Model Checking x86 Executables
with CodeSurfer/x86 and WPDS++

G. Balakrishnah T. Rep$-2, N. Kidd!, A. Lal', J. Lim!,
D. Melski?, R. Gruiart, S. Yond, C.-H. Chen, and T. Teitelbaim

! Comp. Sci. Dept., University of Wisconsifibgogul,reps,kidd,akash,junghe@cs.wisc.edu
2 GrammaTech, Inc{melski,radu,suan,chi-hug;@grammatech.com

Abstract. This paper presents a toolset for model checking x86 exielastalhe members
of the toolset areCodeSurfer/x86, WPDS++, and thePath Inspector. CodeSurfer/x86 is
used to extract a model from an executable in the form weighted pushdown system.
WPDS++ is a library for answering generalized reachahijitgries on weighted pushdown
systems. The Path Inspector is a software model checkardiutiop of CodeSurfer and
WPDS++ that supports safety queries about the program&tgesontrol configurations.

1 Introduction

This paper presents a toolset for model checking x86 exklagtaThe toolset builds

on (i) recent advances in static analysis of program exbtegd1], and (ii) new tech-

niques for software model checking and dataflow analysisl @} In our approach,

CodeSurfer/x86 is used to extract a model from an x86 exblajtand the reachabil-
ity algorithms of the WPDS++ library [9] are used to checkpedies of the model.

The Path Inspector is a software model checker that autentisiteprocess for safety
queries involving the program’s possible control configiorss (but not the data state).
The tools are capable of answering more queries than arentlyrisupported by the

Path Inspector (and involve data state); we illustrate iyisdescribing two custom
analyses that analyze an executable’s use of the run-tank.st

Our work has three distinguishing features:

— The program model is extracted from the executable codeighain on the ma-
chine. This means that it automatically takes into accolatfgrm-specific aspects
of the code, such as memory-layout details (i.e., offset@mofbles in the run-time
stack’s activation records and padding between fields ofuet3t register usage,
execution order, optimizations, and artifacts of compllags. Such information
is hidden from tools that work on intermediate represeonietiIRs) that are built
directly from the source code.

— The entire program is analyzed—including libraries thatlarked to the program.

— The IR-construction and model-extraction processes dassime that they have
access to symbol-table or debugging information.

Because of the first two properties, our approach providdsghér fidelity” tool than
most software model checkers that analyze source codeca@hibe important for cer-
tain kinds of analysis; for instance, many security exgldigpend on platform-specific
features, such as the structure of activation records.evabilities can escape notice
when a tool does not have information about adjacency ogisltiips among variables.
Although the present toolset is targeted to x86 executathlegechniques used [1,
14, 10] are language-independent and could be applied & tythes of executables.

The remainder of the paper is organized as folldi2Zsketches the methods used in
CodeSurfer/x86 for IR recover§3 gives an overview of the model-checking facilities
that the toolset provide§4 discusses related work.

2 Recovering Intermediate Representations from x86 Execables

To recover IRs from x86 executables, CodeSurfer/x86 makestiboth IDAPro [8],
a disassembly toolkit, and GrammaTech’s CodeSurfer syptgna toolkit for build-
ing program-analysis and inspection tools. Fig. 1 showsvdréous components of
CodeSurfer/x86.

An x86 executable is first dis- T Fire

assembled using IDAPro. In ad P il
dition to the disassembly listing, Connector | | Codesurfer
. Decompiler
IDAPro also provides access to the Value-set g 5ienG
Analysis Binary

following information: (1) proce-
dure boundaries, (2) calls to li-

Rewriter

Browse

User Scripts

brary fUnCtionS USing an algorithm Initial estimate of « fleshed-out CFGs
called the Fast Library Identifi- « code vs. dafa - fleshed out call graph
* procedures + used, killed, may-killed
cation and Recognition Technol- - call sites variables for CFG nodes
. + malloc sites + points-fo sets
Ogy (FLIRT) [6], and (3) Stat|Ca”y * reports of violations

known memory addresses and off-
sets. IDAPro provides access to its
internal resources via an API that allows users to creatg-jlsi to be executed by
IDAPro. We created a plug-in to IDAPro, called the Connedtuat creates data struc-
tures to represent the information that it obtains from IP&P he IDAPro/Connector
combination is also able to create the same data structarel/hamically linked Ii-
braries, and to link them into the data structures that ssprethe program itself. This
infrastructure permits whole-program analysis to be edraut—including analysis of
the code for all library functions that are called.

Using the data structures in the Connector, we implementstétac-analysis al-
gorithm calledvalue-set analysis (VSA) [1]. VSA does not assume the presence of
symbol-table or debugging information. Hence, as a firgt, &tset of data objects called
a-locs (for “abstract locations”) is determined based erstiatic memory addresses and
offsets provided by IDAPro. VSA is a combined numeric andpai-analysis algorithm
that determines an over-approximation of the set of numeiges and addresses (or
value-set) that each a-loc holds at each program point. A key featuhéS# is that it
tracks integer-valued and address-valued quantitiesltsimaously. This is crucial for
analyzing executables because numeric values and adsll@gsendistinguishable at
execution time.

IDAPro does not identify the targets of all indirect jumpsdandirect calls, and
therefore the call graph and control-flow graphs that it tmesés are not complete.
However, the information computed during VSA can be usedignaent the call graph
and control-flow graphs on-the-fly to account for indirechps and indirect calls.

VSA also checks whether the executable conforms to a “stdhd@mpilation
model—i.e., a runtime stack is maintained; activation rdsqARs) are pushed onto
the stack on procedure entry and popped from the stack oeguoe exit; a procedure
does not modify the return address on stack; the programstaictions occupy a fixed

Fig. 1. Organization of CodeSurfer/x86.

area of memory, are not self-modifying, and are separate fhe program’s data. If it
cannot be confirmed that the executable conforms to the mitdsl the IR is possibly
incorrect. For example, the call-graph can be incorrectgf@edure modifies the re-
turn address on the stack. Consequently, VSA issues anreport whenever it finds a
possible violation of the standard compilation model; &wepresent possible memory-
safety violations. The analyst can go over these reportslateimine whether they are
false alarms or real violations.

Once VSA completes, the value-sets for the a-locs at eagjraaropoint are used to
determine each point’s sets of used, killed, and possilllgeka-locs; these are emitted
in a format that is suitable for input to CodeSurfer. CodéSuhen builds a collection
of IRs, consisting of abstract-syntax trees, control-floapips (CFGs), a call graph,
and a system dependence graph (SDG).

3 Model-Checking Facilities

For model checking, the CodeSurfer/x86 IRs are used to lauietighted pushdown
system (WPDS) that models possible program behaviors. WRIDS is a library that
implements the symbolic reachability algorithms from [d#wei ghted pushdown sys-
tems. We follow the standard convention of using a pushdown sygDS) to model
the interprocedural control-flow graph (one of CodeSuxisls IRs). The stack sym-
bols correspond to program locations; there is only a siR§}S state; and PDS rules
encode control flow as follows:

[Rule |Control flow modeled |
q{u) = q{v) Intraprocedural CFG edge— v

q{c) = g{entryp r)|Call to P from ¢ that returns tor

q{z) = q{) Return from a procedure at exit node

Given a configuration of the PDS, the top stack symbol comedp to the current pro-
gram location, and the rest of the stack holds return-sii@ions—much like a standard
run-time execution stack.

This encoding of the interprocedural CFG as a pushdown sy&esufficient for
answering queries about reachable control states (as théri2aector does; sé8.2):
the reachability algorithms of WPDS++ can determine if adesirable PDS config-
uration is reachable [2]. However, WPDS++ also suppeeghted PDSs. These are
PDSs in which each rule is weighted with an element of a (definred) semiring. The
use of weights allows WPDS++ to perform interprocedurahfiatv analysis by using
the semiring’'sxtend operator to compute weights for sequences of rule firingsuand
ing the semiring’sombine operator to take the meet of weights generated by different
paths. (When the weights on rules are conservative abstatatransformers, an over-
approximation to the set of reachable concrete configuraimobtained, which means
that counterexamples reported by WPDS++ may actually leasgilble.)

3.1 Stack-Qualified Dataflow Queries

The CodeSurfer/x86 IRs are a rich source of opportunitiesheck properties of in-
terest using WPDS++. For instance, WPDS++ has been usedtermant an illegal-
stack-manipulation check: for each nadé procedureP, this checks whether the net
change in stack height is the same along all paths &uotny, to » that have perfectly
matched calls and returns (i.e., along “same-level validg In this analysis, a weight

is a function that represents a stack-height change. Fariogpush ecx andsub
esp, 4 both have the weighkheight.height — 4. Extend is (the reversal of) function
composition; combine performs a meet of stack-height-ghdnnctions. (The analysis
is similar to linear constant propagation [15].) When a mgnazcess performed rel-
ative tor’s activation record (AR) is out-of-bounds, stack-heightnge values can be
used to identify which a-locs could be accessed in ARs ofrgihgcedures.

VSA is an interprocedural dataflow-analysis algorithm thsgs the “call-strings”
approach [16] to obtain a degree of context sensitivity.hEdataflow fact is tagged
with a call-stack suffix (orcall-string) to form (call-string, dataflow-fact) pairs; the
call-string is used at the exit node of each procedure torahite to which call site
a (call-string, dataflow-fact) pair should be propagatdte Tall-strings that arise at a
given noden provide an opportunity to perform stack-qualified dataflaveides [14]
using WPDS++. CodeSurfer/x86 identifies induction-vdeatelationships by using
the affine-relation domain of Miller-Olm and Seidl [12] asvaight domain. Apost*
query builds an automaton that is then used to find the affil¢ioes that hold in a
given calling context—given by call-strings—by querying thepost*-automaton with
respect to a regular language constructed fes@nd the program’s call graph.

3.2 The Path Inspector

The Path Inspector provides a user interface for automatfety queries that are only
concerned with the possible control configurations that@tatable can reach. It uses
an automaton-based approach to model checking: the quspgdsfied as a finite au-
tomaton that captures forbidden sequences of progranidosafThis “query automa-
ton” is combined with the program model (a WPDS) using a epssluct construction,
and the reachability algorithms of WPDS++ are used to deteriifian error configu-
ration is reachable. If an error configuration is reachahlenwitnesses (see [14]) can
be used to produce a program path that drives the query atdgormaan error state.
The Path Inspector includes a GUI for instantiating many mam reachability
queries [5], and for displaying counterexample paths indisassembly listing.In
the current implementation, transitions in the query awattam are triggered by pro-
gram points that the user specifies either manually, or usisigt sets from CodeSurfer
queries. Future versions of the Path Inspector will supmorre sophisticated queries in
which transitions are triggered by matching an AST pattegairesst a program location,
and query states can be instantiated based on pattern ginéinture versions will also
eliminate (many) infeasible counterexamples by usingsiteom weights to represent
abstract data transformers (similar to those used forpnbeedural dataflow analysis).

4 Related Work

Several others have proposed techniques to obtain infam&bm executables by
means of static analysis (see [1] for references). Howererious techniques deal
with memory accesses very conservatively; e.g., if a registassigned a value from
memory, it is assumed to take on any value. VSA does a mucérlekt than previous

% We assume that source code is not available, but the te@migxtend naturally if it is: one
can treat the executable code as just another IR in the tolteaf IRs obtainable from source
code. The mapping of information back to the source codeniflai to what C source-code
tools already have to perform because of the use of the Cqregsor.

work because it tracks the integer-valued and addresgdajuantities that the pro-
gram'’s data objects can hold; in particular, VSA tracks takies of data objectsther
than just the hardware registers, and thus is not forced to give up all precision when a
load from memory is encountered. This is a fundamental jgheeabsence of such in-
formation places severe limitations on what previouslyedeped tools can be applied
to.

Christodorescu and Jha used model-checking techniquestéatdnalicious code
variants [3]. Given a sample of malicious code, they exteggarameterized state ma-
chine that will accept variants of the code. They use CodeBu86 to extract a model
of each procedure of the program, and determine potentitdhaa between the pro-
gram’s code and fragments of the malicious code. Their tigcienis intraprocedural,
and does not analyze data state.

Other groups have used run-time program monitoring anddwéeting to perform
a systematic search of a program’s dynamic state space,[I3]LLike our approach,
this allows for model checking properties of the low-levete that is actually run
on the machine. However, because the dynamic state spadeeaambounded, these
approaches cannot perform an exhaustive search. In conmeasise static analysis to
perform a (conservative) exhaustive search of an absti@tet space.

References

1. G. Balakrishnan and T. Reps. Analyzing memory accessg8@rexecutables. €omp.
Construct., Lec. Notes in Comp. Sci., pages 5-23. Springer-Verlag4200
2. H. Chen, D. Dean, and D. Wagner. Model checking one miliioes of C code. IrSymp.
on Network and Distributed Systems Security, 2004.
3. M. Christodorescu and S. Jha. Static analysis of exelastad detect malicious patterns. In
USENIX Security Symposium,, 2003.
. CodeSurfer, GrammaTech, Inc., http://www.grammatash/products/codesurfer/.
. M. Dwyer, G. Avrunin, and J. Corbett. Patterns in propeggcifications for finite-state
verification. Inint. Conf. on Softw. Eng., 1999.
6. Fast library identification and recognition technolofgtaRescue sa/nv, Liege, Belgium,
http://www.datarescue.com/idabase/flirt.htm.
7. P. Godefroid. Model checking for programming languaggagiVeriSoft. In ACM, editor,
Princ. of Prog. Lang., pages 174-186. ACM Press, 1997.
. IDAPro disassembler, http://www.datarescue.comAdah
9. N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ libyafior weighted pushdown
systems. Univ. of Wisconsin, 2004.
10. A.Lal, T. Reps, and G. Balakrishnan. Extended weightedhgown systems. I@omputer
Aided Verif., 2005.
11. P. Leven, T. Mehler, and S. Edelkamp. Directed errorafiete in C++ with the assembly-
level model checker StEAM. 18pin Workshop, 2004.
12. M. Milller-Olm and H. Seidl. Analysis of modular arithtize In ESOP, 2005.
13. M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CM& pragmatic approach to
model checking real code. @p. Syst. Design and Impl., 2002.
14. T.Reps, S. Schwoon, S. Jha, and D. Melski. Weighted puahdystems and their applica-
tion to interprocedural dataflow analysi&i. of Comp. Prog., 2005. To appear.
15. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocadiataflow analysis with applica-
tions to constant propagatioiiheor. Comp. ci., 167:131-170, 1996.
16. M. Sharir and A. Pnueli. Two approaches to interprocaidiata flow analysis. IProgram
Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[N

[ee]

