
Intermediate-Representation Recovery from Low-Level Code�
Thomas Reps Gogul Balakrishnan Junghee Lim

University of Wisconsin-Madisonfreps,bgogul,jungheeg�
s.wis
.edu
Abstract
The goal of our work is to create tools that an analyst can use to
understand the workings of COTS components, plugins, mobile
code, and DLLs, as well as memory snapshots of worms and virus-
infected code. This paper describes how static analysis provides
techniques that can be used to recover intermediate representations
that are similar to those that can be created for a program written in
a high-level language.

1. Introduction
In the past five years, there has been a considerable amount ofre-
search activity to develop static-analysis tools to find bugs and se-
curity vulnerabilities [27, 45, 25, 20, 12, 8, 14, 28, 22]. However,
most of the effort has been on static-analysis of source code, and the
issue of analyzing executables has largely been ignored. Inthe se-
curity context, this is particularly unfortunate because source-code
analysis can fail to detect certain vulnerabilities due to the WYSIN-
WYX phenomenon: “What You See Is Not What You eXecute”.
That is, there can be a mismatch between what a programmer in-
tends and what is actually executed on the processor.

The following source-code fragment, taken from a login pro-
gram, is an example of such a mismatch [30]:memset(password, `n0', len);free(password);
The login program temporarily stores the user’s password—in clear
text—in a dynamically allocated buffer pointed to by the pointer
variable password. To minimize the lifetime of the password,
which is sensitive information, the code fragment shown above
zeroes-out the buffer pointed to bypassword before returning it
to the heap. Unfortunately, a compiler that performs useless-code
elimination may reason that the program never uses the values
written by the call onmemset and therefore the call onmemset
can be removed, thereby leaving sensitive information exposed
in the heap. This is not just hypothetical; a similar vulnerability
was discovered during the Windows security push in 2002 [30].
This vulnerability is invisible in the source code; it can only be
detected by examining the low-level code emitted by the optimizing
compiler.�Portions of this paper have appeared in [4, 7, 38]. This research was
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The WYSINWYX phenomenon is not restricted to the presence
or absence of procedure calls; on the contrary, it is pervasive: se-
curity vulnerabilities can exist because of a myriad of platform-
specific details due to features (and idiosyncrasies) of thecompiler
and the optimizer. These can include (i) memory-layout details (i.e.,
offsets of variables in the run-time stack’s activation records (ARs)
and padding between fields of a struct), (ii) register usage,(iii) exe-
cution order, (iv) optimizations, and (v) artifacts of compiler bugs.
Such information is hidden from tools that work on intermediate
representations (IRs) that are built directly from the source code.

There are a number of reasons why analyses based on source
code do not provide the right level of detail for checking certain
kinds of properties:� Source-level tools are only applicable when source is available,

which limits their usefulness in security applications (e.g., to
analyzing code from open-source projects).� Analyses based on source code typically make (unchecked)
assumptions, e.g., that the program is ANSI-C compliant. This
often means that an analysis does not account for behaviors
that are allowed by the compiler (e.g., arithmetic is performed
on pointers that are subsequently used for indirect function
calls; pointers move off the ends of arrays and are subsequently
dereferenced; etc.)� Programs typically make extensive use of libraries, including
dynamically linked libraries (DLLs), which may not be avail-
able in source-code form. Typically, source-level analyses are
performed using code stubs that model the effects of library
calls. Because these are hand-crafted, they are likely to contain
errors, which may cause an analysis to return incorrect results.� Programs are sometimes modified subsequent to compilation,
e.g., to perform optimizations or insert instrumentation code
[46]. (They may also be modified to insert malicious code.)
Such modifications are not visible to tools that analyze source.� The source code may have been written in more than one lan-
guage. This complicates the life of designers of tools that an-
alyze source code because multiple languages must be sup-
ported, each with its own quirks.� Even if the source code is primarily written in one high-level
language, it may contain inlined assembly code in selected
places. Source-level analysis tools typically either skipover
inlined assembly code [18] or do not push the analysis beyond
sites of inlined assembly code [1].

Thus, even if source code is available, a substantial amountof infor-
mation is hidden from analyses that start from source code, which
can cause bugs, security vulnerabilities, and malicious behavior to
be invisible to such tools. Moreover, a source-level analysis tool
that strives to have greater fidelity to the program that is actually
executed would have to duplicate all of the choices made by the
compiler and optimizer; such an approach is doomed to failure.

The long-term goal of our work is to develop bug-detection and
security-vulnerability analyses that work on executables. The ad-
vantage of this approach is that an executable contains the actual



instructions that will be executed, and hence provides information
that reveals the actual behavior that arises during programexecu-
tion. Access to such information can be crucial; for instance, many
security exploits depend on platform-specific features, such as the
structure of activation records. Vulnerabilities can escape notice
when a tool does not have information about adjacency relation-
ships among variables.

To be able to apply techniques like the ones used in [27, 45,
25, 20, 12, 8, 14, 28, 22, 13], one already encounters a challeng-
ing program-analysis problem. From the perspective of the com-
piler community, one would consider the problem to be “IR re-
covery”: one needs to recoverintermediate representationsfrom
the executable that are similar to those that would be available had
one started from source code. From the perspective of the model-
checking community, one would consider the problem to be that of
“model extraction”: one needs to extract a suitablemodelfrom the
executable. Thus, our immediate goal is to advance the stateof the
art of recovering, from executables, IRs that are (a) similar to those
that would be available had one started from source code, but(b)
expose the platform-specific details discussed above. Specifically,
we are interested in recovering IRs that represent the following in-
formation:� control-flow graphs (CFGs), with indirect jumps resolved� a call graph, with indirect calls resolved� information about the program’s variables� possible values of pointer variables� sets of used, killed, and possibly-killed variables for each CFG

node� data dependences (including dependences between instructions
that involve memory accesses)� type information (e.g., base types, pointer types, and structs)

Once such IRs are in hand, we will be in a position to leverage the
substantial body of work on source-code-vulnerability analysis.

In IR recovery, there are numerous obstacles that must be over-
come. In particular, in many situations debugging information is
not available. Even if debugging information is present, itcannot
be relied upon if the program is potentially malicious. For this rea-
son, we have designed IR-recovery techniques that do not rely on
debugging information being present. (Thus, throughout the paper,
the term “executable” means a stripped executable.) Our current
implementation of IR recovery—which is incorporated in a tool
called CodeSurfer/x86 [38]—works on x86 executables; however,
the algorithms used are language-independent.

When debugging information is absent, an executable’s data
objects are not easily identifiable. Consider, for instance, a data
dependence from statementa to statementb that is transmitted by
write/read accesses on some variablex. When performing source-
code analysis, the programmer-defined variables provide uswith
convenient compartments for tracking such data manipulations. A
dependence analyzer must show thata definesx, b usesx, and there
is anx-def-free path froma to b. However, in executables, memory
is accessed either directly—by specifying an absolute address—
or indirectly—through an address expression of the form “[base
+ index � scale + offset]”, where baseand index are registers
andscaleandoffsetare integer constants. It is not clear from such
expressions what the natural compartments are that should be used
for analysis. Because, executables do not haveintrinsic entities that
can be used for analysis (analogous to source-level variables), a
crucial step in IR recovery is to identify variable-like entities.

Past work on IR recovery from executables has relied on some
simple techniques for identifying variable-like entities. For in-
stance, IDAPro [31], a commercial disassembly toolkit, recovers
variables based on statically known-addresses and stack-frame off-
sets. However, this approach has certain limitations. For instance,
it generally recovers only very coarse information about arrays.
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Figure 1. Organization of CodeSurfer/x86 and companion tools.

Moreover, this approach cannot provide any information about the
fields of heap-allocated objects, which is crucial for understanding
programs that manipulate the heap. (Seex2.1.1.)

One of the main challenges in static analysis of low-level code
is to recover information about memory-access operations (e.g.,
the set of addresses accessed by each operation). This is difficult
because� While some memory operations use explicit memory addresses

in the instruction (easy), others use indirect addressing via ad-
dress expressions (difficult).� Arithmetic on addresses is pervasive. For instance, even when
the value of a local variable is loaded from its slot in an activa-
tion record, address arithmetic is performed.� There is no notion of type at the hardware level: address values
are not intrinsically different from integer values.� Memory accesses do not have to be aligned, so word-sized ad-
dress values could potentially be cobbled together from mis-
aligned reads and writes.

In our research on static analysis of low-level code, we havedevel-
oped techniques that cope with such issues.

The tool set that we have developed for analyzing executables
builds on (i) recent advances in static analysis of program executa-
bles [4, 6, 5], and (ii) new techniques for software model checking
and dataflow analysis [11, 39, 40, 33]. The main components ofthe
tool set areCodeSurfer/x86, WPDS++, and thePath Inspector:� CodeSurfer/x86 recovers IRs from an executable that are sim-

ilar to the IRs that source-code-analysis tools create—but, in
many respects, the IRs that CodeSurfer/x86 builds are more
precise. (For instance, code from DLLs is imported into the
IRs that CodeSurfer/x86 builds, whereas the IRs that source-
code-analysis tools create typically require hand-written stubs
for library routines.) CodeSurfer/x86 also provides an APIto
these IRs.� WPDS++ [32] is a library for answering generalized reacha-
bility queries onweighted pushdown systems(WPDSs) [11, 39,
40, 33]. This library provide a mechanism for defining and solv-
ing model-checking and dataflow-analysis problems. To extend
CodeSurfer/x86’s analysis capabilities, the CodeSurfer/x86
API can be used to extract a WPDS model from an executable
and to run WPDS++ on the model.� The Path Inspector is a software model checker built on top of
CodeSurfer and WPDS++. It supports safety queries about a
program’s possible control configurations.
In addition, by writing scripts that traverse the IRs that

CodeSurfer/x86 recovers, the tool set can be extended with further
capabilities (e.g., decompilation, code rewriting, etc.).

Fig. 1 shows how these components fit together. CodeSurfer/x86
makes use of both IDAPro [31], a disassembly toolkit, and Gram-



maTech’s CodeSurfer system [18], a toolkit originally developed
for building program-analysis and inspection tools that analyze
source code. These components are glued together by a piece
called the Connector, which uses three static analyses—aggregate-
structure identification (ASI) [37], affine-relation analysis (ARA)
[35, 33], and value-set analysis (VSA) [4]—to recover information
about the contents of memory locations and how they are manipu-
lated by an executable.

Material about CodeSurfer/x86 has been presented in several
previous papers [4, 33, 6, 38, 5]. The present paper describes
enhancements to the abstract domains and abstract arithmetic that
we have developed since the publication of [4].

The remainder of the paper is organized as follows:x2 provides
an overview of the three main analyses used in CodeSurfer/x86:
variable and type discovery (ASI), VSA, and ARA.x3 describes
some of the work we have done to enhance VSA since the publica-
tion of [4]. x4 discusses related work.

2. Overview of CodeSurfer/x86
The analyses in CodeSurfer/x86 are a great deal more ambitious
than even relatively sophisticated disassemblers, such asIDAPro.
Previous work on analyzing executables has dealt with memory
accesses very conservatively: generally, if a register is assigned
a value from memory, it is assumed to take on any value [23,
16]. Other research concerning data-dependence analysis on exe-
cutables has a variety of shortcomings: either the analysisis for
single-procedures only [2], or handles memory locations ina flow-
insensitive manner [26], or does not account for the possibility of
called procedures corrupting the memory locations being tracked
[26].

To address such issues, we have brought to bear a variety of
static-analysis techniques. At the technical level, our work ad-
dresses the following problem:
Given a stripped executableE (i.e., with all debugging informa-
tion removed), identify the� procedures, data objects, types, and libraries that it uses
and� for each instructionI in E and its libraries� for each interprocedural calling context ofI� for each machine register and variableV
statically compute an accurate over-approximation to� the set of values thatV may contain whenI executes

The constraint that debugging information is unavailable compli-
cated the task of creating CodeSurfer/x86; however, the results
from its various static-analysis phases provide a substitute for such
information. This allowed us to create a tool that can be usedwhen
debugging information is absent or untrusted.

A few words are in order about the scope of ambition, capabili-
ties, and assumptions underlying CodeSurfer/x86.

We assume that the executable that is being analyzed follows
a “standard compilation model”. By this, we mean that the ex-
ecutable has procedures, ARs, a global data region, and a heap;
might use virtual functions and DLLs; maintains a runtime stack;
each global variable resides at a fixed offset in memory; eachlocal
variable of a proceduref resides at a fixed offset in the ARs forf ; actual parameters off are pushed onto the stack by the caller
so that the corresponding formal parameters reside at fixed offsets
in the ARs forf ; the program’s instructions occupy a fixed area of
memory, and are not self-modifying.

During the analysis, these assumptions are checked. When vio-
lations are detected, an error report is issued, and the analysis pro-
ceeds, generally after making an optimistic choice. For instance, if
the analysis finds that the return address might be modified within
a procedure, it reports the potential violation, but proceeds without

modifying the control flow of the program. If the analyst who is
using the tool can determine that the error report is a false positive,
then the IR is valid.

The major assumption that we make about IDAPro is that it
is able to disassemble a program and build an adequate collec-
tion of preliminary IRs for it. Even though (i) the CFGs created
by IDAPro may be incomplete due to indirect jumps, and (ii) the
call-graph created by IDAPro may be incomplete due to indirect
calls, incomplete IRs donot trigger error reports. The CFGs and
the call-graph are fleshed out according to information recovered
during the course of memory-access analysis. The relationship be-
tween memory-access analysis and the preliminary IRs created by
IDAPro is similar to the relationship between a points-to-analysis
algorithm in a compiler and the preliminary IRs created by the com-
piler’s front end. In both cases, the preliminary IRs are fleshed out
using the results of static analysis.

The analyzer does not care whether the program was compiled
from a high-level language, or hand-written in assembly code. In
fact, some pieces of the program may be the output from a compiler
(or from multiple compilers, for different high-level languages),
and others hand-written assembly code. Still, it is easiestto talk
about the information that the tool is capable of recoveringin terms
of the kinds of features that high-level languages support:it is capa-
ble of recovering information from programs that use globalvari-
ables, local variables, pointers, structures, arrays, heap-allocated
storage, pointer arithmetic, indirect jumps, recursive procedures,
virtual functions, and indirect calls through function pointers (but,
at present, not run-time code generation or self-modifyingcode).

Compiler transformations do not confuse the analysis as long
as they conform to the aforementioned compilation model. The
analysis is capable of handling� tail recursion (it sees the loop that results from tail-callopti-

mization)� local variables accessed usingesp-relative offsets or Pascal-
style displays� applications with custom allocators (although the user hasto
identify the allocators)

Moreover, optimizations often make the task of memory-access
analysislessdifficult: unoptimized programs generally have more
memory accesses than optimized programs. Optimizations typi-
cally arrange to keep more of the computation’s critical data in
registers, rather than in memory. Operations on registers are easier
to analyze than operations that access memory because a register
cannot be the target of a pointer.

2.1 Variable and Type Discovery

One of the major stumbling blocks in analysis of executablesis
the difficulty of recovering information about variables and types,
especially for aggregates (i.e., structures and arrays). The variable
and type-discovery phase of CodeSurfer/x86 recovers such infor-
mation for variables that are allocated globally, locally (i.e., on the
run-time stack), and dynamically (i.e., from the heap). An iterative
strategy is used; with each round of the analysis (consisting of ASI,
ARA, and VSA), the notion of the program’s variables and types is
refined.

The memory model that we use is an abstraction of the concrete
(runtime) address space, and has two parts:

Memory-regions. Although in the concrete semantics the ARs
for procedures, the heap, and the memory for global data are all part
of oneaddress space, for the purposes of analysis, we separate the
address space into a set of disjoint areas, which are referred to as
memory-regions. Each memory-region represents a group of loca-
tions that have similar runtime properties. For example, the runtime
locations that belong to the ARs of a given procedure belong to one
memory-region. For a given program, there are three kinds ofre-



gions: (1)global-regions, which represent memory locations that
hold global data, (2)AR-regions, which represent the locations in
the ARs of the different procedures, and (3)malloc-regions, which
represent the locations allocated at different malloc sites.

A-locs. The second part of the memory model uses a set of
(proxies for) variables, which are inferred for each memory-region.
Such objects are calleda-locs, which stands for “abstract loca-
tions”. In addition to the a-locs identified for each memory-region,
the registers represent an additional class of a-locs.

Initially, CodeSurfer/x86 uses a set of variables (i.e., a-locs)
that are obtained from IDAPro. Because IDAPro has relatively lim-
ited information available at the time that it applies its variable-
discovery heuristics (i.e., it only knows about staticallyknown
memory addresses and stack offsets), what it can do is ratherlim-
ited, and generally leads to a very coarse-grained approximation of
the program’s variables. (Seex2.1.1.)

Once a given round of VSA completes, the value-sets for
the a-locs at each instruction provide a way to identify an over-
approximation of the memory accesses performed at that instruc-
tion. This information is used to refine the current set of a-locs by
running a variant of the ASI algorithm [37], which identifiescom-
monalities among accesses to different parts of an aggregate data
value. (Seex2.1.2.)

2.1.1 Limitations of IDAPro’s A-loc Identification Algorit hm

In the version of our work described in [4], IDAPro’s approach to
recovering variables was used to instantiate the memory model with
a-locs. IDAPro’s approach to recovering variables is basedon the
following observations:

The layout of memory is known at compile time: the com-
piler decidesa priori the locations of global variables, local
variables, etc. Direct accesses to program variables are per-
formed using either absolute addresses (for globals) or off-
sets relative to the frame pointer or stack pointer (for locals).
Thus, absolute addresses and offsets (generally) indicatethe
starting addresses of program variables.

Thus, in the version of our work described in [4], an a-loc consisted
of the set of locations between two consecutive statically known
addresses or stack-frame offsets.

This approach has several limitations. In particular, because
only addresses and offsets that occur explicitly in the program are
considered, this approach does not identify variables thatare ac-
cessed only indirectly. For instance, IDAPro can never identify
fields of heap-allocated data objects because they are always ac-
cessed by memory-access expressions that lie outside of theclass
considered: fields of dynamically allocated objects are accessed in
terms of offsets relative to the base address of the object itself,
which is something that IDAPro knows nothing about. Moreover,
IDAPro can also have trouble with locals and globals. For example,
IDAPro would not discover fields of elements of an array when they
are accessed relative toeax, e.g., by[eax℄ and[eax+4℄, rather
than being accessed relative to the stack pointer (esp) or frame
pointer (ebp). To recover such fields, the set of values thateax can
hold needs to be determined; i.e., the analysis has to look atmore
than just the explicitly known addresses and stack-frame offsets.

Because IDAPro does not take into account all memory-access
operations in the executable, it may produce a too-coarse set of a-
locs, which can affect the precision of VSA. For example, suppose
that a procedure in a program has four4-byte local variablesl1,l2, l3, andl4 that are laid out next to each other. Suppose that the
compiler generates explicit accesses tol1 andl3 and only generates
indirect accesses tol2 and l4 (in terms of the addresses ofl1 andl3). In this case, IDAPro will only take into account the explicit
accesses tol1 and l3—hence, it identifies two 8-byte a-locs:l12,

which spansl1 andl2, andl34, which spansl3 andl4. Because (for
a 32-bit machine) value-sets only represent addresses and numeric
values up to 32 bits, VSA will not be able to represent the addresses
and numeric values thatl12 andl34 hold. Reads from and writes to
(parts of) l12 and l34 would be treated conservatively, and VSA
would report thatl12 and l34 hold > (any possible address or
numeric value) at all program points. On the other hand, whenl1,l2, l3, andl4 are used as four4-byte a-locs, VSA will produce more
precise (non->) value-sets.

Another limitation of relying on IDAPro’s variable-identification
algorithm is that the a-locs recovered are not expressive enough:� IDAPro’s a-locs cannot capture information about the repeating

structure of arrays; an array is identified merely as a contiguous
block of data.� IDAPro does not identify fields of heap-allocated objects. Such
information is crucial for tracking the contents of heap a-locs.� An IDAPro a-loc can only represent a contiguous sequence
of memory locations in a memory-region, with no internal
substructure. It cannot represent non-contiguous memory lo-
cations, such as the locations of (all instances of) a specific
field in an array of structures.
This lack of expressiveness of IDAPro’s a-locs can affect the

precision of clients of VSA, such as the dependence analyzerin
CodeSurfer/x86. This uses sets of used, killed, and possibly-killed
a-locs for each program point, generated from the results ofVSA,
to build a system dependence graph [29] for the executable. In
particular, IDAPro’s a-locs are too coarse-grained a representation
of used, killed, and possibly-killed memory locations, andthis can
lead to extra edges in the dependence graph.

2.1.2 Aggregate Structure Identification (ASI)

ASI is a unification-based, flow-insensitive algorithm to identify
the structure of aggregates in a program. ASI was originallydevel-
oped for analysis of Cobol programs: in that context, ASI ignores
the type declarations for all aggregates, and considers each aggre-
gate to be merely a sequence of bytes of a given length. The ag-
gregate is then broken up into smaller parts depending on howit is
accessed by the program. The smaller parts are referred to asatoms.

One might hope to apply ASI to an executable by treating each
memory-region as an aggregate and applying ASI (without using
VSA results). However, one of the requirements for applyingASI
is that it must be possible to extract data-access constraints from the
program. This is possible when ASI is applied to programs written
in a language such as Cobol: the data-access patterns are apparent
from the syntax of the constructs under consideration. However,
for executables the data-access patterns are not readily apparent.
For instance, the memory operand[eax℄ can represent an access
to either a single variable or to the elements of an array. Fortu-
nately, the value-sets recovered by VSA furnish information that
can be used to generate ASI data-access constraints; information
about the values that a-locs can hold (in terms of range and stride
information—seex3.2) provides information not only about points-
to relationships, but also about the extent and repeating structure of
a memory-access operation.

Our extension to ASI exploits the information made avail-
able by VSA to create data structures that record the structure of
each memory-region and relationships among the memory-regions’
atoms (which correspond to the newly discovered a-locs). This gen-
erally leads to a much more accurate set of a-locs than the initial
set of a-locs discovered by IDAPro. For instance, consider asimple
loop, implemented in source code asint a[10℄, i;for (i = 0; i < 10; i++)a[i℄ = i;



From the executable, IDAPro will determine that there are two vari-
ables, one of size4 bytes and one of size40 bytes, but will provide
no information about the substructure of the40-byte variable. In
contrast, in addition to the4-byte variable, ASI will correctly iden-
tify that the40 bytes are an array of ten4-byte quantities.

The current version of the Connector uses a refinement loop
that performs repeated phases of ASI, ARA, and VSA (see Fig. 1).
The first round of ASI is performed using the variables discovered
by IDAPro. On each subsequent round, ASI is used to refine the
previous set of a-locs, and the refined set of a-locs is then used to
analyze the program during the next round of VSA. The number of
iterations is controlled by a command-line parameter.

After the second round of ASI, the a-locs in hand permit VSA
to start to analyze the contents of dynamically allocated objects
(i.e., memory locations allocated using malloc or new) [5].VSA
considers each malloc sitem to be a “memory-region” (consisting
of the objects allocated atm), and the memory-region form serves
as a representative for the base addresses of those objects.1 This
lets ASI handle the use of an offset from an object’s base address
similar to the way that it handles a stack-frame offset—withthe
net result that the second round of ASI starts to identify thefine-
grained structure of dynamically allocated objects. The object fields
discovered in this way become a-locs for the second round of VSA,
which will then discover an over-approximation of their contents.

2.2 Value-Set Analysis (VSA)

The goal of VSA is to determine, at each program point, an over-
approximation of the set of numeric values and addresses (orvalue-
set) that each register and memory location (a-loc) holds. The
information computed during VSA is also used to augment the call
graph and control-flow graphs to account for indirect jumps and
indirect function calls.

VSA is a combined numeric and pointer-analysis algorithm.
VSA is related to pointer-analysis algorithms that have been de-
veloped for programs written in high-level languages, which deter-
mine an over-approximation of the set of variables whose addresses
each pointer variable can hold:

At each program point, VSA determines an over-approximation
of the set of addresses that each data object can hold.

At the same time, VSA is similar to range analysis and other nu-
meric static-analysis algorithms that over-approximate the integer
values that each variable can hold:

At each program point, VSA determines an over-approximation
of the set of integer values that each data object can hold.

The following insights shaped the design of VSA:� A non-aligned accessto memory—e.g., an access via an ad-
dress that is not aligned on a4-byte word boundary—spans
parts of two words, and provides a way to forge a new ad-
dress fromparts of old addresses. It is important for VSA to
discover information about the alignments and strides of mem-
ory accesses, or else most indirect-addressing operationsappear
to be possibly non-aligned accesses (see the discussion inx4).� To prevent most loops that traverse arrays from appearing to
corrupt the stack, the analysis needs to use relational informa-
tion so that the values of a-locs assigned to within a loop can
be related to the values of the a-locs used in the loop’s branch
condition (seex2.3 and [4, 35, 33]).� It is desirable for VSA to track integer-valued and address-
valued quantitiessimultaneously. This is crucial for analyzing
executables because

1 The implementation actually uses a more precise abstraction of dynami-
cally allocated memory; see footnote 6 and [5].

integers and addresses are indistinguishable at execution
time, and
compilers use address arithmetic and indirect addressing
to implement such features as pointer arithmetic, pointer
dereferencing, array indexing, and accessing structure fields.

Moreover, information about integer values can lead to im-
proved tracking of address-valued quantities, and information
about address values can lead to improved tracking of integer-
valued quantities.

VSA produces information that is more precise than that obtained
via several more conventional numeric analyses used in compil-
ers, including constant propagation, range analysis, and integer-
congruence analysis. At the same time, VSA provides an analog
of pointer analysis that is suitable for use on executables.

2.3 Affine-Relation Analysis (ARA)

VSA is not relational; that is, it does not keep track of the rela-
tionships that hold among registers and memory locations. How-
ever, when interpreting conditional branches, specifically those that
implement loops, it is important to know such relationships[4].
Hence, a separate affine-relation analysis (ARA) [35, 33] isper-
formed to recover affine relations that hold at conditional branch
points; those affine relations are then used by VSA when interpret-
ing conditional branches. (Currently, ARA recovers affine relations
that only involve registers.) ARA implements the affine-relation do-
main from [35], which is based on arithmetic modulo232 and hence
accounts for arithmetic overflow.

Before each call instruction, a subset of the registers is saved on
the stack, either by the caller or the callee, and restored atthe return.
Such registers are called thecaller-saveandcallee-saveregisters.
To preserve their values across a call, ARA treats caller-save and
callee-save registers as local variables of the calling procedure [33];
i.e., the values of caller-save and callee-save registers after the call
are set to the values before the call and the values of other registers
are set to the values at the exit node of the callee.

3. Enhancements to Value-Set Analysis
VSA is a combined numeric-analysis and pointer-analysis al-
gorithm that determines, at each program point, an over-
approximation of the set of numeric values and addresses that each
a-loc holds. One of the basic abstract domains used during VSA is
thevalue-set domain(seex3.3), which is a safe approximation to a
set of concrete addresses and numeric values. A value-set isa map
from memory-regions tostrided intervals(seex3.2), and associates
each memory-regionm with a strided interval that represents a set
of offsets inm. In this section, we describe strided intervals and
value-sets, and sketch how they are used to define abstract trans-
formers for x86 instructions.

3.1 Notational Conventions

We use different typefaces to make the following distinctions: inte-
gers (Z) and other mathematical expressions are written in ordinary
mathematical notation (e.g.,1, �231, 231 � 1, 1 � 2, etc.); vari-
ables that hold integers appear in italics (e.g.,x). Bounded integers,
such as unsigned numbers and signed two’s-complement numbers,
as well as variables that hold such quantities, appear in bold (e.g.,1, �231, 231 � 1). Fragments of C code appear in Courier (e.g.,1,�231, 231 � 1, a, if(a < b)f: : :g, z = x+ y;).

When the same name appears in different typefaces, our con-
vention is that the meaning changes appropriately:x, x, andx refer
to program variablex, whose signed two’s-complement value (or
unsigned value, if appropriate) isx, and whose integer value isx.

Names that denote strided intervals are also written in bold.



Let [x℄m denote the congruence class ofx modm, defined as[x℄m def= fx+ i�m j i 2 Zg; note that[x℄0 = fxg.
3.2 Strided-Interval Arithmetic

A k-bit strided intervalis a triples[lb;ub℄ such that�2k � lb �ub � 2k�1. The meaning of a strided interval is defined as follows:

DEFINITION 3.1. [Meaning of a strided interval] . Ak-bit strided
interval s[lb;ub℄ represents the set of integers
(s[lb;ub℄) = fi 2 [�2k; 2k � 1℄ j lb � i � ub; i 2 [lb℄sg:2

Note that a strided interval of the form0[a; a℄ represents the
singleton setfag. Except where noted, we will assume that we are
working with32-bit strided intervals.

In a strided intervals[lb;ub℄, s is called thestride, and[lb;ub℄
is called theinterval. Strides is unsigned; boundslb andub are
signed.2 The stride is unsigned so that each two-element set of32-
bit numbers, including such sets asf�231; 231�1g, can be denoted
exactly. For instance,f�231; 231�1g is represented exactly by the
strided interval(232 � 1)[�231;231 � 1℄.

As defined above, some sets of numbers can be represented
by more than one strided interval. For instance,
(4[4; 14℄) =f4; 8; 12g = 
(4[4; 12℄). Without loss of generality, we will
assume that all strided intervals arereduced(i.e., upper bounds
are tight, and whenever the upper bound equals the lower bound
the stride is0). For example,4[4;12℄ and0[12;12℄ are reduced
strided intervals;4[4; 14℄ and4[12;12℄ are not.

The remainder of this subsection describes abstract arithmetic
and bit-level operations on strided intervals for use in abstract
interpretation [21].

DEFINITION 3.2. [Soundness criterion]. For each opsi, if si3 =si1 opsi si2, then
(si3) � fa op b j a 2 
(si1) andb 2 
(si2)g.2
Sound algorithms for performing arithmetic and bit-level opera-

tions onintervals(i.e., strided intervals with stride1) are described
in a book by H. Warren [47]. They provided a starting point forthe
operations that we define for strided intervals, which extend War-
ren’s operations to take strides into account.

Below, we summarize several of Warren’s interval operations,
and describe how a sound stride forsi3 can be obtained for each
operationopsi 2 f+si; {siu; {si;++si; { {si; jsi;�si;&si; ^sig.
Addition (+si)

Suppose that we have the following bounds on two two’s-
complement valuesx andy: a � x � b and
 � y � d. With32-bit arithmetic, the result ofx+ y is not always in the interval[a+ 
;b+ d℄ because the bound calculationsa+ 
 andb+ d
can overflow in either the positive or negative direction. Warren
provides the method shown in Tab. 1 to calculate a bound onx+ y.

Case (3) of Tab. 1 is the case in which neither bound calculation
overflows. In cases (1) and (5) of Tab. 1, the result ofx+ y is
bounded by[a+ 
;b+ d℄ even thoughboth bound calculations
overflow. Thus, we merely need to identify cases (2) and (4),
in which case the bounds imposed are the extreme negative and
positive numbers (see lines [9]–[11] of Fig. 2). This can be done
by the code that appears on lines [4]–[7] of Fig. 2: ifu is negative,
then case (2) holds; ifv is negative, then case (4) holds [47, p. 57].

2 To reduce notation, we rely on context to indicate whether a typeface
conversion denotes a conversion to a signed two’s-complement value or to
an unsigned value: ifx is a stride,x denotes an unsigned value; ify is an
interval bound,y denotes a signed two’s-complement value.

(1) a+ 
 < �231; b+ d < �231 ) a+ 
 � x+ y � b+ d(2) a+ 
 < �231; b+ d � �231 ) �231 � x+ y � 231 � 1(3) �231 � a+ 
 < 231; b+ d < 231 ) a+ 
 � x+ y � b+ d(4) �231 � a+ 
 < 231; b+ d � 231 ) �231 � x+ y � 231 � 1(5) a+ 
 � 231; b+ d � 231 ) a+ 
 � x+ y � b+ d
Table 1. Cases to consider for bounding the result of adding two
signed two’s-complement numbers [47, p. 56].[1℄ void addSI(int a, int b, unsigned s1,[2℄ int 
, int d, unsigned s2,[3℄ int& lbound, int& ubound, unsigned& s) f[4℄ lbound = a + 
;[5℄ ubound = b + d;[6℄ int u = a & 
 & �lbound & �(b & d & �ubound);[7℄ int v = ((a ^ 
) | �(a ^ lbound)) & (�b & �d & ubound);[8℄ if(u | v < 0) f // 
ase (2) or 
ase (4)[9℄ s = 1;[10℄ lbound = 0x80000000;[11℄ ubound = 0x7FFFFFFF;[12℄ g[13℄ else s = g
d(s1, s2);[14℄ g
Figure 2. Implementation of abstract addition (+si) for strided
intervals.

In the proof of Thm. 3.4 (see below), we will make use of the
following observation:

OBSERVATION 3.3. In case (1) of Tab. 1, all three sumsa+ 
,x+ y, andb+ d yield values that are too high by232 (compared
to a + 
, x+ y, andb + d, respectively) [47, p. 56]. Similarly, in
case (5), all three sums yield values that are too low by232. 2

Fig. 2 shows a C procedure that uses these ideas to computes1[a;b℄ +si s2[
;d℄, but also takes the stridess1 and s2 into
account. Theg
d (greatest common divisor) operation is used to
find a sound stride for the result.3

THEOREM3.4. [Soundness of+si]. If si3 = si1 +si si2, then
(si3) � fa+ b j a 2 
(si1) andb 2 
(si2)g. 2
Proof: The soundness of the interval ofsi3 follows from the argu-
ments given in [47]. We need to show that the stride computed by
procedureaddSI from Fig. 2 is sound.

In lines [9]–[11] of Fig. 2, which correspond to cases (2) and
(4), the answer is the entire interval[�231; 231 � 1℄, so the stride
of 1 is obviously sound. In all other situations,g
d is used to find
the stride.

Let si1 = s1[lb1;ub1℄, SI1 = 
(si1), si2 = s2[lb2;ub2℄,
andSI2 = 
(si2). We consider the cases wheresi3 = gcd(s1; s2)[lb1 + lb2;ub1 + ub2℄:
Let4b1 = �0 if s1 = 0(ub1 � lb1)=s1 otherwiseb2 = �0 if s2 = 0(ub2 � lb2)=s2 otherwise
Thus,

SI1 = flb1 + i� s1 j 0 � i � b1g= flb1; lb1 + s1; : : : ; lb1 + b1 � s1g
SI2 = flb2 + j � s2 j 0 � j � b2g= flb2; lb2 + s2; : : : ; lb2 + b2 � s2g

andSI1+SI2 = flb1+lb2; : : : ; lb1+lb2+i�s1+j�s2; : : : ; lb1+lb2 + b1 � s1 + b2 � s2g.
3 By convention, gcd(0; a) = a, gcd(a; 0) = a, and gcd(0; 0) = 0.
4 By the assumption that we work only withreducedstrided intervals, in
a strided intervals[lb;ub℄, s 6= 0 implies thats divides evenly into(ub� lb).



[1℄ unsigned minOR(unsigned a, unsigned b,[2℄ unsigned 
, unsigned d) f[3℄ unsigned m, temp;[4℄ m = 0x80000000;[5℄ while(m != 0) f[6℄ if(�a & 
 & m) f[7℄ temp = (a | m) & -m;[8℄ if(temp <= b) f[9℄ a = temp;[10℄ break;[11℄ g[12℄ g[13℄ else if(a & �
 & m) f[14℄ temp = (
 | m) & -m;[15℄ if(temp <= d) f[16℄ 
 = temp;[17℄ break;[18℄ g[19℄ g[20℄ m = m >> 1;[21℄ g[22℄ return a | 
;[23℄ g
Figure 3. Implementation of minOR [47, p. 59].

Let s = gcd(s1; s2), s1 = s�m, ands2 = s� n. We wish to
show thats divides evenly into the difference between an arbitrary
elemente in SI1+SI2 and the lower-bound valuelb1+ lb2. Lete be
some element ofSI1+SI2: e = (lb1+ lb2)+ i�s1+j�s2, where0 � i � b1 and0 � j � b2. The differencee� (lb1 + lb2) is non-
negative and equalsi�s1+j�s2, which equalss�(i�m+j�n),
and hence is divisible bys.

Moreover, by Obs. 3.3, when we compare the values inSI1+SI2
to the interval[�231; 231 � 1℄, they are either� all too low by232 (case (1) of Tab. 1),� in the interval[�231; 231 � 1℄ (case (3) of Tab. 1), or� all too high by232 (case (5) of Tab. 1).
Let �231 � e0 � 231 � 1 be e adjusted by an appropriate
multiple of 232. Similarly, let�231 � lb � 231 � 1 be lb1 + lb2
adjusted by the same multiple of232. (Note that, by Obs. 3.3,lb
is the minimum element if all elements ofSI1 + SI2 are similarly
adjusted.) The argument thate�(lb1+ lb2) is divisible bys carries
over in each case to an argument thate0 2 [lb℄s. Consequently,
(si3) � SI1 + SI2, as was to be shown.2
Unary Minus ({siu)

Suppose that we have the following bounds on the two’s-
complement valuey: 
 � y � d. Then�d � �y � �
. The
number�231 is representable as a 32-bit two’s-complement num-
ber, but231 is not. Moreover, if
 = �231, then�
 = �231 as
well, which means that we do not necessarily have�y � �
 (note
that�
 is a two’s-complement value in this expression). However,
in all other cases we have�d � �y � �
; by the assumption
that we work only withreducedstrided intervals, ins[
;d℄ the up-
per boundd is achievable, which allows us to retains as the stride
of {siu(s[
;d℄):{siu(s[
;d℄) = 8<:0[�231;�231℄ if 
 = d = �231s[�d;�
℄ if 
 6= �2311[�231;231 � 1℄ otherwise

Subtraction ({si), Increment (++si), and Decrement ({ {si)

The +si and {siu operations on strided intervals can be used to
implement other arithmetic operations, such as subtraction ({si),
increment (++si), and decrement ({ {si), as follows:x {si y = x+si({siu y)++si x = x+si 0[1;1℄{ {si x = x+si 0[�1;�1℄

[1℄ unsigned maxOR(unsigned a, unsigned b,[2℄ unsigned 
, unsigned d) f[3℄ unsigned m, temp;[4℄ m = 0x80000000;[5℄ while(m != 0) f[6℄ if(b & d & m) f[7℄ temp = (b - m) | (m - 1);[8℄ if(temp >= a) f[9℄ b = temp;[10℄ break;[11℄ g[12℄ temp = (d - m) | (m - 1);[13℄ if(temp >= 
) f[14℄ d = temp;[15℄ break;[16℄ g[17℄ g[18℄ m = m >> 1;[19℄ g[20℄ return b | d;[21℄ g
Figure 4. Implementation of maxOR [47, p. 60].

Bitwise Or (jsi)

Following Warren, [47, p. 58–63], we develop the algorithm for jsi

(bitwise-or on strided intervals) by first examining how to bound
bitwise-or onunsignedvalues and then using this as a subroutine
in the algorithm forjsi. Suppose that we have the following bounds
on unsigned valuesx and y: a � x � b and 
 � y � d.
The two algorithms from Warren’s book given in Figs. 3 and 4
provide bounds on the minimum and maximum possible values,
respectively, thatx jy can attain.

Warren argues [47, p. 58–59], that the minimum possible value
of x jy can be found by scanninga and
 from left-to-right, and
finding the leftmost position at which either� a 0 of a can be changed to1, and all bits to the right set to0,

yielding a numbera0 such thata0 � b and(a0 j 
) < (a j 
), or� a 0 of 
 can be changed to1, and all bits to the right set to0,
yielding a number
0 such that
0 � d and(a j 
0) < (a j 
).

This is implemented by functionminOR of Fig. 4. For instance,
suppose that we have0000101 = a � x � b = 00010010010011 = 
 � y � d = 0101001:
We rejecta0 = 0010000 because0010000 6� 0001001 =b; however, we find that
0 = 0010100 meets the condition0010100 � 0101001 = d, and(a j 
0) = (0000101 j 0010100)= 0010101< 0010111= (0000101 j 0010011)= (a j 
):
Note that Warren’s algorithm relies on the assumption that it is
working on intervals with strides of1. For instance, we could
select the new contribution to the lower bound,
0 = 0010100 >0010011 = 
, without having to worry about whether a stride
value repeatedly added to
 might miss
0.

The algorithm to find the maximum possible value ofx jy
(Fig. 4) has a similar flavor [47, p. 60].

Tab. 2 shows the method that Warren gives for finding bounds
on the bitwise-or of two signed two’s-complement valuesx andy,
wherea � x � b and
 � y � d [47, p. 63]. The method calls the
procedures from Figs. 3 and 4, which find bounds on the bitwise-or
of two unsigned values.

Functionntz of Fig. 5 counts the number of trailing zeroes of
its argumentx. At line [3] of Fig. 5,y is set to a mask that identifies
the trailing zeroes ofx [47, p. 11], i.e.,y is set to the binary number0i1j , wherei+ j = 32 andj equals the number of trailing zeroes



a b 
 d signedminOR signedmaxOR< 0 < 0 < 0 < 0 minOR(a;b; 
;d) maxOR(a;b; 
;d)< 0 < 0 < 0 � 0 a �1< 0 < 0 � 0 � 0 minOR(a;b; 
;d) maxOR(a;b; 
;d)< 0 � 0 < 0 < 0 
 �1< 0 � 0 < 0 � 0 min(a; 
) maxOR(0;b; 0;d)< 0 � 0 � 0 � 0 minOR(a; 0xFFFFFFFF;
;d) maxOR(0;b; 
;d)� 0 � 0 < 0 < 0 minOR(a;b; 
;d) maxOR(a;b; 
;d)� 0 � 0 < 0 � 0 minOR(a;b; 
; 0xFFFFFFFF) maxOR(a;b;0;d)� 0 � 0 � 0 � 0 minOR(a;b; 
;d) maxOR(a;b; 
;d)
Table 2. SignedminOR(a;b; 
;d) and maxOR(a;b; 
;d)
[47, p. 63]. Warren’s method uses unsignedminOR andmaxOR to
find bounds on the bitwise-or of two signed two’s-complementval-
uesx andy, wherea � x � b and
 � y � d. (Becausea � b
and
 � d, the nine cases shown above are exhaustive.)[1℄ int ntz(unsigned x) f[2℄ int n;[3℄ int y = -x & (x-1);[4℄ n = 0;[5℄ while(y != 0) f[6℄ n = n + 1;[7℄ y = y >> 1;[8℄ g[9℄ return n;[10℄ g

Figure 5. Counting trailing 0’s ofx [47, p. 86].

in x. The trailing ones ofy are then counted in the while-loop in
lines [5]–[8].

We now turn to the algorithm for bitwise-or on strided inter-
vals (jsi). Suppose that we want to performs1[a;b℄ jsi s2[
;d℄.
As illustrated by the topmost set shown in Fig. 6, all elements in
(s1[a;b℄) share the samet1 = ntz(s1) low-order bits: because
thet1 low-order bits of strides1 are all0, repeated addition ofs1
to a cannot affect thet1 low-order bits. Similarly, all elements in
(s2[
;d℄) share the samet2 = ntz(s2) low-order bits.

As illustrated by the third set shown in Fig. 6, all values in
the answer strided interval share the samet low-order bits, wheret = min(t1; t2). Consequently, we may takes = 2t (= 1 << t)
as the stride of the answer, and the value of the sharedt low-order
bits can be calculated byr = (a&mask) j (
&mask), wheremask = (1 << t) � 1.

The32�t high-order bits are handled by masking out thet low-
order bits, and then applying the method from Tab. 2 for finding
bounds on the bitwise-or of two signed two’s-complement values.

Thus, to computes1[a;b℄ jsi s2[
;d℄, we perform the following
steps:� Sett := min(ntz(s1); ntz(s2)).� Sets := 2t.� Calculate the value of the sharedt low-order bits asr :=(a&mask) j (
&mask), wheremask = (1 << t) � 1.� Use the method from Tab. 2 to bound the value ofx0 jy0 for (a& �mask) � x0 � (b& �mask) and(
& �mask) � y0 � (d& �mask). Call these boundslb andub.� Return the strided intervals[((lb& �mask) j r); ((ub& �mask) j r)℄.
Bitwise not (�si), And (&si), and Xor (^si)

Suppose that we have bounds onx: a � x � b. A bound on the
result of applying� tox is� b �� x �� a [47, p. 58]. Similarly,
for strided intervals, we have�si(s[lb;ub℄) = s[� ub;� lb℄: (1)


(s1[a;b℄) = fa; a + s1 ; a + 2s1 ; : : : ; bg
(s2[
;d℄) = f
; 
 + s2 ; 
 + 2s2 ; : : : ; dgt1 = ntz(s1)t2 = ntz(s2)t = min(t1; t2)
|si

a+2s1

...
a1+s1a

t1 t1 t1

c+2s2

...
c+s2c

t2 t2 t2

a | (c+2s2)
...

a | (c+s2)a | c

min(t1,t2) min(t1,t2) min(t1,t2)

(a+s1) | (c+2s2)
...

(a+s1) | (c+s2)

min(t1,t2) min(t1,t2) min(t1,t2)

(a+s1) | c...

...

...

|
min(t1,t2)

=
min(t1,t2)min(t1,t2)

= (a & mask) | (c & mask),
where mask = (1 << min(t1,t2)) – 1

Figure 6. Justification of the use oft = min(ntz(s1); ntz(s2)) in
the stride calculation of the abstract bitwise-or operation (jsi). In
particular, all values in the answer strided interval sharethe samet
low-order bits.

Eqn. (1) relies on the assumption that strided intervals arereduced:
the assumption guarantees thatub 2 
(s[lb;ub℄), and hence that� ub is the least element of
(�si(s[lb;ub℄)).

By De Morgan’s Laws, and by the fact that�si(�si(s[lb;ub℄))= s[lb;ub℄, &si and^si can be computed usingjsi and�si:si1&si si2 =�si(�si si1 jsi�si si2)si1 ^si si2 = (si1&si�si si2) jsi(�si si1&si si2)=�si(�si si1 jsi si2) jsi�si(si1 jsi�si si2)
Strided-Interval Arithmetic for Different Radices

An arithmetic operation in one radix can lead to a different result
from the same operation performed in another radix. Even when
all radices are different powers of2, not all effects can be fixed up
merely by applying a mask to the result. In particular, the values of
the x86 flags (condition codes) depend upon the radix in whichan
operation is performed.5

EXAMPLE 3.5. Suppose that the16-bit registerax has the value0x�� . The abstract transformer for a16-bit addition operation,
sayADD ax,1, must account for the effect on the CF (carry) flag.

5 Most of the arithmetic and bit-level instructions in the x86instruction set
affect some subset of the flags (condition codes), which are stored in the
processor’sEFLAGS register. For example, the x86CMP instruction subtracts
the second operand from the first operand, and sets theEFLAGS register
according to the results. The values of certain bits ofEFLAGS are used
by other instructions (such as theJ

, CMOV

, and SET

 families of
instructions) to direct the flow of control in the program.



&& (and) FALSE MAYBE TRUE

FALSE FALSE FALSE FALSE
MAYBE FALSE MAYBE MAYBE

TRUE FALSE MAYBE TRUE

jj (or) FALSE MAYBE TRUE

FALSE FALSE MAYBE TRUE
MAYBE MAYBE MAYBE TRUE

TRUE TRUE TRUE TRUE^ (xor) FALSE MAYBE TRUE

FALSE FALSE MAYBE TRUE
MAYBE MAYBE MAYBE MAYBE

TRUE TRUE MAYBE FALSE

: (not)

FALSE TRUE
MAYBE MAYBE

TRUE FALSEt (join) FALSE MAYBE TRUE

FALSE FALSE MAYBE MAYBE
MAYBE MAYBE MAYBE MAYBE

TRUE MAYBE MAYBE TRUE

Figure 7. Operations on Bool3s.

In this example, CF needs to be set to1, which is a different value
than CF would have if we modeled the16-bit addition as a32-bit
addition of0x0000�� and0x00000001 and masked out the
lower 16 bits: the32-bit addition would set CF to0 because no
carry results from the32-bit operation.2

To make it convenient to define abstract transformers that track
x86 flag values, the operations of strided-interval arithmetic also
compute abstract condition-code values that over-approximate the
values computed by the CPU, including CF (carry), ZF (zero),SF
(sign), PF (parity), AF (auxiliary carry) and OF (overflow).Each
strided-interval operationopsi returns a descriptor of the possible
condition-code values that could result from applying the corre-
sponding concrete operationop to the concretizations of the argu-
ments ofopsi. To represent multiple possible Boolean values, we
use the abstract domain Bool3:

Bool3= fFALSE;MAYBE; TRUEg.
In addition to the Booleans FALSE and TRUE, Bool3 has a third
value, MAYBE, which means “may be FALSE or may be TRUE”.
Fig. 7 shows tables for the Bool3 operations&& (and),jj (or), ^
(xor),: (not), andt (join).

To account for effects like the one illustrated in Ex. 3.5, strided-
interval arithmetic is implemented as a template that is parameter-
ized on the number of bits. Zero-extend and sign-extend operations
are also provided to convert8-bit strided intervals to16-bit and32-
bit strided intervals, and16-bit strided intervals to32-bit strided
intervals.

3.3 Value-Set Arithmetic

During VSA, a set of addresses and numeric values is represented
by a value-set, which is a map from memory-regions to stridedin-
tervals. A value-set associates each memory-regionm with an ab-
stract value that represents a set of offsets inm. Let Proc denote the
set of AR memory-regions associated with procedures in the pro-
gram, AllocMemRgn denote the set of memory-regions associated
with heap-allocation sites,6 and Global denote the memory-region
associated with the global data area. We work with the following
basic domains:

MemRgn= fGlobalg [ Proc[ AllocMemRgn
ValueSet= MemRgn! StridedInterval?

In this section, we give a sketch of the abstract value-set arithmetic
used in CodeSurfer/x86.

6 The implementation actually uses an augmented abstract domain that over-
comes some of the imprecisions that arise due to the need to perform
weak updates—i.e., accumulate information via join—on fields of summary
malloc-regions. In particular, the augmented domain oftenallows our anal-
ysis to establish a definite link between a heap-allocated object of a class
that uses one or more virtual functions and the appropriate virtual-function
table (see [5]).

For brevity, we usually write value-sets as tuples. We follow the
convention that the first component of a value-set refers to the set of
addresses (or numbers) in Global, and; denotes an empty set. For
instance, the tuple(1[0; 9℄; ;; : : :) represents the set of numbersf0; 1; : : : ; 9g and the tuple(;;4[�40;�4℄; ;; : : :) represents the
set of offsetsf�40;�36; : : : ;�4g in the first AR-region.

It is useful to classify value-sets in terms of four value-set kinds:
Kind Form of value-set

VSglob (si0; ;; : : :) si0 is a set of offsets in the
Global memory-region

VSsingle (;; : : : ; sil; ;; : : :) sil is a set of offsets in thel-th memory-region (l 6= Global)
VSarb (si0; : : : ; sik; : : :) sik is a set of offsets in thek-th memory-region>vs (>si;>si; : : :) all addresses and numeric values

Note that a value-setvs = (si0; si1; : : :) has an implicit set of
concrete addresses associated with each of thesik, k > 0: if k
corresponds to an AR-region for procedurep, these are the pos-
sible concrete stack-frame base addresses forp (relative to which
local-variable offsets are calculated); ifk corresponds to a malloc-
region, these are the possible concrete base addresses of heap-
allocated memory objects. Consequently, value-set operations can-
not be performed component-wise. For instance, it would be un-
sound to use({siu si0; {siu si1; : : :) as the value-set for the negation
of vs (i.e., {vsu vs) because the implicit set of concrete addresses
in ({siu si0; {siu si1; : : :) would not have been negated. On the con-
trary, the implicit set of concrete addresses in({siu si0; {siu si1; : : :)
would be thesameas the implicit set of concrete addresses in
vs= (si0; si1; : : :). Similar considerations hold for other arithmetic
and bit-level operations on value-sets (cf. the entries with>vs in the
tables for+vs and{vs, below).

Addition (+vs)

The following table shows the value-set kinds produced by+vs for
different kinds of arguments:+vs VSglob VSsingle VSarb >vs

VSglob VSglob VSsingle VSarb >vs

VSsingle VSsingle >vs >vs >vs

VSarb VSarb >vs >vs >vs>vs >vs >vs >vs >vs

The value-set operation+vs is symmetric in its arguments, and can
be defined as follows:
VSglob+vs VSglob: Let vs1 = (si10; ;; : : :) and vs2 = (si20; ;; : : :). Then

vs1 +vs vs2 = (si10 +si si20; ;; : : :).
VSglob+vs VSsingle: Let vs1 = (si10; ;; : : :) andvs2 = (;; : : : ; si2l ; ;; : : :).

Thenvs1 +vs vs2 = (;; : : : ; si10 +si si2l ; ;; : : :).
VSsingle+vs VSglob: Let vs1 = (;; : : : ; si1l ; ;; : : :) andvs2 = (si20; ;; : : :).

Thenvs1 +vs vs2 = (;; : : : ; si1l +si si20; ;; : : :).
VSglob+vs VSarb: Let vs1 = (si10; ;; : : :) and vs2 = (si20; : : : ; si2k; : : :).

Thenvs1 +vs vs2 = (si10 +si si20; : : : ; si10 +si si2k; : : :).
VSarb +vs VSglob: Let vs1 = (si10; : : : ; si1k; : : :) and vs2 = (si20; ;; : : :).

Thenvs1 +vs vs2 = (si10 +si si20; : : : ; si1k +si si20; : : :).
Subtraction ({vs)

The following table shows the value-set kinds produced by{vs for
different kinds of arguments:{vs VSglob VSsingle VSarb >vs

VSglob VSglob >vs >vs >vs

VSsingle VSsingle >vs >vs >vs

VSarb VSarb >vs >vs >vs>vs >vs >vs >vs >vs

The operation{vs is not symmetric in its arguments; it produces>vs

in all but the following three cases:



VSglob{vs VSglob: Let vs1 = (si10; ;; : : :) and vs2 = (si20; ;; : : :). Then

vs1 {vs vs2 = (si10 {si si20; ;; : : :).
VSsingle{vs VSglob: Let vs1 = (;; : : : ; si1l ; ;; : : :) andvs2 = (si20; ;; : : :).

Thenvs1 {vs vs2 = (;; : : : ; si1l {si si20; ;; : : :).
VSarb {vs VSglob: Let vs1 = (si10; : : : ; si1k ; : : :) and vs2 = (si20; ;; : : :).

Thenvs1 {vs vs2 = (si10 {si si20; : : : ; si1k {si si20; : : :).
Bitwise And (&vs), Or ( jvs), and Xor (^vs)

Let opvs 2 f&vs; jvs; ^vsg denote one of the binary bitwise value-set
operations, and letopsi 2 f&si; jsi; ^sig denote the corresponding
strided-interval operation. Letid and annihilator denote the
following value-sets:

opvs id annihilator&vs (0[�1;�1℄; ;; : : :) (0[0;0℄; ;; : : :)jvs (0[0;0℄; ;; : : :) (0[�1;�1℄; ;; : : :)^vs (0[0;0℄; ;; : : :)
VSglob opvs VSglob: Let vs1 = (si10; ;; : : :) andvs2 = (si20; ;; : : :).

Thenvs1 opvsvs2 = (si10 opsi si20; ;; : : :).
VSglob opvs VS: Let vsdenote a value-set of any kind. Thenid opvs vs = vsannihilator opvs vs = annihilator

Otherwise,(si0; ;; : : :) opvs vs= >vs.
VS opvsVSglob: Let vsdenote a value-set of any kind. Then

vs opvs id = vs
vs opvsannihilator = annihilator

Otherwise,vs opvs(si0; ;; : : :) = >vs.

Value-Set Arithmetic for Different Radices

Value-set arithmetic is templatized to account for different radices.
Operations on component strided intervals are performed using the
strided-interval arithmetic of the appropriate radix.

3.4 Abstract Operations for the X86 Instruction Set

VSA is a flow-sensitive, context-sensitive, abstract-interpretation
algorithm (parameterized by call-string length [42]) thatis based
on the independent-attribute domain described below.

VSA associates each instruction with an AbsMemConfig,
which, for each call-string, maps each register to a ValueSet, each
flag to a Bool3, and the global-region, each AR-region, and each
malloc-region to an AlocEnv (or?):

Flag= fCF;ZF;SF;PF;AF;OFg
AlocEnv= a-loc! ValueSet

AbsEnv= (register! ValueSet)� (Flag! Bool3)� (fGlobalg ! AlocEnv)� (Proc! AlocEnv?)� (AllocMemRgn! AlocEnv?)
AbsMemConfig= (CallString! AbsEnv?)

VSA obtains an AbsMemConfig for each instruction by an
abstract interpretation [21] performed on an interprocedural CFG.
The interprocedural CFG contains one node for each instruction in
the executable, as well as one node for each instruction in the DLLs
used by the executable. The edges of the interprocedural CFGare
labeled with the instruction at the source of the edge. If thesource
of an edge is a branch instruction, then the edge is also labeled with
the outcome of the branch.

Intraprocedural Analysis

AbsEnvs for different call-strings are propagated separately through
a CFG by applying the appropriate abstract transformer at the
AbsEnv level (i.e., the transformer is of type AbsEnv! AbsEnv).
For instance, for a simple move instruction that has the formMOVreg1,reg2, the abstract transformer at the AbsEnv level can be

expressed as follows (where"i denotes selection of thei-th com-
ponent of an AbsEnv tuple, andm[k  v℄ denotes the update of
mapm to associate keyk with valuev):�env:let r = env"1 in (r[reg1 r(reg2)℄; env"2; env"3; env"4; env"5).
A discussion of some of the issues that arise in intraprocedural
propagation, including how VSA handles memory-access opera-
tions, is found in [4,x4.1].

Interprocedural Analysis

The basic steps taken to handle parameter passing, calls, and returns
are discussed in [4,x4.2]. Since the publication of [4], the imple-
mentation of CodeSurfer/x86 has been extended to have a degree
of context-sensitivity, using the call-strings approach to interproce-
dural dataflow analysis [42].

We have also used the call-strings information to improvein-
traprocedural propagation: VSA uses the call-string associated
with the current AbsEnv, together with the executable’s call graph,
to determine which of the possible pending ARs in the current(ab-
stract) calling context represent procedures that could have been
called recursively. The distinction is important because a-locs in
AR-regions of potentially recursive procedures representmore than
one concrete memory location—our term for them issummary a-
locs—and hence assignments to them must be modeled by weak
updates, i.e., the new value-set computed for the a-loc by the ab-
stract transformer must be joined with the value-set that the a-loc
has in the incoming AbsEnv, rather than replacing it. This use of
call-string and call-graph information can allow some a-locs in
some abstract calling contexts to be identified as non-summary a-
locs—in which case strong updates, rather than weak updates, are
possible (i.e., in such abstract calling contexts, an assignment to
the a-loc can be treated as a kill, rather than as just a possible kill).

This improves on the treatment reported in [4], where call-
strings information was not available, and thus in all abstract calling
contexts weak updates were always performed for a-locs of proce-
dures that could be called recursively insomecalling context.

Idioms

Before applying an abstract transformer, the instruction is checked
to see if it matches a pattern for which we know how to carry out
abstract interpretation more precisely than if value-set arithmetic is
performed directly. Some examples are given below.XOR reg,reg. The XOR instruction sets its first operand to the
bitwise exclusive-or (̂) of the instruction’s two operands. The id-
iom catches the case whenXOR is used to set a register to0; hence,
the a-loc for registerreg is set to the value-set(0[0; 0℄; ;; : : :).TEST reg,reg. TheTEST instruction computes the bitwise and
(&) of its two operands, and sets the SF, ZF, and PF flags according
to the result. The idiom addresses how the value of ZF is set when
the value-set ofreg has the form(si; ;; : : :):

ZF := 8<:TRUE if 
(si) = f0g
FALSE if 
(si) \ f0g = ;
MAYBE otherwiseCMP a,b or CMP b,a. In the present implementation, we assume

that an allocation always succeeds (and hence value-set analysis
only explores the behavior of the system on executions in which
allocations always succeed). Under this assumption, we canapply
the following idiom: Suppose thatk1; k2; : : : are malloc-regions,
the value-set fora is (;; : : : ; sik1; sik2; : : :), and the value-set forb
is (0[0; 0℄; ;; : : :). Then ZF is set to FALSE.

4. Related Work
Other work on analyzing memory accesses in executables.Sev-
eral others have proposed techniques to obtain informationfrom



executables by means of static analysis, including [34, 23,16, 15,
17, 10, 36, 2, 9, 3, 26]. This work is summarized below.

The xGCC tool [3] analyzes XRTL intermediate code with the
aim of verifying safety properties, such as the absence of buffer
overflow, division by zero, and the use of uninitialized variables.
The tool uses an abstract domain based on sets of intervals; it sup-
ports an arithmetic on this domain that takes into account the prop-
erties of signed two’s-complement numbers. However, the domain
used in xGCC does not support the notion of strides—i.e., thein-
tervals are strided intervals with strides of1. Because on many
processors memory accesses do not have to be aligned on word
boundaries, an abstract arithmetic based solely on intervals does
not provide enough information to check for non-aligned accesses.

For instance, a4-byte fetch from memory where the starting
address is in the interval[1020; 1028℄ must be considered to be a
fetch of any of the following4-byte sequences:(1020; : : : ; 1023),(1021; : : : ; 1024), (1022; : : : ; 1025), . . . ,(1028; : : : ; 1031). Sup-
pose that the program writes the addressesa1, a2, and a3
into the words at (1020; : : : ; 1023), (1024; : : : ; 1027), and(1028; : : : ; 1031), respectively. Because the abstract domain can-
not distinguish an unaligned fetch from an aligned fetch, a4-byte
fetch where the starting address is in the interval[1020; 1028℄
will appear to allow address forging: e.g., a4-byte fetch from(1021; : : : ; 1024) contains the three high-order bytes ofa1, con-
catenated with the low-order byte ofa2.

In contrast, if an analysis knows that the starting address of the4-byte fetch is characterized by the strided interval4[1020;1028℄,
it would discover that the set of possible values is restricted
to fa1; a2; a3g. Moreover, a tool that uses intervals rather than
strided intervals is likely to suffer a catastrophic loss ofprecision
when there are chains of indirection operations: if the firstindi-
rection operation fetches the possible values at(1020; : : : ; 1023),(1021; : : : ; 1024), . . . , (1028; : : : ; 1031), the second indirection
operation will have to follow nine possibilities—including all ad-
dresses potentially forged from the sequencea1, a2, anda3. Con-
sequently, the use of intervals rather than strided intervals in a tool
that attempts to identify potential bugs and security vulnerabilies is
likely to cause a large number of false alarms to be reported.

Other work deals with memory accesses very conservatively:if
a register is assigned a value from memory, it is assumed to take on
any value. For instance, although the basic goal of the algorithm
proposed by Debray et al. [23] is similar to that of VSA, their
goal is to find an over-approximation of the set of values thateach
register can hold at each program point; for us, it is to find an
over-approximation of the set of values that each (abstract) data
object can hold at each program point, where data objects include
global, stack-allocated, and heap-allocated memory locations, in
addition to registers. In the analysis proposed by Debray etal., a
set of addresses is approximated by a set of congruence values: they
keep track of only the low-order bits of addresses. However,unlike
VSA, their algorithm does not make any effort to track valuesthat
are not in registers. Consequently, it loses a great deal of precision
whenever there is a load from memory.

Cifuentes and Fraboulet [16] give an algorithm to identify an
intraprocedural slice of an executable by following the program’s
use-def chains. However, their algorithm also makes no attempt to
track values that are not in registers, and hence cuts short the slice
when a load from memory is encountered.

The two pieces of work that are most closely related to VSA
are the algorithm for data-dependence analysis of assemblycode
of Amme et al. [2] and the algorithm for pointer analysis on a low-
level intermediate representation of Guo et al. [26]. The algorithm
of Amme et al. performs only anintraprocedural analysis, and it
is not clear whether the algorithm fully accounts for dependences
between memory locations. The algorithm of Guo et al. is only

partially flow-sensitive: it tracks registers in a flow-sensitive man-
ner, but treats memory locations in a flow-insensitive manner. The
algorithm uses partial transfer functions [48] to achieve context-
sensitivity. The transfer functions are parameterized by “unknown
initial values” (UIVs); however, the algorithm does not account for
the possibility of called procedures corrupting the memoryloca-
tions that the UIVs represent.

Several platforms have been created for manipulating executa-
bles in the presence of additional information, such as source code
and debugging information, including ATOM [44], EEL [34], and
Vulcan [43].

Bergeron et al. [9] present a static-analysis technique to check
if an executable with debugging information adheres to a user-
specified security policy.

Rival [41] presents an analysis that checks whether the assembly
code produced by a compiler possesses the same safety properties
as the original source code. The analysis assumes that source code
and debugging information are available. After the source code is
analyzed, the source-level invariants are translated intolow-level
invariants, which the system then attempts to prove for the low-
level code.
Identification of structures. Aggregate structure identification
(ASI) was devised by Ramalingam et al. to partition aggregates ac-
cording to a Cobol program’s memory-access patterns [37]. Asim-
ilar algorithm was devised by Eidorff et al. [24] and incorporated in
the Anno Domini system. The original motivation for these algo-
rithms was the Year 2000 problem; they provided a way to identify
how date-valued quantities could flow through a program.

In our work, ASI complements VSA: ASI addresses the issue
of identifying the structure of aggregates, whereas VSA addresses
the issue of over-approximating the contents of memory locations.
ASI provides an improved method for the variable-identification
facility of IDAPro, which uses only much cruder techniques (and
only takes into account statically known memory addresses and
stack offsets). Moreover, ASI requires more information tobe on
hand than is available in IDAPro (such as the range and stride
of a memory-access operation). Fortunately, this is exactly the
information that is available after VSA has been carried out, which
means that ASI can be used in conjunction with VSA to obtain
improved results: after each round of VSA, the results of ASIare
used to refine the a-loc abstraction, after which VSA is run again—
generally producing more precise results.

Mycroft gives a unification-based algorithm for performingtype
reconstruction, including identifying structures [36]. For instance,
when a register is dereferenced with an offset of4 to perform a4-
byte access, the algorithm infers that the register holds a pointer to
an object that has a4-byte field at offset4. The type system uses
disjunctive constraints when multiple type reconstructions from a
single usage pattern are possible.

Mycroft points out several weaknesses of the algorithm due
to the absence of certain information. Some of these could be
addressed using information obtained by the techniques described
in this paper:� Mycroft explains how several simplifications could be trig-

gered if interprocedural side-effect information were avail-
able. Once the information computed by the methods used in
CodeSurfer/x86 is in hand, interprocedural side-effect informa-
tion could be computed by standard techniques [19].� Mycroft’s algorithm is unable to recover information aboutthe
sizes of arrays that are identified. In our work, affine-relation
analysis (ARA) [35, 33] is used to identify, for each program
point, affine relations that hold. In essence, this providesinfor-
mation about induction-variable relationships in loops, which,
in turn, can allow VSA to recover information about array sizes



when, e.g., one register is used to sweep through an array under
the control of a second loop-index register.� Mycroft does not have stride information available; however,
VSA’s abstract domain is based on strided intervals.� Mycroft excludes from consideration programs in which ad-
dresses of local variables are taken because “it can be unclear
as to where the address-taken object ends—astru
t of size
8 bytes followed by a coincidentally contiguously allocatedint can be hard to distinguish from astru
t of 12 bytes.”
This is a problematic restriction for a decompiler because it is
a common idiom: in C programs, addresses of local variables
are frequently used as explicit arguments to called procedures
(when programmers simulate call-by-reference parameter pass-
ing), and C++ and Java compilers can use addresses of local
variables to implement call-by-reference parameter passing.

Because the methods presented in this paper provide infor-
mation about the usage patterns of pointers into the stack, they
would allow Mycroft’s techniques to be applied in the presence
of pointers into the stack.

Decompilation. Past work on decompiling assembly code to a
high-level language [17] is also related to our work. However, the
decompilers reported in the literature are somewhat limited in what
they are able to do when translating assembly code to high-level
code. For instance, Cifuentes’s work [17] primarily concentrates
on recovery of (a) expressions from instruction sequences,and (b)
control flow. We believe that the memory-access-analysis methods
described in this paper would enable a decompiler to do a better
job. By performing these analyses prior to decompilation proper,
information about numeric values, address values, physical types,
and definite links from objects to virtual-function tables [5] would
be available to the decompiler.
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