DIVINE: DIscovering Variables IN Executables

Gogul Balakrishnan and Thomas Reps
Comp. Sci. Dept., University of Wisconsin; {bgogul,reps} @cs.wisc.edu

Abstract. This paper addresses the problem of recovering variable-like entities when ana-
lyzing executables in the absence of debugging information. We show that variable-like en-
tities can be recovered by iterating Value-Set Analysis (VSA), a combined numeric-analysis
and pointer-analysis algorithm, and Aggregate Structure Identification, an algorithm to iden-
tify the structure of aggregates. Our initial experiments show that the technique is successful
in correctly identifying 88% of the local variables and 89% of the fields of heap-allocated
objects. Previous techniques recovered 83% of the local variables, but 0% of the fields of
heap-allocated objects. Moreover, the values computed by VSA using the variables recov-
ered by our algorithm would allow any subsequent analysis to do a better job of interpreting
instructions that use indirect addressing to access arrays and heap-allocated data objects:
indirect operands can be resolved better at 4% to 39% of the sites of writes and up to 8% of
the sites of reads. (These are the memory-access operations for which it is the most difficult
for an analyzer to obtain useful results.)

1 Introduction

There is an increasing need for tools to help programmers and security analysts under-
stand executables. For instance, companies and the military increasingly use Commer-
cial Off-The Shelf (COTS) components to reduce the cost of software development.
They are interested in ensuring that COTS components do not perform malicious ac-
tions (or can be forced to perform malicious actions). Viruses and worms have become
ubiquitous. A tool that aids in understanding their behavior could ensure early dissem-
ination of signatures, and thereby help control the extent of damage caused by them. In
both domains, the questions that need to be answered cannot be answered perfectly—
the problems are undecidable—but static analysis provides a way to answer them con-
servatively.

The long-term goal of our work is to develop bug-detection and security-
vulnerability analyses that work on executables. As a means to this end, our immediate
goal is to advance the state of the art of recovering, from executables, Intermediate
Representations (IRs) that are similar to those that would be available had one started
from source code. We envisage the following uses for the IRs: (1) as an aid to a hu-
man analyst who is trying to understand the behavior of the program, and (2) as the
basis for further static analysis of executables. Moreover, once such IRs are in hand,
we will be in a position to leverage the substantial body of work on bug-detection and
security-vulnerability analysis based on IRs built from source code.

One of the several obstacles in IR recovery is that a program’s data objects are
not easily identifiable in an executable. Consider, for instance, a data dependence from
statement a to statement b that is transmitted by write/read accesses on some variable
x. When performing source-code analysis, the programmer-defined variables provide
us with convenient compartments for tracking such data manipulations. A dependence
analyzer must show that a defines x, b uses x, and there is an x-def-free path from a
to b. However, in executables, memory is accessed either directly—by specifying an
absolute address—or indirectly—through an address expression of the form “[base +

index x scale + offset]”, where base and index are registers, and scale and offset are
integer constants. It is not clear from such expressions what the natural compartments
are that should be used for analysis. Because executables do not have intrinsic entities
that can be used for analysis (analogous to source-level variables), a crucial step in the
analysis of executables is to identify variable-like entities. If debugging information is
available (and trusted), this provides one possibility; however, even if debugging infor-
mation is available, analysis techniques have to account for bit-level, byte-level, word-
level, and bulk-memory manipulations performed by programmers (or introduced by
the compiler) that can sometimes violate variable boundaries [3, 18,24]. If a program
is suspected of containing malicious code, even if debugging information is present, it
cannot be entirely relied upon. For these reasons, it is not always desirable to use de-
bugging information—or at least to rely on it alone—for identifying a program’s data
objects. (Similarly, past work on source-code analysis has shown that it is sometimes
valuable to ignore information available in declarations and infer replacement informa-
tion from the actual usage patterns found in the code [12,21,23,28,30].)

Moreover, for many kinds of programs (including most COTS products, viruses,
and worms), debugging information is entirely absent; for such situations, an alternative
source of information about variable-like entities is needed. While the reader may won-
der about how effective one can be at determining information about a program’s behav-
ior from low-level code, a surprisingly large number of people—on a daily basis—are
engaged in inspecting low-level code that is not equipped with debugging information.
These include hackers of all hat shades (black, grey, and white), as well as employees
of anti-virus companies, members of computer incident/emergency response teams, and
members of the intelligence community.

Heretofore, the state of the art in recovering variable-like entities is represented by
IDAPro [15], a commercial disassembly toolkit. IDAPro’s algorithm is based on the ob-
servation that accesses to global variables appear as “[absolute-address]”, and accesses
to local variables appear as “[esp + offset]” or “[ebp — offset]” in the executable. That
is, IDAPro recovers variables based on purely local techniques.! This approach has
certain limitations. For instance, it does not take into account accesses to fields of struc-
tures, elements of arrays, and variables that are only accessed through pointers, because
these accesses do not fall into any of the patterns that IDAPro considers. Therefore, it
generally recovers only very coarse information about arrays and structures. Moreover,
this approach fails to provide any information about the fields of heap-allocated objects,
which is crucial for understanding programs that manipulate the heap.

The aim of the work presented in this paper is to improve the state of the art by using
abstract interpretation [10] to replace local analyses with ones that take a more compre-
hensive view of the operations performed by the program. We present an algorithm that
combines Value-Set Analysis (VSA) [4], which is a combined numeric-analysis and
pointer-analysis algorithm that works on executables, and Aggregate Structure Identifi-
cation (ASI) [23], which is an algorithm that infers the substructure of aggregates used
in a program based on how the program accesses them, to recover variables that are
better than those recovered by IDAPro. As explained in §5, the combination of VSA

! IDAPro does incorporate a few global analyses, such as one for determining changes in stack
height at call-sites. However, the techniques are ad-hoc and based on heuristics.

and ASI allows us (a) to recover variables that are based on indirect accesses to mem-
ory, rather than just the explicit addresses and offsets that occur in the program, and
(b) to identify structures, arrays, and nestings of structures and arrays. Moreover, when
the variables that are recovered by our algorithm are used during VSA, the precision of
VSA improves. This leads to an interesting abstraction-refinement scheme; improved
precision during VSA causes an improvement in the quality of variables recovered by
our algorithm, which, in turn, leads to improved precision in a subsequent round of
VSA, and so on.

The specific technical contributions of the paper are as follows:

— We present an abstract-interpretation-based algorithm for recovering variable-like
entities from an executable. In particular, we show how information provided by
VSA is used in combination with ASI for this purpose.

— We evaluate the usefulness of the variables recovered by our algorithm to a hu-
man analyst. We compare the variables recovered by our algorithm against the de-
bugging information generated at compile time. Initial experiments show that the
technique is successful in correctly identifying 88% of the local variables and 89%
of the fields of heap-allocated objects. Previous techniques based on local analysis
recovered 83% of the local variables, but 0% of the fields of heap-allocated objects.

— We evaluate the usefulness of the variables and values recovered by our algorithm
as a platform for additional analyses. Initial experiments show that the values com-
puted by VSA using the variables recovered by our algorithm would allow any
subsequent analysis to do a better job of interpreting instructions that use indi-
rect addressing to access arrays and heap-allocated data objects: indirect memory
operands can be resolved better at 4% to 39% of the sites of writes and up to 8% of
the sites of reads.

Our current implementation of the variable-recovery algorithm—which is incorpo-
rated in a tool called CodeSurfer/x86 [25]—works on x86 executables; however, the
algorithms used are architecture-independent.

The remainder of the paper is organized as follows: §2 provides an abstract memory
model for analyzing executables. §3 provides an overview of our approach to recover
variable-like entities for use in analyzing executables. §4 provides background on VSA
and ASI. §5 describes our abstraction-refinement algorithm to recover variable-like en-
tities. §6 reports experimental results. §7 discusses related work.

2 An Abstract Memory Model

In this section, we present an abstract memory model for analyzing executables. A
simple model is to consider memory as an array of bytes. Writes (reads) in this trivial
memory model are treated as writes (reads) to the corresponding element of the array.
However, there are some disadvantages in such a simple model:

— It may not be possible to determine specific address values for certain memory
blocks, such as those allocated from the heap via malloc. For the analysis to be
sound, writes to (reads from) such blocks of memory have to be treated as writes to
(reads from) any part of the heap.

— The runtime stack is reused during each execution run; in general, a given area
of the runtime stack will be used by several procedures at different times during
execution. Thus, at each instruction a specific numeric address can be ambiguous

(because the same address may belong to different activation records at different
times during execution): it may denote a variable of procedure £, a variable of
procedure g, a variable of procedure h, etc. (A given address may also correspond
to different variables of different activations of f£.) Therefore, an instruction that
updates a variable of procedure £ would have to be treated as possibly updating the
corresponding variables of procedures g, h, etc.

To overcome these problems, we

el
2 — work with the following abstract memory
ﬂé e model [4]. Although in the concrete se-
& mantics the activation records (ARs) for
5 procedures, the heap, and the memory for
H ‘ global data are all part of one address
space, for the purposes of analysis, we
Conerete Address Space Abstract Memory Model separate the address space into a set of

Fig. 1: Memory-regions disjoint areas, which are referred to as
memory-regions (see Fig. 1). Each memory-region represents a group of locations that
have similar runtime properties. For example, the runtime locations that belong to the
ARs of a given procedure belong to one memory-region. For a given program, there
are three kinds of regions: (1) global-regions, for memory locations that hold global
data, (2) AR-regions, each of which contains the locations of the ARs of a particular
procedure, and (3) malloc-regions, each of which contains the locations allocated at a
particular malloc site.

3 Overview of our Approach

Our goal is to subdivide the memory-regions of the executable into variable-like entities
(which we call a-locs, for “abstract locations”). These can then be used as variables in
tools that analyze executables. Memory-regions are subdivided using the information
about how the program accesses its data. The intuition behind this approach is that data-
access patterns in the program provide clues about how data is laid out in memory. For
instance, the fact that an instruction in the executable accesses a sequence of four bytes
in memory-region M is an indication that the programmer (or the compiler) intended to
have a four-byte-long variable or field at the corresponding offset in M. In this section,
we present the problems in developing such an approach, and the insights behind our
solution, which addresses those problems. Details are provided in §5.

3.1 The Problem of Indirect Memory Accesses

Past work on analyzing executables [4, 15] uses the addresses and stack-frame offsets
that occur explicitly in the program to recover variable-like entities. We will call this
the Semi-Naive algorithm. It is based on the observation that access to global variables
appear as “[absolute-address]”, and access to local variables appear as “[esp + off-
set]” or “[ebp — offset]” in the executable. Thus, absolute addresses and offsets that
occur explicitly in the executable (generally) indicate the starting addresses of program
variables. Based on this observation, the Semi-Naive algorithm identifies each set of
locations between two neighboring absolute addresses or offsets as a single variable.
Such an approach produces poor results in the presence of indirect memory operands.

Example 1. The program initializes the two fields x and y of a local struct through the
pointer pp and returns 0. pp is located at offset -12,% and struct p is located at offset -8
in the activation record of main. Address expression “ebp—8” refers to the address of
p, and address expression “ebp-12" refers to the address of pp.

typedef struct {
int x, y;
} Point;

proc main
1 mov ebp, esp
2 sub esp, 12
3 lea eax, [ebp-8]
4 mov [ebp-12], eax
Smov [eax], 1

int main(){
Point p, *pp;

gi—;x&ill' 6 mov [eax+4], 2
B _ 2'. 7mov eax, 0
EZtizn_o-’ 8 add esp, 12
) ! 9 retn

Instruction 4 initializes the value of pp. (Instruction “3 lea eax, [ebp-8]1"1is
equivalent to the assignment eax := ebp-8.) Instructions 5 and 6 update the fields
of p. Observe that, in the executable, the fields of p are updated via eax, rather than via
the pointer pp itself, which resides at address ebp-12.]

In Ex. 1, -8 and -12 are the offsets relative to the frame pointer (i.e., ebp) that
occur explicitly in the program. The Semi-Naive algorithm would say that offsets —12
through -9 of the AR of main constitute one variable (say var_12), and offsets —8
through -1 of AR of main constitute another (say var_8). The Semi-Naive algorithm
correctly identifies the position and size of pp. However, it groups the two fields of p
together into a single variable because it does not take into consideration the indirect
memory operand [eax+4] in instruction 6.

Typically, indirect operands are used to access arrays, fields of structures, fields of
heap-allocated data, etc. Therefore, to recover a useful collection of variables from exe-
cutables, one has to look beyond the explicitly occurring addresses and stack-frame off-
sets. Unlike the operands considered in the Semi-Naive algorithm, local methods do not
provide information about what an indirect memory operand accesses. For instance, an
operand such as “[ebp — offset]” (usually) accesses a local variable. However, “[eax
+ 417 may access a local variable, a global variable, a field of a heap-allocated data-
structure, etc., depending upon what eax contains.

Obtaining information about what an indirect memory operand accesses is not
straightforward. In this example, eax is initialized with the value of a register. In gen-
eral, a register used in an indirect memory operand may be initialized with a value read
from memory. In such cases, to determine the value of the register, it is necessary to
know the contents of that memory location, and so on. Fortunately, Value-Set Analysis
(VSA) described in [4,24] (summarized in §4.1) can provide such information.

2 We follow the convention that the value of esp (the stack pointer) at the beginning of a pro-
cedure marks the origin of the procedure’s AR-region.

3.2 The Problem of Granularity and Expressiveness

The granularity and expressiveness of recovered variables can affect the precision of
analysis clients that use the recovered variables as the executable’s data objects.

Example 2. The program shown below initializes all elements of array p. The x-
members of each element are initialized with 1; the y-members are initialized with
2. The disassembly is also shown. Instruction L1 updates the x-members of the array
elements; instruction 5 updates the y-members.
proc main

0 mov ebp,esp

1 sub esp,40

2mov ecx,0

3 lea eax,[ebp-40]
Ll: mov [eax], 1

S5mov [eax+4],2

6 add eax, 8

7 inc ecx

8 cmp ecx, 5

} 931 L1
return p[0].y; 10 mov eax, [ebp-36]
! 11 add esp, 40
} 12 retn

Fig. 2(a) shows how the variables are laid out in the AR of main. Note that there is
no space for variable i in the AR for main because the compiler promoted i to register
ecx.d

typedef struct {
int x,y;
} Point;

int main(){
int 1i;
Point p[5];
for(i=0;i<5;++i) {
plil.x = 1;
plil.y = 2;

p——— preerere N As a specific example of an analysis client, consider a
praly | _ data-dependence analyzer, which answers such questions
T : as: “Does the write to memory at instruction L1 affect the
.. read from memory at instruction 10”. Note that in Ex. 2
-0 the write to memory at instruction L1 does not affect the
read from memory at instruction 10 because L1 updates
the x members of the elements of array p, while instruc-
tion 10 reads the y member of array element p[0]. To
simplify the discussion, assume that a data-dependence an-
alyzer works as follows: (1) annotate each instruction with
used, killed, and possibly-killed variables, and (2) compare
the used variables of each instruction with killed or possibly-killed variables of every
other instruction to determine data dependences.

Consider three different partitions of the AR of main:

=32
plo].y _36 var_36

pl0].x var_40

(a) (b)
Fig.2: AR of main for the
program in Ex. 2: (a) actual
layout, and (b) layout ob-
tained from the Semi-Naive
approach.

VarSety: As shown in Fig. 2(b), the Semi-Naive approach from §3.1 would say that
the AR of main has two variables: var_40 (4 bytes) and var_36 (36 bytes). The
variables that are possibly killed at L1 are {var_40, var_36}, and the variable used
at 10 is var_36. Therefore, the data-dependence analyzer reports that the write to
memory at L1 might affect the read at 10. (This is sound, but imprecise.)

VarSety: As shown in Fig. 2(a), there are two variables for each element of array
p. The variables possibly killed at L1 are {p[0].x, p[1].x, p[2].%, p[3].x,
pl41].x}, and the variable used at instruction 10 is p[0] .y. Because these sets are
disjoint, the data-dependence analyzer reports that the memory write at instruction L1
definitely does not affect the memory read at instruction 10.

VarSets: Suppose that the AR of main is partitioned into just two (summary) vari-
ables: (1) p[?].x, which is a representative for the x members of the elements of
array p, and (2) p[?] .y, which is a representative for the y members of the elements
of array p. The summary variable that is possibly killed at instruction L1 is p[?] . x
and the summary variable that is used at instruction 10 is p[?] . y. These are disjoint;
therefore, the data-dependence analyzer reports a definite answer, namely, that the write
at .1 does not affect the read at 10.

Of the three alternatives presented above, VarSet 3 has several desirable features:

— It has a smaller number of variables than VarSets. When it is used as the set of
variables in a data-dependence analyzer, it provides better results than VarSet;.

— The variables in VarSetgs are capable of representing a set of non-contiguous
memory locations. For instance, p[?] . x represents the locations corresponding

top[0].x,p[1].x,...,p[4].x. The ability to represent non-contiguous se-
quences of memory locations is crucial for representing a specific field in an array
of structures.

— The AR of main is only partitioned as much as necessary. In VarSets, only one
summary variable represents the x members of the elements of array p, while each
member of each element of array p is assigned a separate variable in VarSets.

A good variable-recovery algorithm should partition a memory-region in such a
way that the set of variables obtained from the partition has the desirable features of
VarSets. When debugging information is available, this is a trivial task. However, de-
bugging information is often not available. Data-access patterns in the program provide
information that can serve as a substitute for debugging information. For instance, in-
struction L1 accesses each of the four-byte sequences that start at offsets {—40, —32,
..., —8} in the AR of main. The common difference of 8 between successive offsets is
evidence that the offsets may represent the elements of an array. Moreover, instruction
L1 accesses every four bytes starting at these offsets. Consequently, the elements of the
array are judged to be structures in which the one of the fields is four bytes long.

4 Background

In this section, we describe (1) Value-Set Analysis (VSA) [4], and (2) Aggregate Struc-

ture Identification (ASI) [23]. This material is related to the core of the paper as follows:

— We use VSA as the mechanism to understand indirect memory accesses (see §4.1)
and obtain data-access patterns (see §4.2) from the executable.

— In §5, we show how to use the information gathered during VSA to harness ASI to
the problem of identifying variable-like entities in executables.

4.1 Value-Set Analysis (VSA)

VSA [4] is a combined numeric-analysis and pointer-analysis algorithm that determines
an over-approximation of the set of numeric values or addresses that each register and

memory location holds at each program point. In particular, at each program point, VSA
provides information about the contents of registers that appear in an indirect memory
operand. A key feature of VSA is that it tracks integer-valued and address-valued quan-
tities simultaneously. This is crucial for analyzing executables because numeric values
and addresses are indistinguishable at runtime. Moreover, unlike earlier algorithms that
analyze executables [8, 11], VSA takes into account data manipulations involving mem-
ory locations also. To track the contents of memory locations, the initial run of VSA
uses the variables recovered via the Semi-Naive approach from §3.1.

For the program in Ex. 1, the initial run of VSA computes an over-approximation
of the contents of the x86 registers (eax, ax, ah, al, ebx, etc.) and the memory-
locations that correspond to var_12 (4 bytes) and var_8 (8 bytes). Similarly, for
the program in Ex. 2, the initial run of VSA computes an over-approximation of the
contents of the x86 registers and the memory-locations that correspond to var_40 (4
bytes) and var_36 (36 bytes). For both examples, the initial a-locs will be refined by
our abstraction-refinement algorithm in §5. In the remainder of the paper, we overload
the term “a-loc” both for the entities recovered by the Semi-Naive algorithm (which
are what we used in our previous work [4]), as well as for the entities identified by
the abstraction-refinement algorithm of §5. (There should be no confusion, as it should
always be clear from context which kind of a-loc is intended.)

VSA is a flow-sensitive, context-sensitive, interprocedural, abstract-interpretation
algorithm (parameterized by call-string length [27]) that is based on an independent-
attribute domain described below.

Call-Strings. The call-graph of a program is a labeled graph in which each node rep-
resents a procedure, each edge represents a call, and the label on an edge represents
the call-site corresponding to the call represented by the edge. A call-string [27] is a
sequence of call-sites (¢ycs . . . ¢,) such that call-site ¢; belongs to the entry procedure,
and there exists a path in the call-graph consisting of edges with labels ¢y, co, ..., cs.
CallString is the set of all call-strings in the program.

A call-string suffix of length k is either (cica...ck) or (xcice...cy), where ¢,
co, ..., c are call-sites. (cica...cy) represents the string of call-sites cqca. . . cy.
(*c1eg ... k), which is referred to as a saturated call-string, represents the set {cs|cs €
CallString, cs = meiea ... cx, and |7] > 1}. CallStringy is the set of saturated call-
strings of length k, plus non-saturated call-strings of length < k.

Value-Sets. During VSA, a set of numeric values and addresses is represented by a
value-set that is a safe approximation of the actual set. Suppose that n is the number of
memory-regions in the executable. A value-set is an n-tuple of strided intervals of the
form s[l, u], with each component of the tuple representing the set of addresses in the
corresponding region [24]. For a 32-bit machine, a strided-interval s[l, u] represents the
set of integers {i € [—231,231 —1]|l <i < w,i=I(mod s)}.

— s is called the stride.

- [l,u] is called the interval.

— 0[l,] represents the singleton set {/}.
For Ex. 2, the value-sets are 2-tuples. We follow the convention that the first component
always refers to the set of addresses (or numbers) in the global region and () denotes the
empty set. For instance, the tuple (1[0, 9], #) represents the set of numbers {0, 1,...,9}

and the tuple (@, 4[—40, —4]) represents the set of offsets {—40, —36, ..., —4} in the
AR-region forma in. (Although we refer to “tracking integer-valued and address-valued
quantities simultaneously”, the analysis makes no distinction between the two: values
in the Global region could be either, and are treated appropriately according to what
instruction is performed [4,24].)

VSA Domain. Let Proc denote the set of memory-regions associated with procedures
in the program; AllocMemRgn denote the set of memory-regions associated with heap-
allocation sites;> Global denote the memory-region associated with the global data area;
and a-loc[R] denote the a-locs that belong to memory-region R. We work with the
following basic domains:

MemRgn = {Global} U Proc U AllocMemRgn
ValueSet = MemRgn — StridedInterval |
AlocEnv[R] = a-loc[R] — ValueSet

AbsEnv maps each region R to its corresponding AlocEnv[R] and each register to a
ValueSet:

(register — ValueSet)
% ({Global} — AlocEnv[Global])
AbsEnv = x (Proc — AlocEnv[Proc],)
x (AllocMemRgn — AlocEnv[AllocMemRgn],)

VSA associates each program point with an AbsMemConfig:
AbsMemConfig = (CallStringx — AbsEnv)

In the above definitions, L is used to denote a partial map. For instance, a ValueSet
may not contain offsets in some memory-regions. Similarly, in AbSEnv, a procedure P
whose activation record is not on the stack does not have an AlocEnv[P]. In addition
to determining an over-approximation of the set of numeric values and addresses for
each a-loc in the executable, VSA also finds a conservative estimate of the targets of
indirect function-calls and indirect jumps—see [4]. Instead of describing VSA in detail,
we highlight some of its features that are useful in a-loc recovery.

— Information about indirect memory operands: For the program in Ex. 1, VSA de-
termines that the value-set of eax at instruction 6 is (), 0[—8, —8]), which means
that eax holds the offset —8 in the AR-region of ma in. Using this information, we
can conclude that [eax+4] refers to offset —4 in the AR of main.

— VSA provides data-access patterns: For the program in Ex. 2, VSA determines that
the value-set of eax at program point L1 is (), 8]—40, —8]), which means that eax
holds the offsets {—40, —32, ..., —8} in the AR-region of main. (These offsets are
the starting addresses of field x of elements of array p.)

3 The implementation actually uses an augmented abstract domain that overcomes some of the
imprecision that arises due to the need to perform weak updates—i.e., accumulate information
via join—on fields of summary malloc-regions. In particular, the augmented domain, which is
described in [5], often allows our analysis to establish a definite link between a heap-allocated
object of a class that uses 1 or more virtual functions and the appropriate virtual-function table.
Due to space considerations, this aspect could not be described in the present paper. The results
reported in §6 are based on the augmented domain.

— VSA tracks updates to memory: This is important because, in general, the registers
used in an indirect memory operand may be initialized with a value read from mem-
ory. If updates to memory are not tracked, we may neither have useful information
for indirect memory operands nor useful data-access patterns for the executable.

4.2 Aggregate Structure Identification (ASI)

ASI is a unification-based, flow-insensitive algorithm to identify the structure of ag-
gregates in a program [23]. The algorithm ignores any type information known about
aggregates, and considers each aggregate to be merely a sequence of bytes of a given
length. The aggregate is then broken up into smaller parts depending on how it is ac-
cessed by the program. The smaller parts are called atoms.

The data-access patterns in the program are specified to the ASI algorithm through a
data-access constraint language (DAC). The syntax of DAC programs is shown in Fig. 3.
There are two kinds of constructs in a DAC program: (1) DataRef is a reference to a
set of bytes, and provides a means to specify how the data is accessed in the program;
(2) UnifyConstraint provides a means to specify the flow of data in the program.
Note that the direction of data flow is not considered in a UnifyConstraint. The
justification for this is that a flow of data from one sequence of bytes to another is
evidence that they should have the same structure. ASI uses the constraints in the DAC
program to find a coarsest refinement of the aggregates.

Pgm ::=¢ | UnifyConstraint Pgm
UnifyConstraint ::=DataRef = DataRef
DataRef ::=ProgVars |
DataRef[UInt:UInt] |
DataRef\UInt4

Fig.3: Data-Access Constraint (DAC) language. UInt is the set of non-negative integers;
UInty isthe set of positive integers; and ProgVars is the set of program variables.
There are three kinds of data references:

— A variable P € ProgVar refers to all the bytes of variable P.

— DataRef [l:u] refers to bytes [through v in DataRef. For example, P[8:11]
refers to bytes 8. . 11 of variable P.

— DataRef\n is interpreted as follows: DataRef is an array of n elements and
DataRef\n refers to the bytes of an element of array DataRef. For example,
P[0:111\3 refers to the sequences of bytes P[0:3]1,P[4:7],0orP[8:11].
Instead of going into the details of the ASI algorithm, we provide the intuition

behind the algorithm by means of an example. Consider the source-code program shown
in Ex. 2. The data-access constraints for the program are
pl0:391\5[0:3] =~ const_1[0:31;
p[0:39]\5[4:7] ~ const_2[0:37];
returnmain([0:3] = p(4:7];
The constraints reflect the fact that the size of Point is 8 and that x and y are laid
out next to each other. The first constraint encodes the initialization of the x members,
namely, p[1].x = 1. The DataRef p[0:39]\5[0:3] refers to the bytes that
correspond to the x members in array p. The last constraint corresponds to the return
statement; it represents the fact that the return value of main is assigned bytes 4. .7
of p, which correspondto p[0] .y.

struct {

P ek .
—> 40 | R P . 3.
I wqn] int a3;
pa—— int a4;
d return_main [4wy |[aw)] [4@a@]
return_main struct {
=Lt int a5;
int a6;
} i31041;
}opi
(@) (b) (©)

Fig. 4: (a) ASI DAG, (b) ASI tree, and (c) struct recovered for the program in Ex. 2.

The result of ASI is a DAG that shows the structure of each aggregate as well as
relationships among the atoms of aggregates. The DAG for Ex. 2 is shown in Fig. 4(a).
An ASI DAG has the following properties:

— A node represents a set of bytes.

— A sequence of bytes that is accessed as an array in the program is represented
by an array node. Array nodes are labeled with (X). The number in an array node
represents the number of elements in the array. An array node has one child, and the
DAG rooted at the child represents the structure of the array element. In Fig. 4(a),
bytes 8. .39 of array p are identified as an array of four 8-byte elements. Each
array element is a struct with two fields of 4 bytes each.

— A sequence of bytes that is accessed like a C struct in the program is represented by
a struct node. The number in the struct node represents the length of the struct; the
children of a struct node represent the fields of the struct. In Fig. 4(a), bytes 0. . 39
of p are identified as a struct with three fields: two 4-byte scalars and one 32-byte
array.

— Nodes are shared if there is a flow of data in the program involving the correspond-
ing sequence of bytes either directly or indirectly. In Fig. 4(a), the nodes for the
sequences of bytes returnmain[0:3] and p[4: 7] are shared because of the
return statement in ma in. Similarly, the sequence of bytes that correspond to the
y members of array p, namely p[0:391\5[4 : 71, share the same node because
they are all assigned the same constant at the same instruction.

The ASI DAG is converted into an ASI tree by duplicating shared nodes. The atoms
of an aggregate are the leaves of the corresponding ASI tree. Fig. 4(b) shows the ASI
tree for Ex. 2. ASI has identified that p has the structure shown in Fig. 4(c).

5 Recovering A-locs via Iteration

We use the atoms obtained from ASI as a-locs for (re-)analyzing the executable. The
atoms identified by ASI for Ex. 2 are close to the set of variables Var Set 3 that was dis-
cussed in §3.2. One might hope to apply ASI to an executable by treating each memory-
region as an aggregate and determining the structure of each memory-region (without
using VSA results). However, one of the requirements for applying ASI is that it must
be possible to extract data-access constraints from the program. When applying ASI
to programs written in languages such as Cobol this is possible: the data-access pat-
terns are apparent from the syntax of the constructs under consideration. Unfortunately,
this is not the case for executables. For instance, the memory operand [eax] can ei-
ther represent an access to a single variable or to the elements of an array. Fortunately,

value-sets provide the necessary information to generate data-access constraints. Recall
that a value-set is an over-approximation of the set of offsets in each memory-region.
Together with the information about the number of bytes accessed by each argument
(which is available from the instruction), this provides the information needed to gen-
erate data-access constraints for the executable.

Furthermore, when we use the atoms of ASI as a-locs in VSA, the results of VSA
can improve. Consider the program in Ex. 1. Recall from §3.1 that the length of var_8
is 8 bytes. Because value-sets are only capable of representing a set of 4-byte addresses
and 4-byte values, VSA recovers no useful information for var_8: it merely reports
that the value-set of var_8 is T (meaning any possible value or address). Applying
ASI (using data-access patterns provided by VSA) results in the splitting of var_8 into
two 4-byte a-locs, namely, var_8.0 and var_8. 4. Because var_8.0 and var_8. 4
are each four bytes long, VSA can now track the set of values or addresses in these
a-locs. Specifically, VSA would determine that var_8.0 (i.e., p.x) has the value 1
and var_8.4 (i.e., p.y) has the value 2 at the end of main.

We can use the new VSA results to perform another round of ASI. If the value-
sets computed by VSA are improved from the previous round, the next round of ASI
may also improve. We can repeat this process as long as desired, or until the process
converges (see §5.4).

Although not illustrated by Ex. 1, additional rounds of ASI and VSA can result in
further improvements. For example, suppose that the program uses a chain of pointers
to link structs of different types, e.g., variable ap points to a struct A, which has
a field bp that points to a struct B, which has a field cp that points to a struct C,
and so on. Typically, the first round of VSA recovers the value of ap, which lets ASI
discover the a-loc for A . bp (from the code compiled for ap—>bp); the second round
of VSA recovers the value of ap—>bp, which lets ASI discover the a-loc for B.cp
(from the code compiled for ap—>bp->cp); etc.

To summarize, the algorithm for recovering a-locs is
. Run VSA using a-locs recovered by the Semi-Naive approach.

. Generate data-access patterns from the results of VSA

. Run ASI

. Run VSA

. Repeat steps 2, 3, and 4 until there are no improvements to the results of VSA.*#

It is important to understand that VSA generates sound results for any collection of
a-locs with which it is supplied. However, if supplied very coarse a-locs, many a-locs
will be found to have the value T at most points. By refining the a-locs in use, more
precise answers are generally obtained. For this reason, ASI is used only as a heuristic
to find a-locs for VSA; i.e., it is not necessary to generate data-access constraints for
all memory accesses in the program. Because ASI is a unification-based algorithm,
generating data-access constraints for certain kinds of instructions leads to undesirable
results. §5.5 discusses some of these cases.

In short, our abstraction-refinement principles are as follows:

1. VSA results are used to interpret memory-access expressions in the executable.

O O R

* Or, equivalently, until the set of a-locs discovered in step 3 is unchanged from the set previously
discovered in step 3 (or step 1).

2. ASIis used as a heuristic to determine the structure of each memory-region accord-
ing to information recovered by VSA.
3. Each ASI tree reflects the memory-access patterns in one memory-region, and the
leaves of the ASI trees define the a-locs that are used for the next round of VSA.
ASI alone is not a replacement for VSA. That is, ASI cannot be applied to executables
without the information that is obtained from VSA—namely value-sets.
In the rest of this section, we describe the interplay between VSA and ASI: (1) we
show how value-sets are used to generate data-access constraints for input to ASI, and
(2) how the atoms in the ASI trees are used as a-locs during the next round of VSA.

5.1 Generating Data-Access Constraints

This section describes the algorithm that generates ASI data-references for x86 operands.
Three forms of x86 operands need to be considered: (1) register operands, (2) memory
operands of form “[register]”, and (3) memory operands of the form “[base + index X
scale + offset]”.

To prevent unwanted unification during ASI, we rename registers using live-ranges.
For a register r, the ASI data-referenceis r;,[0: n — 1], where Ir is the live-range of
the register at the given instruction and n is the size of the register (in bytes).

In the rest of the section, we describe the algorithm for memory operands. First,
we consider indirect operands of the form [r]. To gain intuition about the algorithm,
consider operand [eax] of instruction L1 in Ex. 2. The value-set associated with eax
is (0, 8]—40, —8]). The stride value of 8 and the interval [—40, —8] in the AR of main
provide evidence that [eax] is an access to the elements of an array of 8-byte elements
in the range [—40, —8] of the AR of ma in; an array access is generated for this operand.

Recall that a value-set is an n-tuple of strided intervals. The strided interval s[l, u]
in each component represents the offsets in the corresponding memory-region. Alg. 1
shows the pseudocode to convert offsets in a memory-region into an ASI reference.
SI2AST takes the name of a memory-region , a strided interval s[l, u], and lengrh (the
number of bytes accessed) as arguments. The length parameter is obtained from the in-
struction. For example, the length for [eax] is 4 because the instruction at L1 in Ex. 2 is
a four-byte data transfer. The algorithm returns a pair in which the first component is an
ASI reference and the second component is a Boolean. The significance of the Boolean
component is described later in this section. The algorithm works as follows: If s[l, u] is
a singleton, then the ASI reference is the one that accesses offsets [to [+length—1 in the
aggregate associated with memory-region r. If s[l, u] is not a singleton, then the offsets
represented by s[l, u] are treated as references to an array. The size of the array element
is the stride s whenever (s > length). However, when (s < length) an overlapping set
of locations is accessed by the indirect memory operand. Because an overlapping set of
locations cannot be represented using an ASI reference, the algorithm chooses length
as the size of the array element. This is not a problem for the soundness of subsequent
rounds of VSA because of refinement principle 2. The Boolean component of the pair
denotes whether the algorithm generated an exact ASI reference or not. The number of
elements in the array is | (u — [)/size| + 1.

For operands of the form [r], the set of ASI references is generated by invoking
Alg. 1 for each non-empty memory-region in r’s value-set. For Ex. 2, the value-set
associated with eax at L1 is (0, 8]—40, —8]). Therefore, the set of ASI references is

{AR_main[(-4O):(-l)]\S[O:S]}.5 There are no references to the G1lobal region because
the set of offsets in that region is empty.

Algorithm 1 SI2ASI: Algorithm to convert a given strided interval into an ASI refer-

€nce.

Input: The name of a memory-region r, strided interval s[l, u], number of bytes accessed length.

Output: A pair in which the first component is an ASI reference for the sequence of length
bytes starting at offsets s[l, u] in memory-region r and the second component is a Boolean that
represents whether the ASI reference is an exact reference (true) or an approximate one (false).

if s[l, u] is a singleton then
return (“r[l : [+ length — 1], true)
else
size «— max(s, length)
n«— |[(u—1)/size] +1
ref — “r[l : u + size — 1]\n[0 : length — 1]”
return (ref, (s < length))
end if

The algorithm for converting indirect operands of the form [base + index X scale +
offset] is given in Alg. 2. One typical use of indirect operands of the form [base + index
x scale + offset] is to access two-dimensional arrays. Note that scale and offset are
statically-known constants. Because abstract values are strided intervals, we can absorb
scale and offset into base and index. Hence, without loss of generality, we only discuss
memory operands of the form [base+index]. Assuming that the two-dimensional array
is stored in row-major format, one of the registers (usually base) holds the starting
addresses of the rows and the other register (usually index) holds the indices of the
elements in the row. Alg. 2 shows the algorithm to generate an ASI reference, when the
set of offsets in a memory-region is expressed as a sum of two strided intervals as in
[base+index]. Note that we could have used Alg. 1 by computing the abstract sum (4°%)
of the two strided intervals. However, doing so results in a loss of precision because
strided intervals can only represent a single stride exactly, and this would prevent us
from recovering the structure of two-dimensional arrays. (In some circumstances, our
implementation of ASI can recover the structure of arrays of 3 and higher dimensions.)

Alg. 2 works as follows: First, it determines which of the two strided intervals
is used as the base because it is not always apparent from the representation of the
operand. The strided interval that is used as the base should have a stride that is greater
than the length of the interval in the other strided interval. Once the roles of the strided
intervals are established, the algorithm generates the ASI reference for base followed
by the ASI reference for index. In some cases, the algorithm cannot establish either of
the strided intervals as the base. In such cases, the algorithm computes the abstract sum
(4°%) of the two strided intervals and invokes ST2AST.

Alg. 2 generates a richer set of ASI references than Alg. 1. For example, consider
the indirect memory operand [eax+ecx] from a loop that traverses a two-dimensional
array of type char[5][10]. Suppose that the value-set of ecx is (), 10[—50, —10]), the

3 Offsets in a DataRef cannot be negative. Negative offsets are used in the paper for clarity.
Negative offsets are mapped to the range [0, 23! — 1]; non-negative offsets are mapped to the
range [231, 232 _1].

value-set of eax is (1[0, 9],0), and length is 1. For this example, the ASI reference
that is generated is “AR[-50:-1]\5[0:91\10[0:01”. That is, AR is accessed as
an array of five 10-byte entities, and each 10-byte entity is accessed as an array of ten
1-byte entities.

Algorithm 2 Algorithm to convert the set of offsets represented by the sum of two

strided intervals into an ASI reference.

Input: The name of a memory-region r, two strided intervals s1[l1, u1] and s2[l2, u2], number
of bytes accessed length.

Output: An ASI reference for the sequence of length bytes starting at offsets si[l1,u1] +
s2(l2, u2] in memory region 7.

if (s1[l1, u1] or sa[l2, u2] is a singleton) then

return SI2ASI(r, s1[l1,u1] +°° sa[lz, ua), length)
end if
if s1 > (u2 — l2 + length) then

baseSI «— S1 [ll, ul]

indexSI «— sa[l2, us]
else if so > (u1 — l1 + length) then

baseSI «— S92 [lg, UQ]

indexSI «— s1[l1, u1]
else

return SI2ASI(r, s1[l1,u1] +° safle, us2], size)
end if
(baseRef, exactRef) « SI2ASI(r, baseSl, stride(baseSI))
if exactRef is false then

return SI2ASI(r, s1 [ll, ul] —|—5i Sg[lg, uz], length)
else

return concat(baseRef, ST2ASI(*“”, indexSI, length))
end if

5.2 Interpreting Indirect Memory-References

This section describes a lookup algorithm that finds the set of a-locs accessed by a mem-
ory operand. The algorithm is used to interpret pointer-dereference operations during
VSA. For instance, consider the instruction “mov [eax], 10”. During VSA, the
lookup algorithm is used to determine the a-locs accessed by [eax] and the value-sets
for the a-locs are updated accordingly. In [4], the algorithm to determine the set of a-locs
for a given value-set is trivial because each memory-region in [4] consists of a linear
list of a-locs generated by the Semi-Naive approach. However, after ASI is performed,
the structure of each memory-region is an ASI tree.

In [23], Ramalingam et al. present a lookup algorithm to retrieve the set of atoms
for an ASI expression. However, their lookup algorithm is not appropriate for use in
VSA because the algorithm assumes that the only ASI expressions that can arise during
lookup are the ones that were used during the atomization phase. Unfortunately, this is
not the case during VSA, for the following reasons:

— ASI is used as a heuristic. As will be discussed in §5.5, some data-access patterns
that arise during VSA should be ignored during ASI.

— The executable can possibly access fields of those structures that have not yet been
broken down into atoms. For example, the initial round of ASI, which is based on
a-locs recovered by the Semi-Naive approach, will not include accesses to the fields
of structures. However, the first round of VSA may access structure fields.

We will use the tree shown in Fig. 4(b) to describe the lookup algorithm. Every node
in the tree is given a unique name (shown within parentheses). The following terms are
used in describing the lookup algorithm:

— NodeFrag is a descriptor for a part of an ASI tree node and is denoted by a triple
(name, start, length), where name is the name of the ASI tree node, start is the
starting offset within the ASI tree node, and length is the length of the fragment.

— NodeFragList is an ordered list of NodeFrag descriptors, [ndy, nds, ...,
ndy,]. A NodeFragList represents a contiguous set of offsets in an aggregate.
For example, [{(as, 2,2), {a4,0,2)] represents the offsets 2. . 5 of node i1; offsets
2. .3 come from (as, 2, 2) and offsets 4 . . 5 come from (a4, 0, 2).

The lookup algorithm traverses the ASI tree, guided by the ASI reference for the given
memory operand. First, the memory operand is converted into an ASI reference using
the algorithm described in §5.1, and the resulting ASI reference is parsed into a list of
ASI operations. There are three kinds of ASI operations: (1) GetChildren(aloc),
(2) GetRange(start,end), and (3) GetArrayElements (m). For example,
the list of ASI operations for “p[0:39]\10[0:1]” is [GetChildren(p),
GetRange(0,39), GetArrayElements(10), GetRange(0,1)]. Each
operation takes a NodeFragList as argument and returns a set of NodeFragList
values. The operations are performed from left to right. The argument of each operation
comes from the result of the operation that is immediately to its left. The a-locs that are
accessed are all the a-locs in the final set of NodeFrag descriptors.

The GetChildren(aloc) operation returns a NodeFragList that contains
NodeFrag descriptors corresponding to the children of the root node of the tree asso-
ciated with the aggregate aloc.

GetRange(start, end) returns a NodeFragList that contains NodeFrag
descriptors representing the nodes with offsets in the given range [start : end).

GetArrayElements (m) treats the given NodeFragList as an array of m
elements and returns a set of NodeFragList lists. Each NodeFragList list rep-
resents an array element. There can be more than one NodeFragList for the array
elements because an array can be split during the atomization phase and different parts
of the array might be represented by different nodes.

The following examples illustrate traces of a few lookups.

Example 3. Lookupp[0:3]

[(i1,0,40)]
GetChildren(p) \(}
[<CI,3, 07 4>a <a47 07 4>7 <i27 07 32>]
GetRange (0, 3) i3
[<a35074>]

GetChildren(p) returns the NodeFragList [(as,0,4), {(a4,0,4), (i2,0,32)].
Applying GetRange (0, 3) returns [(ag, 0,4)] because that describes offsets 0. . 3
in the given NodeFragList. The a-loc that is accessed by p[0: 3] is az. [

Example 4. Lookupp[0:39]1\5[0:3]
[(i1,0,40)]
GetChildren(p) [k
[(a3,0,4), (a4,0,4), (i2,0,32)]
GetRange(0,39) [}
[<a3, 0, 4>, <a4, 0, 4>, <i2, 0, 32>]
GetArrayElements(5) [k
[<a37 0, 4>7 <a'4v 0, 4>]9
[<a57 0, 4>7 <a'6’ 0, 4>]
GetRange(0,3) [}
[<a37 0, 4>]’
[<a57 0, 4>]
Let us look at GetArrayElements(5) because the other operations are similar
to Ex. 3. GetArrayElements(5) is applied to [(as,0,4), (a4,0,4), (iz,0,32)].
The total length of the given NodeFragList is 40 and the number of required array
elements is 5. Therefore, the size of the array element is 8. Intuitively, the operation
unrolls the given NodeFragList and creates a NodeFragList for every unique n-
byte sequence starting from the left, where n is the length of the array element. In this
example, the unrolled NodeFragList is [{(as,0,4), (a4,0,4), (as,0,4), {ae,0,4),
..., {a5,0,4), {ag,0,4)]. The set of unique 8-byte NodeFragLists has two ordered
lists: {[(as,0,4), (a4,0,4)], [{as,0,4), {as,0,4)]}.0

Partial updates to a-locs. The abstract transformers in VSA are prepared to perform
partial updates to a-locs (i.e., updates to parts of an a-loc) because NodeFrag elements
in a NodeFragList may refer to parts of an ASI tree node. Consider “p[0:1] =
0x10”.% The lookup operation for p[0: 1] returns [{ag, 0, 2)], where (a3, 0, 2) refers
to the first two bytes of as. An abstract transformer that “gives up” (because only part
of ag is affected) and sets the value-set of a3 to T in such cases would lead to imprecise
results.

The value-set domain (see §4.1, [24]) provides bit-wise operations such as bit-wise
and (&"#), bit-wise or (|V®), left shift (<«¥*), right shift (>"*), etc. We use these oper-
ations to adjust the value-set associated with an a-loc when a partial update has to be
performed during VSA. Assuming that the underlying architecture is little-endian, the
abstract transformer for “p[0:1] = 0x10” updates the value-set associated with a3
as follows:

ValueSet'(a3) = (ValueSet(as) &"* 0xffff0000) |** (0x10).

5.3 Hierarchical A-locs

The iteration of ASI and VSA can over-refine the memory-regions. For instance, sup-
pose that the 4-byte a-loc a3 in Fig. 4(b) used in some round ¢ is partitioned into two
2-byte a-locs, namely, a3.0, and a3.2 in round ¢ + 1. This sort of over-refinement can
affect the results of VSA; in general, because of the properties of strided-intervals, a
4-byte value-set reconstructed from two adjacent 2-byte a-locs can be less precise than
if the information was retrieved from a 4-byte a-loc. For instance, suppose that at some
instruction S, ag holds either 0x100000 or 0x110001. In round i, this information is

 Numbers that start with “0x” are in C hexadecimal format.

exactly represented by the 4-byte strided interval 0x10001[0x100000, 0x110001] for
a3. On the other hand, the same set of numbers can only be over-approximated by two
2-byte strided intervals, namely, 1[0x0000, 0x0001] for a3.0, and 0x1[0x10,0x11] for
as.2 (for a little-endian machine). Consequently, if a 4-byte read of a3 in round ¢ + 1
is handled by reconstituting a3’s value from a3.0 and as3.2, the result would be less
precise:

ValueSet(a3) = (ValueSet(as.2) < 16)|"*ValueSet(as.0)

= {0x100000, 0x100001, 0x110000, 0x110001}
D {0x100000, 0x110001}.

We avoid the effects of over-refinement by keeping
track of the value-sets for a-loc a3 as well as a-locs as3.0 4 (a;)
and ag.2 in round ¢ + 1. Whenever any of as, a3.0, and /\
a3.2 is updated during round 7 + 1, the overlapping a- 2 (a.0) 2 (@.2)
locs are updated as well. For example, if a3.0 is updated A A
then the first two bytes of the value-set of a-loc ag are Fig. 5: Hierarchical a-locs
also updated (for a little-endian machine). For a 4-byte read of a3, the value-set returned
would be 0x10001[0x100000, 0x110001].

In general, if an a-loc a of length < 4 gets partitioned into a sequence of a-locs
[a1, a9, ..., ay] during some round of ASI, in the subsequent round of VSA, we use a
as well as {a1, az, ..., an}. We also remember the parent-child relationship between a
and the a-locs in {a1,asg,...,a,} so that we can update a whenever any of the a; is
updated during VSA and vice versa. In our example, the ASI tree used for round ¢ + 1
of VSA is identical to the tree in Fig. 4(b), except that the node corresponding to a3 is
replaced with the tree shown in Fig. 5.

One of the sources of over-refinement is the use of union types in the program. The
use of hierarchical a-locs allows at least some degree of precision to be retained in the
presence of unions.

5.4 Convergence

The first round of VSA uncovers memory accesses that are not explicit in the program,
which allows ASI to refine the a-locs for the next round of VSA, which may produce
more precise value-sets because it is based on a better set of a-locs. Similarly, sub-
sequent rounds of VSA can uncover more memory accesses, and hence allow ASI to
refine the a-locs. The refinement of a-locs cannot go on indefinitely because, in the
worst case, an a-loc can only be partitioned into a sequence of 1-byte chunks. However,
in most cases, the refinement process converges before the worst-case partitioning oc-
curs. Also, the set of targets that VSA determines for indirect function-calls and indirect
jumps may change when the set of a-locs (and consequently, their value-sets) changes
between successive rounds. This process cannot go on indefinitely because the set of a-
locs cannot change between successive rounds forever. Therefore, the iteration process
converges when the set of a-locs, and the set of targets for indirect function calls and
indirect jumps does not change between successive rounds.

5.5 Pragmatics

ASI takes into account the accesses and data transfers involving memory, and finds a
partition of the memory-regions that is consistent with these transfers. However, from

the standpoint of accuracy of VSA and its clients, it is not always beneficial to take into
account all possible accesses:

— VSA might obtain a very conservative estimate for the value-set of a register (say
R). For instance, the value-set for R could be T, meaning that register R can possibly
hold all addresses and numbers. For a memory operand [R], we do not want to
generate ASI references that refer to each memory-region as an array of 1-byte
elements.

— Some compilers initialize the local stack frame with a known value to aid in debug-
ging uninitialized variables at runtime. For instance, some versions of the Microsoft
Visual Studio compiler initialize all bytes of a local stack frame with the value 0xC.
The compiler might do this initialization by using a memcpy. Generating ASI ref-
erences that mimic memcpy would cause the memory-region associated with this
procedure to be broken down into an array of 1-byte elements, which is not desir-
able.

To deal with such cases, some options are provided to tune the analysis:

— The user can supply an integer threshold. If the number of memory locations that
are accessed by a memory operand is above the threshold, no ASI reference is
generated.

— The user can supply a set of instructions for which ASI references should not be
generated. One possible use of this option is to suppress memcpy-like instructions.

— The user can supply explicit references to be used during ASI.

In our experiments, we only used the integer-threshold option (which was set to
500).

6 Experiments

In this section, we present the results of our preliminary experiments, which were de-
signed to answer the following questions:

1. How do the a-locs identified by abstraction refinement compare with the program’s
debugging information? This provides insight into the usefulness of the a-locs re-
covered by our algorithm for a human analyst.

2. How much more useful for static analysis are the a-locs recovered by an abstract-
interpretation-based technique when compared to the a-locs recovered by purely
local techniques?

6.1 Comparison of A-locs with Program Variables

To measure the quality of the a-locs identified by the abstraction-refinement algorithm,
we used a set of C++ benchmarks collected from [1] and [22]. The characteristics of the
benchmarks are shown in Tab. 1. The programs in Tab. 1 make heavy use of inheritance
and virtual functions, and hence are a challenging set of examples for the algorithm.

We compiled the set of programs shown in Tab. 1 using the Microsoft VC 6.0 com-
piler with debugging information, and ran the a-loc recovery algorithm on the executa-
bles produced by the compiler until the results converged. After each round of ASI, for
each program variable v present in the debugging information, we compared v with the
structure identified by our algorithm (which did nor use the debugging information),
and classified v into one of the following categories:

anTqetep

SpJeyaTS

R RRITIIITTT
BT nSsr] SATEP

BRI

R OO

] ueao

v

[

s

s39a0q0

seayo

TATI2D

saany

O T R e Rt

Bz

0Ty 40

| usy

auton

fiTTuey

saurad

IO TO AN TEOTOTATOEATATeTs
L O0S
OO TA AT TO TN TR TEATeT

OO T UL COUCOTETS
N R N A N A,

B

e LT T

anpqesTop

spaeyaTd

2ntaap

ueasa

saauy

291340

natched

inconparable £Zzz1

over-refined o5

=
B
2
A
&
T
g
¥
&
g
<
E
H

(b)

Breakdown (as percentages) of how a-locs matched with program va

(a) local

iables

11

Fig. 6

variables, and (b) fields of heap-allocated data-structures.

i-

fied as matched if the a-loc-recovery algorithm correctly ident

SS1

— Variable v is cla

ing memory-region.

fied the size and the offsets of v in the correspond
— Variable v is classified as over-refined if the a-loc-recovery algorithm partitioned v

into smaller a-locs. For instance, a 4-byte int that is partitioned into an array of

fied as over-refined.

SS1

four char elements is cla
— Variable v is under-refined if the a-loc-recovery algorithm identified v to be a part

1ti1on a struct into 1ts

led to parti

i

f the algorithm fa
fields, the fields of the struct are classified as under-refined.

stance, 1

of a larger a-loc. For

constituent
— Variable v is classified as incomparable if v does not fall into one of the above

categories.

ss for the local variables and fields of heap-

fication proce

SS1

The results of the cla
allocated data structures are shown in Fig. 6(a) and Fig. 6(b)

ly. The left-

, respective

most column for each program shows the results for the a-locs recovered using the

Semi-Naive approach, and the rightmost bar shows the results for the final round of the

abstraction-refinement algorithm.

tly over 88% of the

identifying correc

mi1

s successful
local variables and over 89% of the fields of heap-allocated objects (and was 100%

ique i

On average, our techn

Imost half of the examples). In contrast,

ectsin a

]

-allocated ob

correct for fields of heap

the Semi-Naive approach recovered 83% of the local variables, but 0% of the fields of

S

ig.
is are carrie

bject

allocated o

heap

more

improve as

S

sult:

only one round of ASI was

6(b) show that for some programs the re

6(a) and Fi

ig.

F
rounds of analys

)

In most of the programs

d out.

required to identify all the fields of heap

In some of

ired more than one round to find all the fields of heap-

-allocated data structures correctly.

it requ

bl

however.

)

the programs

d more than one round of ASI-

se programs that require

Tho

structures

allocated data

VSA iteration used a chain of pointers to link structs of different types, as discussed in

§5.

Most of the example programs do not have

Insts| Procs|Mallocs structures that are declared local to a proce-
NP 252 5 2 dure. This is the reason why the Semi-Naive
primes | 294 9 1 approach identified a large fraction of the local
family 351 9 6 . :
veire 107 14) variables correctly. The programs primes and
fsm sl 13 1 fsm have structures that are local to a proce-
office 50| 22 4 dure. As shown in Fig. 6(a), our approach iden-
trees 1299 29 10 tifies more local variables correctly for these
derivl 1369 38 16 examples.
cc)ll;?s;s iggg i; 2: 6.2 U§efulness of the A-locs for Static
simul (1920 60| 2 Analysis
greed 1945 47 1 The aim of this experiment was to evaluate
ocean (2552 6l 13 the quality of the variables and values discov-
deriv2 |2639| 41 58 ered as a platform for performing additional
richards 13103 74 23 static analysis. In particular, because resolu-
deltablue| 5371] 113 26 tion of indirect operands is a fundamental prim-

itive that essentially any subsequent analysis
would need, the experiment measured how well
we can resolve indirect memory operands not
based on global address or stack-frame offsets (e.g., accesses to arrays and heap-
allocated data objects). We ran several rounds of VSA on the collection of commonly
used Windows executables listed in Tab. 2, as well as the set of benchmarks from Tab. 1.
For the programs in Tab. 1, we ran VSA-ASI iteration until convergence. For the pro-
grams in Tab. 2, we limited the number of VSA-ASI rounds to at most three. Round 1 of
VSA performs its analysis using the a-locs recovered by the Semi-Naive approach; the
final round of VSA uses the a-locs recovered by the abstraction-refinement algorithm.
After the first and final rounds of VSA, we labeled each memory operand as follows:

Table 1: C++ Examples

— A memory operand is untrackable if the size of all the a-locs accessed by the mem-
ory operand is greater than 4 bytes, or if the value-set associated with the address
expression of the memory operand is T.

— A memory operand is weakly-trackable if the size of some a-loc accessed by the
memory operand is less than or equal to 4 bytes, and the value-set associated with
the address expression of the memory operand is not T.

— A memory operand is strongly-trackable if the size of all the a-locs accessed by the
memory operand is less than or equal to 4 bytes, and the value-set associated with
the address expression of the memory operand is not T.

Recall that VSA can track value-sets for a-locs that are less than or equal to 4 bytes,
but reports that the value-set for a-locs greater than 4 bytes is T. Therefore, untrack-
able memory operands are the ones for which VSA provides no useful information at
all, and strongly-trackable memory operands are the ones for which VSA definitely pro-
vides useful information. For a weakly-trackable memory operand, VSA provides some
useful information if the operand is used to update the contents of memory; however,
no useful information is obtained if the operand is used to read the contents of memory.

For instance, if [eax] in “mov [eax], 107 is weakly-trackable, then VSA would
have updated the value-set for those a-locs that were accessed by [eax] and were
of size less than or equal to 4 bytes. However, if [eax] in “mov ebx, [eax]”is
weakly-trackable, the value-set of ebx is set to T because at least one of the a-locs
accessed by [eax] is T; this situation is not different from the case when [eax] is
untrackable. We refer to a memory operand that is used to read the contents of memory
as a use-operand, and a memory operand that is used to update the contents of memory

as a kill-operand.

I - In Tab. 3, the “Weakly-Trackable Kills”
nsts|Procs|Mallocs||n| Time R)

mplayer2|14270] 172 oll21on T1m| column shows the fraction of kill-operands
Smss 43034] 481 oll3l2n gm| that were weakly-trackable during the first and
print 48233 563 17/ 3loh 20m| final rounds of the abstraction refinement al-
doskey |48316| 567 16||3|2h 4m| gorithm, and the “Strongly-Trackable Uses”
attrib 48785 566 17||3|0h 23m| column shows the fraction of use-operands
routemon|55586(674 6|/3|2h 28m| that were strongly-trackable during the first
cat 57505| 688 24/13|0h 54m| and final round of the algorithm. In the table,
Is 60543| 712 34{|3[1h 10m| e have classified memory operands as either

direct or indirect. A direct memory operand
Table 2: Windows Executables. (n is the 1S @ memory operand that uses a global ad-
number of VSA-ASI rounds.) dress or stack-frame offset. An indirect mem-

ory operand is a memory operand that does not
use a global address or a stack-frame offset (e.g., a memory operand that accesses an
array or a heap-allocated data object).

Both the Semi-Naive approach and our abstract-interpretation-based a-loc-recovery
algorithm provide good results for direct memory operands. However, the results for
indirect memory operands are substantially better with the abstraction-interpretation-
based method. For the set of C++ programs from Tab. 1, the results of VSA improve
at 50% to 100% of the indirect kill-operands, and at 7% to 100% of the indirect use-
operands. Similarly, for the Windows executables from Tab. 2, the results of VSA im-
prove at 4% (routemon: 7% — 11%) to 39% (mplayer2: 12% — 51%) of the
indirect kill-operands, and up to 8% (attrib, print: 4% — 12%, 6% — 14%) of
the indirect use-operands.

We were surprised to find that the Semi-Naive approach was able to provide a small
amount of useful information for indirect memory operands. For instance, trees,
greed, ocean, deltablue, and all the Windows executables have a non-zero per-
centage of trackable memory operands. On closer inspection, we found that these in-
direct memory operands access local or global variables that are also accessed directly
elsewhere in the program. (In source-level terms, the variables are accessed both di-
rectly and via pointer indirection.) For instance, a local variable v of procedure P that
is passed by reference to procedure Q will be accessed directly in P and indirectly in Q.

Several sources of imprecision in VSA prevent us from obtaining useful informa-
tion at all of the indirect memory operands. One such source of imprecision is widening
[10]. VSA uses a widening operator during abstract interpretation to accelerate fixpoint
computation. Due to widening, VSA may fail to find non-trivial bounds for registers
that are used as indices in indirect memory operands. These indirect memory operands
are labeled as untrackable. The fact that the VSA domain is non-relational amplifies this

problem. (To a limited extent, we overcome the lack of relational information by ob-
taining relations among x86 registers from an additional analysis called affine-relation
analysis. See §5 in [4] for details.) Note that the widening problem is orthogonal to
the issue of finding the correct set of variables. Even if our a-loc recovery algorithm
recovers all the variables correctly, imprecision due to widening persists. (Recently, us-
ing ideas from [7] and [13], we have implemented techniques to reduce the undesirable
effects of widening, but do not yet have numbers to report.)

Weakly-Trackable|Strongly-Trackable
Kills (%) Uses (%)

Indirect| Direct |Indirect| Direct
Round 1| n| 1 n| 1| n| 1 n
NP (4)| 0{100(100{ 100| 0f 100{100| 100
primes (4)| 0/100{100| 100| 0| 83|100| 100
family (4)| 0/100{100| 100| 0| 100{100{ 100
veire (5)| 0{100(100{ 100| 0 100{100| 100
fsm (2)| 0 50100 100{ O] 29| 98| 100
office 3) 0{100{100[100{ 0] 100{100| 100
trees (5)(10] 100{ 98| 100{25| 61| 96| 100
derivl (4)| 0/100| 97| 99| 0| 77| 98 98
chess 3)| 0] 60[99| 99| 0] 25|100| 100
objects (5)| 0/100{100| 100| 0| 94|100{ 100
simul (3)] 0{100| 71| 100| Of 38| 57| 100
greed)| 3| 53] 99| 100| 3| 10| 98 98
ocean 3)| 9] 90| 99| 100 6] 42| 98| 100
deriv2 ~ (5)| 0/100{100| 100{ 0| 97| 95| 100
richards (2)| 0| 68|100| 100| 0| 7| 99 99
deltablue (3)| 1| 57| 99| 100| O] 16| 99 99
mplayer2 (2)|12| 51| 89| 97| 8| 8| 89| 92
smss 3)| 9] 19/ 92| 98| 1| 4| 84| 90
print 3)| 2| 22| 92| 99| 6| 14| 89 92
doskey (3)| 2| 17| 92| 97| 5| 7|79 86
attrib B)| 7| 24| 93| 98| 4| 12| 86 90
routemon (3)| 7| 11| 93| 97| 1 2| 81 86
cat)12 22| 93| 97| 1| 4| 79 84
Is G)11] 23| 94| 98| 1| 4| 84 88

Table 3: Fraction of memory operands that are trackable after VSA. The number in parenthesis
shows the number of rounds (n) of VSA-ASI iteration for each executable. (For Windows exe-
cutables, the maximum number of rounds was set to 3.) Boldface and bold-italics in the Indirect
columns indicate the maximum and minimum improvements, respectively.

Nevertheless, the results are encouraging. For the Windows executables, the num-
ber of memory operands that have useful information in round n is 2 to 4 times the
number of memory operands that have useful information in round 1; i.e., the results
of static analysis do significantly improve when a-locs recovered by the abstraction-
interpretation-based algorithm are used in the place of a-locs recovered from purely
local techniques. Our initial experiments show that the techniques are also feasible in
terms of running time.

7 Related Work

In [18], Miné describes a combined data-value and points-to analysis that, at each pro-
gram point, partitions the variables in the program into a collection of cells according to
how they are accessed, and computes an over-approximation of the values in these cells.
Miné’s algorithm is similar in flavor to the VSA-ASI iteration scheme in that Miné finds
his own variable-like quantities for static analysis. However, Miné’s partitioning algo-
rithm is still based on the set of variables in the program (which our algorithm assumes
will not be available). His implementation does not support analysis of programs that
use heap-allocated storage. Moreover, his techniques are not able to infer from loop ac-
cess patterns—as ASI can—that an unstructured cell (e.g., unsigned char z[32]
has internal array substructures, (e.g., int y[8]; or struct {int a[3]; int
b;} x[21;).

In [18], cells correspond to variables. The algorithm assumes that each variable is
disjoint and is not aware of the relative positions of the variables. Instead, his algorithm
issues an alarm whenever an indirect access goes beyond the end of a variable. Because
our abstraction of memory is in terms of memory-regions (which can be thought of
as cells for entire activation records), we are able to interpret an out-of-bound access
precisely in most cases. For instance, suppose that two integers a and b are laid out next
to each other. Consider the sequence of C statements “p = &a; *(p+1) = 10;".
For the access * (p+1), Miné’s implementation issues an out-of-bounds access alarm,
whereas we are able to identify that it is a write to variable b. (Such out-of-bounds
accesses occur commonly during VSA because the a-loc-recovery algorithm can split a
single source-level variable into more than one a-loc, e.g., array p in Ex. 2.)

Other work on analyzing memory accesses in executables. Previous techniques deal
with memory accesses very conservatively; generally, if a register is assigned a value
from memory, it is assumed to take on any value. For instance, although the basic goal
of the algorithm proposed by Debray et al. [11] is similar to that of VSA, their goal is
to find an over-approximation of the set of values that each register can hold at each
program point; for us, it is to find an over-approximation of the set of values that each
(abstract) data object can hold at each program point, where data objects include global,
stack-allocated, and heap-allocated memory locations in addition to registers. In the
analysis proposed by Debray et al., a set of addresses is approximated by a set of con-
gruence values: they keep track of only the low-order bits of addresses. However, unlike
VSA, their algorithm does not make any effort to track values that are not in registers.
Consequently, it loses a great deal of precision whenever there is a load from memory.

Cifuentes and Fraboulet [8] give an algorithm to identify an intraprocedural slice of
an executable by following the program’s use-def chains. However, their algorithm also
makes no attempt to track values that are not in registers, and hence cuts short the slice
when a load from memory is encountered.

The two pieces of work that are most closely related to VSA are the algorithm for
data-dependence analysis of assembly code of Amme et al. [2] and the algorithm for
pointer analysis on a low-level intermediate representation of Guo et al. [14]. The al-
gorithm of Amme et al. performs only an intraprocedural analysis, and it is not clear
whether the algorithm fully accounts for dependences between memory locations. The
algorithm of Guo et al. [14] is only partially flow-sensitive: it tracks registers in a flow-

sensitive manner, but treats memory locations in a flow-insensitive manner. The al-
gorithm uses partial transfer functions [31] to achieve context-sensitivity. The transfer
functions are parameterized by “unknown initial values” (UIVs); however, it is not clear
whether the the algorithm accounts for the possibility of called procedures corrupting
the memory locations that the UIVs represent.

Several platforms have been created for manipulating executables in the presence of
additional information, such as source code, symbol-table information, and debugging
information, including ATOM [29] and EEL [17]. Bergeron et al. [6] present a static-
analysis technique to check if an executable with debugging information adheres to a
user-specified security policy.

Rival [26] presents an analysis that uses abstract interpretation to check whether

the assembly code of a program produced by a compiler possesses the same safety
properties as the source code. The analysis assumes that source code and debugging
information is available. First, the source code and the assembly code of the program
are analyzed. Next, the debugging information is used to map the results of assembly-
code analysis back to the source code. If the results for the corresponding program
points in source and assembly code are compatible, then the assembly code possesses
the same safety properties as the source code.
Identification of structures. Aggregate structure identification was devised by Rama-
lingam et al. to partition aggregates according to a Cobol program’s memory-access
patterns [23]. A similar algorithm was devised by Eidorff et al. [12] and incorporated
in the AnnoDomani system. The original motivation for these algorithms was the Year
2000 problem; they provided a way to identify how date-valued quantities could flow
through a program.

Mycroft [20] gave a unification-based algorithm for performing type reconstruction;

for instance, when a register is dereferenced with an offset of 4 to perform a 4-byte ac-
cess, the algorithm infers that the register holds a pointer to an object that has a 4-byte
field at offset 4. The type system uses disjunctive constraints when multiple type recon-
structions from a single usage pattern are possible. However, Mycroft’s algorithm has
several weaknesses. For instance, Mycroft’s algorithm is unable to recover information
about the sizes of arrays that are identified. Although not described in this paper, our im-
plementation incorporates a third analysis phase, called affine-relation analysis (ARA)
[4, 16, 19], that, for each program point, identifies the affine relations that hold among
the values of registers. In essence, this provides information about induction-variable
relationships in loops, which can allow VSA to recover information about array sizes
when one register is used to sweep through an array under the control of a second loop-
index register.
Decompilation. Past work on decompiling assembly code to a high-level language [9]
is also peripherally related to our work. However, the decompilers reported in the liter-
ature are somewhat limited in what they are able to do when translating assembly code
to high-level code. For instance, Cifuentes’s work [9] primarily concentrates on recov-
ery of (a) expressions from instruction sequences, and (b) control flow. We believe that
decompilers would benefit from the memory-access-analysis method described in this
paper, which can be performed prior to decompilation proper, to recover information
about numeric values, address values, physical types, and definite links from objects to
virtual-function tables [5].

References

1

2.

15.
16.
17.
18.
19.
20.
21.

22.
23.

24.

25.

26.
27.

28.

29.

30.
31.

G. Aigner and U. Holzle. Eliminating virtual function calls in C++ programs. In European
Conf. on Object-Oriented Programming, 1996.

W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data dependence analysis of assembly
code. Int. J. Parallel Proc., 2000.

. W. Backes. Programmanalyse des XRTL Zwischencodes. PhD thesis, Universitaet des Saar-

landes, 2004. (In German.).

G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Comp.
Construct., 2004.

G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage. In SAS, 2006.
J. Bergeron, M. Debbabi, J. Desharnais, M.M. Erhioui, Y. Lavoie, and N. Tawbi. Static
detection of malicious code in executable programs. Int. J. of Req. Eng., 2001.

F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Int. Conf. on Formal
Methods in Prog. and their Appl., 1993.

C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executables. In ICSM,
pages 188-195, 1997.

C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language translation. In
ICSM, 1998.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, 1977.

. S.K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In POPL, 1998.

P.H. Eidorff, F. Henglein, C. Mossin, H. Niss, M.H. Sgrensen, and M. Tofte. Anno Domini:
From type theory to year 2000 conversion tool. In POPL, 1999.

D. Gopan and T. Reps. Lookahead widening. In CAV, 2006.

B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August. Practical and
accurate low-level pointer analysis. In Int. Symp. on Code Gen. and Opt., 2005.

IDAPro disassembler, http://www.datarescue.com/idabase/.

A.Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In CAV, 2005.
J.R. Larus and E. Schnarr. EEL: Machine-independent executable editing. In PLDI, 1995.
A. Miné. Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In LCTES, 2006.

M. Miiller-Olm and H. Seidl. Analysis of modular arithmetic. In ESOP, 2005.

A. Mycroft. Type-based decompilation. In ESOP, 1999.

R. O’Callahan and D. Jackson. Lackwit: A program understanding tool based on type infer-
ence. In Int. Conf. on Softw. Eng., 1997.

H. Pande and B. Ryder. Data-flow-based virtual function resolution. In SAS, 1996.

G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application to
program analysis. In POPL, 1999.

T. Reps, G. Balakrishnan, and J. Lim. Intermediate representation recovery from low-level
code. In PEPM, 2006.

T. Reps, G. Balakrishnan, J. Lim, and T. Teitelbaum. A next-generation platform for analyz-
ing executables. In APLAS, 2005.

X. Rival. Abstract interpretation based certification of assembly code. In VMCAI, 2003.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In Program
Flow Analysis: Theory and Applications, chapter 7, pages 189-234. Prentice-Hall, 1981.
M. Siff and T.W. Reps. Program generalization for software reuse: From C to C++. In Found.
of Softw. Eng., 1996.

A. Srivastava and A. Eustace. ATOM - A system for building customized program analysis
tools. In PLDI, 1994.

A. van Deursen and L. Moonen. Type inference for COBOL systems. In WCRE, 1998.

R.P. Wilson and M.S. Lam. Efficient context-sensitive pointer analysis for C programs. In
PLDI, 1995.

