitwise-or of two signed two's-complementesl

Thus, to computes [a, b] |* s2[c, d], we perform the following
steps:

e Sett := min(ntz(s1), ntz(s2)).

e Sets := 2%,

e Calculate the value of the sharedlow-order bits asr :=
(a & mask) | (c & mask), wheremask = (1 << t) — 1.

e Use the method from Tab. 2 to bound the value of
x'|y' for (a& ~ mask) < x' < (b& ~ mask) and
(c& ~ mask) < y' < (d& ~ mask). Call these bounds
Ib andub.

e Return the strided interval

s[((Ib & ~ mask) |r), ((ub & ~ mask) |r)].

Bitwise not (~3), And (&%), and Xor (*¥)

Suppose that we have bounds vna < x < b. A bound on the
result of applying~ toxis~ b <~ x <~ a[47, p. 58]. Similarly,
for strided intervals, we have

~%(s[Ib, ub]) = s[~ ub, ~ 1b]. 1)

V(Sl[avb}) :{(l,(l+51,{1+231,...,b}
Y(sale,d]) = {c, ¢ + 52, c + 2o, .. d}
t1 = ntZ(Sl)

to = ntz(52)

t = min(tl,tg)

tl t1 t1
{ | M | M | i }
a ar+s; a+2s,

|SI
t2 t2 t2
{ | | | = - }
c cts, Ct+2s,

|

min(t,.t,) min(t, t,)

al alcrs) al ©+2s)
min(t,t,) min(t,.t,) min(t,,t,)
(ats) [c (ats) [ ts)  (atsy) | (C+2s)
min(t,.t,) min(t,t)  min(t,.t)
<> <> «—>
= m | =

(a & mask) | (c & mask),
wheremask = (1 <<min(t,,t,)) — 1

Figure 6. Justification of the use daf = min(ntz(s1), ntz(s2)) in
the stride calculation of the abstract bitwise-or operafid). In
particular, all values in the answer strided interval stiheesame
low-order bits.

Eqgn. (1) relies on the assumption that strided intervalsedaced:
the assumption guarantees thate ~y(s[lb, ub]), and hence that
~ ub is the least element of(~°(s[lb, ub])).

By De Morgan's Laws, and by the fact thaf'(~®(s[Ib, ub]))
= s[Ib, ub], &% and"* can be computed using and~*'

Sil &SI Si2 — NSi(NSi Sil ‘Si NSi Sig)
Sil NSt Si2 = (Sil &SI ~5 Si2) |SI(~SI Si1 &SI Si2)

— Nsi(Nsi Sil ‘si Siz) ‘si Nsi(sil |si S Siz)

Strided-Interval Arithmetic for Different Radices

An arithmetic operation in one radix can lead to a differezsutt
from the same operation performed in another radix. Evernwhe
all radices are different powers 2f not all effects can be fixed up
merely by applying a mask to the result. In particular, thees of
the x86 flags (condition codes) depend upon the radix in waith
operation is performed.

EXAMPLE 3.5. Suppose that thes-bit registerax has the value
OxfFff. The abstract transformer for i&%-bit addition operation,
sayADD ax, 1, must account for the effect on the CF (carry) flag.

5Most of the arithmetic and bit-level instructions in the x86truction set
affect some subset of the flags (condition codes), which tared in the
processor'€FLAGS register. For example, the x88P instruction subtracts
the second operand from the first operand, and set&Rh&GS register

according to the results. The values of certain bitEBPEAGS are used
by other instructions (such as tliec, CMOVcc, and SETcc families of

instructions) to direct the flow of control in the program.



&& (and) || FALSE MAYBE TRUE || (or) FALSE MAYBE TRUE
FALSE || FALSE FALSE FALSE FALSE [| FALSE MAYBE TRUE
MAYBE || FALSE MAYBE MAYBE MAYBE || MAYBE MAYBE TRUE
TRUE || FALSE MAYBE TRUE TRUE TRUE TRUE TRUE
(xor) FALSE MAYBE TRUE = (not)
FALSE || FALSE MAYBE TRUE FALSE TRUE
MAYBE || MAYBE MAYBE MAYBE MAYBE || MAYBE
TRUE TRUE MAYBE FALSE TRUE || FALSE
LI (join) FALSE MAYBE TRUE
FALSE || FALSE MAYBE MAYBE
MAYBE || MAYBE MAYBE MAYBE
TRUE || MAYBE MAYBE TRUE

Figure 7. Operations on Bool3s.

In this example, CF needs to be setitovhich is a different value
than CF would have if we modeled thé-bit addition as &82-bit
addition of 0x0000fFff and 0x00000001 and masked out the
lower 16 bits: the32-bit addition would set CF t® because no
carry results from th82-bit operation.d

To make it convenient to define abstract transformers thaktr
x86 flag values, the operations of strided-interval aritticnalso
compute abstract condition-code values that over-appraba the
values computed by the CPU, including CF (carry), ZF (z€86),
(sign), PF (parity), AF (auxiliary carry) and OF (overflovach
strided-interval operatioop™ returns a descriptor of the possible
condition-code values that could result from applying toere-
sponding concrete operatiap to the concretizations of the argu-
ments ofop™. To represent multiple possible Boolean values, we
use the abstract domain Bool3:

Bool3 = {FALSE, MAYBE, TRUE}.
In addition to the BooleansAtSe and TRUE, Bool3 has a third
value, MaYBE, which means “may be At SE or may be RUFE".
Fig. 7 shows tables for the Bool3 operatias: (and),|| (or), *
(xor), = (not), andu (join).

To account for effects like the one illustrated in Ex. 3.8idetd-
interval arithmetic is implemented as a template that isupeter-
ized on the number of bits. Zero-extend and sign-extendabipeis
are also provided to convestbit strided intervals td 6-bit and32-
bit strided intervals, and6-bit strided intervals t2-bit strided
intervals.

3.3 Value-Set Arithmetic

During VSA, a set of addresses and numeric values is repgessen
by a value-set, which is a map from memory-regions to strided
tervals. A value-set associates each memory-regiomith an ab-
stract value that represents a set of offsetsih.et Proc denote the
set of AR memory-regions associated with procedures in tbe p
gram, AllocMemRgn denote the set of memory-regions astaitia
with heap-allocation sitésand Global denote the memory-region
associated with the global data area. We work with the fatkigw

basic domains:
MemRgn= {Global} U Procu AllocMemRgn

ValueSet= MemRgn— StridedInterval
In this section, we give a sketch of the abstract value-siiraetic
used in CodeSurfer/x86.

6The implementation actually uses an augmented abstradiddhat over-
comes some of the imprecisions that arise due to the needrforpe
weak updates—i.e., accumulate information via join—ordfielf summary
malloc-regions. In particular, the augmented domain offeews our anal-
ysis to establish a definite link between a heap-allocatgecbbf a class
that uses one or more virtual functions and the appropriatigal-function

table (see [5]).

For brevity, we usually write value-sets as tuples. We folibe
convention that the first component of a value-set refefse@ét of
addresses (or numbers) in Global, dhdenotes an empty set. For
instance, the tupl€1[0,9],0,...) represents the set of numbers
{0,1,...,9} and the tuple((), 4[—40, —4], 0, .. .) represents the
set of offset{—40, —36, ..., —4} in the first AR-region.

It is useful to classify value-sets in terms of four valuélseds

Kind Form of value-set
VSjob || (Sio,0,...) Sip is a set of offsets in the
Global memory-region
VSinge || (@,...,si,0,...) | siis aset of offsets in the
I-th memory-regioni(# Global)
VS (Sio,---,Sik,...) | Six is a set of offsets in the
k-th memory-region
T (T8, 7%...) all addresses and numeric valuhes

Note that a value-sets = (sio, Si1, ...) has an implicit set of
concrete addresses associated with each obithek > 0: if &
corresponds to an AR-region for procedurethese are the pos-
sible concrete stack-frame base addressep {eelative to which
local-variable offsets are calculated)kifcorresponds to a malloc-
region, these are the possible concrete base addresseswf he
allocated memory objects. Consequently, value-set dpesatan-
not be performed component-wise. For instance, it would e u
sound to us€-—3 Sip, —4 Sit, - . .) as the value-set for the negation
of vs (i.e., )’ vs) because the implicit set of concrete addresses
in (s, & sii,...) would not have been negated. On the con-
trary, the implicit set of concrete addresseg-g si, — Sii, - - .)
would be thesameas the implicit set of concrete addresses in
Vs = (sig, Si1, . . .). Similar considerations hold for other arithmetic
and bit-level operations on value-sets (cf. the entrieb Wit in the
tables for+' and—"°, below).

Addition (+"%)

The following table shows the value-set kinds producee-tiyfor
different kinds of arguments:

+% V%Iob V%ingle V&b TV
VSiob || VSiob VSsingle VSrb T
Vgingle Vs.,ingle TvS TV TVS
VS || VS TV TV T
TVs TVs Tvs Tvs TVs

The value-set operation™ is symmetric in its arguments, and can

be defined as follows:

VSjiob+"5VSjiob: Letvsy = (si},0,...) andvs, =
vs; +Y5vsy = (sif +5'si2,0,...).

VSjiob+"*VSingie Letvs: = (sif,0,...) andvs, = (0,...,si?,0,...).
Thenvs; +Svs; = (0,...,si§ +5si2,0,...).

(si2,0,...). Then

VSingle+"$VSjion: Letvs; = (0,...,si},0,...) andvs, = (si3,0,...).
Thenvs, +¥Svsy = (0, ..., sit +51si2,0,...).

VSjob+"5VSup: Letvs = (sif,0,...) andvs, = (sig,...,siF,...).
Thenvs, +¥Svsy = (sif +5si2, ..., sid +5si2,...).

VSub +Y5VSyon: Letvs = (si, ..., si;,...) andvs, = (si3,0,...).

Thenvs, +¥Svs, = (sif +5si2,. .., sil +5si2,.. ).
Subtraction (%)

The following table shows the value-set kinds produced ‘iyfor
different kinds of arguments:

Vs V%Iob V%ingle V&b TV
V%Iob V%Iob TVS TVS TV§
Vgingle Vs.,ingle TvS TVS TS
VS || VSp T TV TV

Tvs Tvs TVs TVvs Tvs

The operation"® is not symmetric in its arguments; it produce¥
in all but the following three cases:



VSjiob $VSiob: Let vsi (si,0,...) andvs
vs VSvs = (si) S'si2,0,...).

VSingle—*VSyiob: Letvsy = (0,...,si},0,...) andvs, = (si3,0,...).
Thenvs, —¥Svs, = (6,...,sil —S'si2,0,...).

VS Y*VSjob: Let vs; (sig,...,si,...) andvs
Thenvs; “Svs, = (si§ S'si,...,siL Ssi3,...).

Bitwise And (&"°), Or (|*°), and Xor (**%)
Letop”™ € {&"5, |"S,**°} denote one of the binary bitwise value-set

operations, and letp® € {&%,|%,"*} denote the corresponding
strided-interval operation. Leid and annihilator denote the
following value-sets:

(si2,0,...). Then

(si2,0,...).

op”™ id annihilator
&™ 0[_17_1])$) ) (0[070]707)
" (0[0,0],0,...)

VSyiob 0P VSyon: Letvs, = (sip, §,...) andvs
Thenvs, op”vs, = (sip op¥si2, 0, .. .).
VSib0p” VS Letvsdenote a value-set of any kind. Then
id op”®vs = vs
annihilator op’°vs = annihilator
Otherwise sio, 0, .. .) op®vs= T",
VS off*VSjon: Letvsdenote a value-set of any kind. Then
vsop®id = vs
vs off®annihilator = annihilator
Otherwiseys og(sio, 0,...) = T

(s8.0...).

Value-Set Arithmetic for Different Radices

Value-set arithmetic is templatized to account for diffénedices.
Operations on component strided intervals are performied) tise
strided-interval arithmetic of the appropriate radix.

3.4 Abstract Operations for the X86 Instruction Set

VSA is a flow-sensitive, context-sensitive, abstract+iotetation
algorithm (parameterized by call-string length [42]) timbased
on the independent-attribute domain described below.

VSA associates each instruction with an AbsMemConfig,
which, for each call-string, maps each register to a ValtieSeh
flag to a Bool3, and the global-region, each AR-region, archea
malloc-region to an AlocEnv (at.):

Flag= {CF, ZF, SF, PF, AF, OF}
AlocEnv = a-loc — ValueSet
(register— ValueSe}
x (Flag— Bool3)
AbsEnv= x ({Global} — AlocEnv)
x (Proc— AlocEnv, )
x (AllocMemRgn— AlocEnv, )
AbsMemConfig= (CallString— AbsEnv, )

VSA obtains an AbsMemConfig for each instruction by an
abstract interpretation [21] performed on an interprocadGFG.
The interprocedural CFG contains one node for each inguit
the executable, as well as one node for each instructioreibLis
used by the executable. The edges of the interprocedural &C&G
labeled with the instruction at the source of the edge. Ifsilnerce
of an edge is a branch instruction, then the edge is alsoddlvéth
the outcome of the branch.

Intraprocedural Analysis

AbsEnvs for different call-strings are propagated sepiratirough
a CFG by applying the appropriate abstract transformer at th
AbsEnv level (i.e., the transformer is of type AbsErv AbsEnv).
For instance, for a simple move instruction that has the fsdmn
regl,reg2, the abstract transformer at the AbsEnv level can be

expressed as follows (wheté denotes selection of theth com-
ponent of an AbsEnv tuple, and[k < v] denotes the update of
mapm to associate key with valuev):

Aenvlet r = envfl in (r[regl « r(reg2)], envf2, envt3, envi4, envt5).

A discussion of some of the issues that arise in intrapraeédu
propagation, including how VSA handles memory-accessasper
tions, is found in [4§4.1].

Interprocedural Analysis

The basic steps taken to handle parameter passing, calletanns
are discussed in [44.2]. Since the publication of [4], the imple-
mentation of CodeSurfer/x86 has been extended to have aalegr
of context-sensitivity, using the call-strings approazimterproce-
dural dataflow analysis [42].

We have also used the call-strings information to imprimve
traprocedural propagation: VSA uses the call-string assediat
with the current AbsEnv, together with the executable’s gaph,
to determine which of the possible pending ARs in the curfat
stract) calling context represent procedures that coule feeen
called recursively. The distinction is important becaudeca in
AR-regions of potentially recursive procedures represere than
one concrete memory location—our term for thensusnmary a-
locs—and hence assignments to them must be modeled by weak
updates, i.e., the new value-set computed for the a-loc &yakh
stract transformer must be joined with the value-set thatathoc
has in the incoming AbsEnv, rather than replacing it. This of
call-string and call-graph information can allow some eslon
some abstract calling contexts to be identified as non-sugnaxa
locs—in which case strong updates, rather than weak updates
possible (i.e., in such abstract calling contexts, an assét to
the a-loc can be treated as a kill, rather than as just a gedsib).

This improves on the treatment reported in [4], where call-
strings information was not available, and thus in all adtcalling
contexts weak updates were always performed for a-locsonfepr
dures that could be called recursivelysomecalling context.

Idioms

Before applying an abstract transformer, the instructiochiecked

to see if it matches a pattern for which we know how to carry out
abstract interpretation more precisely than if value-gétraetic is
performed directly. Some examples are given below.

XOR reg,reg. TheXOR instruction sets its first operand to the
bitwise exclusive-or{) of the instruction’s two operands. The id-
iom catches the case wh&aR is used to set a register @ hence,
the a-loc for registereg is set to the value-s¢0[0, 0], 0, . . .).

TEST reg,reg. TheTEST instruction computes the bitwise and
(&) of its two operands, and sets the SF, ZF, and PF flags acgordin
to the result. The idiom addresses how the value of ZF is sehwh
the value-set ofeg has the forn{(si, @, ...):

TRUE if v(si) = {0}
ZF:= { FALSE  if y(si)n {0} =0
MAYBE otherwise

CMP a,bOrCMP b,a. Inthe presentimplementation, we assume
that an allocation always succeeds (and hence value-shtsana
only explores the behavior of the system on executions irchwvhi
allocations always succeed). Under this assumption, wepply
the following idiom: Suppose thdtl, k2, . . . are malloc-regions,
the value-set foa is (0, . . ., Sik1, Sik2, - . .), and the value-set far

is (0[0,0],0,...). Then ZF is set to ALSE.

4. Related Work

Other work on analyzing memory accesses in executableSev-
eral others have proposed techniques to obtain informditam



executables by means of static analysis, including [34183.15,
17, 10, 36, 2, 9, 3, 26]. This work is summarized below.

The xGCC tool [3] analyzes XRTL intermediate code with the
aim of verifying safety properties, such as the absence fiétbu
overflow, division by zero, and the use of uninitialized whites.
The tool uses an abstract domain based on sets of intervalg-i
ports an arithmetic on this domain that takes into accounptbp-
erties of signed two’s-complement numbers. However, theaio
used in xGCC does not support the notion of strides—i.e.irthe
tervals are strided intervals with strides bf Because on many

partially flow-sensitive: it tracks registers in a flow-sigine man-
ner, but treats memory locations in a flow-insensitive marifiee
algorithm uses partial transfer functions [48] to achievatext-
sensitivity. The transfer functions are parameterizedumkhown
initial values” (UIVs); however, the algorithm does not aant for
the possibility of called procedures corrupting the memloga-
tions that the UIVs represent.
Several platforms have been created for manipulating ¢éaecu

bles in the presence of additional information, such asceocode
and debugging information, including ATOM [44], EEL [34hé&

processors memory accesses do not have to be aligned on word/ulcan [43].

boundaries, an abstract arithmetic based solely on ifted@es
not provide enough information to check for non-alignedesses.

For instance, al-byte fetch from memory where the starting
address is in the interv@il 020, 1028] must be considered to be a
fetch of any of the followingt-byte sequence$1020, . ..,1023),
(1021, ...,1024), (1022, ...,1025), ...,(1028,...,1031). Sup-
pose that the program writes the addresses a», and as
into the words at(1020,...,1023), (1024,...,1027), and
(1028, ...,1031), respectively. Because the abstract domain can-
not distinguish an unaligned fetch from an aligned fetch;kayte
fetch where the starting address is in the intefitdi20, 1028]
will appear to allow address forging: e.g.,4abyte fetch from
(1021, ...,1024) contains the three high-order bytesaf, con-
catenated with the low-order byte of.

In contrast, if an analysis knows that the starting addré#seo
4-byte fetch is characterized by the strided interjal020, 1028],
it would discover that the set of possible values is restdct
to {a1,a2,a3}. Moreover, a tool that uses intervals rather than
strided intervals is likely to suffer a catastrophic losgpodcision
when there are chains of indirection operations: if the finsi-
rection operation fetches the possible valueglag0, .. .,1023),
(1021,...,1024), ..., (1028,...,1031), the second indirection
operation will have to follow nine possibilities—includjrell ad-
dresses potentially forged from the sequeacga-, andas. Con-
sequently, the use of intervals rather than strided inteiaa tool
that attempts to identify potential bugs and security vidbdies is
likely to cause a large number of false alarms to be reported.

Other work deals with memory accesses very conservatiifely:
aregister is assigned a value from memory, it is assumedtéaia
any value. For instance, although the basic goal of the ilgor
proposed by Debray et al. [23] is similar to that of VSA, their
goal is to find an over-approximation of the set of values dzath
register can hold at each program point; for us, it is to find an
over-approximation of the set of values that each (abstdata
object can hold at each program point, where data objecksdec
global, stack-allocated, and heap-allocated memory itmest in
addition to registers. In the analysis proposed by Debragl.et
set of addresses is approximated by a set of congruencesvtieg
keep track of only the low-order bits of addresses. Howewdike
VSA, their algorithm does not make any effort to track valtiest
are not in registers. Consequently, it loses a great deakgafgion
whenever there is a load from memory.

Cifuentes and Fraboulet [16] give an algorithm to identify a
intraprocedural slice of an executable by following thegoem'’s
use-def chains. However, their algorithm also makes nongtt¢o
track values that are not in registers, and hence cuts steosdlice
when a load from memory is encountered.

The two pieces of work that are most closely related to VSA
are the algorithm for data-dependence analysis of assecolbly
of Amme et al. [2] and the algorithm for pointer analysis oo
level intermediate representation of Guo et al. [26]. Thypathm
of Amme et al. performs only amtraprocedural analysis, and it
is not clear whether the algorithm fully accounts for deps
between memory locations. The algorithm of Guo et al. is only

Bergeron et al. [9] present a static-analysis techniquénézkc
if an executable with debugging information adheres to a-use
specified security policy.

Rival [41] presents an analysis that checks whether therdsdge
code produced by a compiler possesses the same safetyt@eper
as the original source code. The analysis assumes thaescone
and debugging information are available. After the soudeds
analyzed, the source-level invariants are translatedlavelevel
invariants, which the system then attempts to prove for the |
level code.

Identification of structures. Aggregate structure identification
(ASI) was devised by Ramalingam et al. to partition aggegat-
cording to a Cobol program’s memory-access patterns [3g]mA
ilar algorithm was devised by Eidorff et al. [24] and incorgizd in
the Anno Domini system. The original motivation for thesgaal
rithms was the Year 2000 problem; they provided a way to ifient
how date-valued quantities could flow through a program.

In our work, ASI complements VSA: ASI addresses the issue
of identifying the structure of aggregates, whereas VSAeskes
the issue of over-approximating the contents of memorytiooa.
ASI provides an improved method for the variable-identtfara
facility of IDAPro, which uses only much cruder techniquesq
only takes into account statically known memory addresses a
stack offsets). Moreover, ASI requires more informatiorbé&oon
hand than is available in IDAPro (such as the range and stride
of a memory-access operation). Fortunately, this is exattd
information that is available after VSA has been carried wiiich
means that ASI can be used in conjunction with VSA to obtain
improved results: after each round of VSA, the results of Al
used to refine the a-loc abstraction, after which VSA is ruairag-
generally producing more precise results.

Mycroft gives a unification-based algorithm for performigpge
reconstruction, including identifying structures [36prHnstance,
when a register is dereferenced with an offset ¢ perform a4-
byte access, the algorithm infers that the register holdsiraqr to
an object that has &byte field at offsett. The type system uses
disjunctive constraints when multiple type reconstrutdidrom a
single usage pattern are possible.

Mycroft points out several weaknesses of the algorithm due
to the absence of certain information. Some of these could be
addressed using information obtained by the techniquezides
in this paper:

¢ Mycroft explains how several simplifications could be trig-
gered if interprocedural side-effect information were ibva
able. Once the information computed by the methods used in

CodeSurfer/x86 is in hand, interprocedural side-effefcrima-

tion could be computed by standard techniques [19].

¢ Mycroft's algorithm is unable to recover information abaols
sizes of arrays that are identified. In our work, affine-ietat
analysis (ARA) [35, 33] is used to identify, for each program
point, affine relations that hold. In essence, this providés-
mation about induction-variable relationships in loopsjch,

in turn, can allow VSA to recover information about arrayesiz



when, e.g., one register is used to sweep through an array und
the control of a second loop-index register.

Mycroft does not have stride information available; howeve
VSA's abstract domain is based on strided intervals.

Mycroft excludes from consideration programs in which ad-
dresses of local variables are taken because “it can bearncle
as to where the address-taken object endsssamct of size

8 bytes followed by a coincidentally contiguously allochte
int can be hard to distinguish from struct of 12 bytes.”
This is a problematic restriction for a decompiler becatige i

a common idiom: in C programs, addresses of local variables
are frequently used as explicit arguments to called praesdu
(when programmers simulate call-by-reference parametss-p

ing), and C++ and Java compilers can use addresses of local

variables to implement call-by-reference parameter pgssi
Because the methods presented in this paper provide infor-
mation about the usage patterns of pointers into the sthel, t
would allow Mycroft’s techniques to be applied in the presen
of pointers into the stack.
Decompilation. Past work on decompiling assembly code to a
high-level language [17] is also related to our work. Howetlee
decompilers reported in the literature are somewhat lhiitevhat
they are able to do when translating assembly code to high-le
code. For instance, Cifuentes’s work [17] primarily coricates
on recovery of (a) expressions from instruction sequerared (b)
control flow. We believe that the memory-access-analysithous
described in this paper would enable a decompiler to do @mett
job. By performing these analyses prior to decompilatiooppr,
information about numeric values, address values, physipas,
and definite links from objects to virtual-function tabl&g yvould
be available to the decompiler.
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