Analyzing Memory Accesses in x86 Executables

Gogul Balakrishnan and Thomas Reps
Comp. Sci. Dept., University of Wisconsifibgogul,rep3@cs.wisc.edu

Abstract. This paper concerns static-analysis algorithms for atradyx86 executables.
The aim of the work is to recover intermediate representattbat are similar to those that
can be created for a program written in a high-level langu@ge goal is to perform this
task for programs such as plugins, mobile code, worms, ang-infected code. For such
programs, symbol-table and debugging information is eidmirely absent, or cannot be
relied upon if present; hence, the technique describectipaiper makes no use of symbol-
table/debugging information. Instead, an analysis iSeduut to recover information about
the contents of memory locations and how they are maniplitatehe executable.

1 Introduction

In recent years, there has been a growing need for tools tladze executables. One
would like to ensure that web-plugins, Java applets, etcnat perform any malicious
operations, and it is important to be able to decipher theeh of worms and virus-
infected code. Static analysis provides techniques thathedp with such problems.
A major stumbling block when developing binary-analysislsois that it is difficult
to understand memory operations because machine-laningtgections use explicit
memory addresses and indirect addressing. In this papgmegent several techniques
that overcome this obstacle to developing binary-anatpsits.

Just as source-code-analysis tools provide informationtihe contents of a pro-
gram'’s variables and how variables are manipulated, aypiaaalysis tool should pro-
vide information about the contents of memory locationstama they are manipulated.
Existing techniques either treat memory accesses extyetnakervatively [4, 6, 2], or
assume the presence of symbol-table or debugging infasm{i7]. Neither approach
is satisfactory: the former produces very approximateltg&ghe latter uses information
that cannot be relied upon when analyzing viruses, wormbjlmoode, etc. Our analy-
sis algorithm can do a better job than previous work becausscks the pointer-valued
and integer-valued quantities that a program’s data abpzao hold, using a set of ab-
stract data objects, calledlocs (for “abstract locations”). In particular, the analysis is
not forced to give up all precision when a load from memorynisaintered.

The idea behind the a-loc abstraction is to exploit the faat accesses on the vari-
ables of a program written in a high-level language appeaither static addresses (for
globals) or static stack-frame offsets (for locals). Copusmtly, we find all the stati-
cally known locations and stack offsets in the program, aafihd an a-loc to be the set
of locations from one statically known location/offset wp but not including the next
statically known location/offset. (The registers andlloc sites are also a-locs.) As
discussed i83.2, the data object in the original source-code prograndbiaesponds
to a given a-loc can be one or more scalar, struct, or arraghilas, but can also consist
of just a segment of a scalar, struct, or array variable.

Another problem that arises in analyzing executables isskef indirect-addressing
mode for memory operands. Machine-language instructitsrsgrmally support two
addressing modes for memory operands: direct and indiredirect addressing, the

* Supported by ONR contracts NO0014-0X:Q708,079¢ and NSF grant CCR-9986308.

address is in the instruction itself; no analysis is reglicedetermine the memory loca-
tion (and hence the corresponding a-loc) referred to by pleeand. On the other hand,
if the instruction uses indirect addressing, the addresgisally specified through a
register expression of the forbase + index x scale + offset (wherebase andindex are
registers). In such cases, to determine the memory locatéfarred to by the operand,
the values that the registers hold at this instruction nedsktdetermined. We present
a flow-sensitive, context-insensitive analysis that, facteinstruction, determines an
over-approximation to the set of values that each a-locccbald.

The contributions of our work can be summarized as follows:

— We describe a static-analysis algorithvalue-set analysis, for tracking the val-
ues of data objects (other than just the hardware registéas)ie-set analysis
uses an abstract domain for representing an over-appragimaf the set of val-
ues that each data object can hold at each program point. [§batlhm tracks
address-valued and integer-valued quantities simultzstgdt determines an over-
approximation of the set of addresses that each data objetiatd at each program
point; at the same time, it determines an over-approximasfahe set of integer
values that each data object can hold at each program point.

— Value-set analysis can be used to obtain used, killed, assilgg-killed sets for
each instruction in the program. These sets are similardesés of used, killed,
and possibly-killed variables obtained by a compiler in s@ource-code analyses.
They can be used to perform reaching-definitions analysistarconstruct data-
dependence edges.

— We have implemented the analysis techniques describee ipaper. By combin-
ing this analysis with facilities provided by the IDAPro [1ahd CodeSurfé? [7]
toolkits, we have created CodeSurfer/x86, a prototype frarobrowsing, inspect-
ing, and analyzing x86 executables. This tool recovers B fx86 executables
that are similar to those that can be created for a prograttewrin a high-level
language. The paper reports preliminary performance dataits implementation.

The information obtained from value-set analysis shoutd &le useful in decompila-
tion tools. Although the implementation is targeted for }8@cutables, the techniques
described in the paper should be applicable to other matdmgriages.

Some of the benefits of our approach are illustrated by thevisdlg example:

Example 1. Fig. 1 shows a simple C program and the corresponding disdxgePro-
ceduremain declares an integer arrayof ten elements. The program initializes the
first five elements o& with the value ofpartlValue , and the remaining five with
part2Value . Itthen returngp _arrayO |, i.e., the first element &.

A diagram of how variables are laid out in the program’s adslspace is shown in
Fig. 2(a). To understand the assembly program in Fig. 1 |jtsh® know that

— The address of global variab@art1Value is 4 and that opart2Value is 8.

— The local variablepartl , part2 , andi of the C program have been removed
by the optimizer and are mapped to registsax , ebx, andecx .

— The instruction that modifies the first five elements of thawis “7: mov [eax],
edx ”; the one that modifies the last five elementsds ‘mov [ebx], edx "~

The statements that are underlined in Fig. 1 show the backsliae of the program
with respect tol6 mov eax, [edi] —which roughly corresponds teeturn
(*p -array0) in the source code—that would be obtained using the setseaf,us
killed, and possibly-killed a-locs identified by value-setalysis. The slice obtained

proc main ;
int partlValue=0 : 1 sub esp, 44 ;Adjust esp for locals
int pm 2 lea eax, [esp+4] ;partl=&al0]
3 lea ebx, [esp+24] ;part2=&a[5]
int main() { 4 mov [esp+0], eax ;p -arrayO=partl
int *partl ,*part2; 5 mov ecx 0 ;i=0
int a[10],*p _array0 ; L1:mov edx, [4 ;
int i ; 7 mov [eax], edx *partl=partlValue
part1=&al0]; 8 mov edx, [8] ;
p_arrayO=part1; 9 mov [ebx], edx ;*part2=part2Value
part2=&al[5]; 10 add eax, 4 ;partl++
for(i=0;i<5;++i) { 11 add ebx, 4 ;part2++
*partl=part1Value; 12 inc ecx i+t
*part2=part2Value; 13 cmp ecx, 5 ;
partl++; 14 j L1 ;(i<5)?loop:exit
part2++; 15 mov edi[esp+0] ;
! 16 ;set return value
rewn [*p amay0 | 17 add esp, 44 ;
} 18 retn return *p _array0

Fig. 1. A C program that initializes an array.

with this approach is actually smaller than the slice olgdiby most source-code slic-
ing tools. For instance, CodeSurfer/C does not distingastiesses to different parts of
an array. Hence, the slice obtained by CodeSurfer/C fromutceacode would include

all of the statements in Fig. 1, not just the underlined ones. X
---al9]
Cx
array a s Global AR_main

__ v, ret_main
a - Globalt8 |/,
\\\ N\

Global+4 & .

|« AR_main-0

eax

YV VY

alo]

parayo | esp < AR_main—-20
AR_main-40
part2Value(8)
partlValue(4) AR_main-44
(a) Data layout (b) Memory-regions

Fig. 2. Data layout and memory-regions for Example 1.

The following insights shaped the design of value-set aisily

— To prevent most indirect-addressing operations from ajipgéo be possible non-
aligned accesses that span parts of two variables—and pessibly forging new
pointer values—it is important for the analysis to discowdormation about the
alignments and strides of memory accesses.

— To prevent most loops that traverse arrays from appearirgetpossible stack-
smashing attacks, the analysis needs to use relationafiatmn so that the values
of a-locs assigned to within a loop can be related to the gadfithe a-locs used in
the loop’s branch condition.

— It is desirable for the analysis to perform pointer analysisl numeric analysis
simultaneously: information about numeric values can teachproved tracking of
pointers, and pointer information can lead to improvedKirag of numeric values.
This appears to be a crucial capability, because compikgsaddress arithmetic

and indirect addressing to implement such features asqraamithmetic, pointer
dereferencing, array indexing, and accessing structudsfie

Value-set analysis produces information that is more pesttian that obtained via sev-
eral more conventional numeric analyses used in compileckjding constant prop-
agation, range analysis, and integer-congruence anabfsthe same time, value-set
analysis provides an analog of pointer analysis that isblgtfor use on executables.

Debray et al. [11] proposed a flow-sensitive, context-isgem algorithm for ana-
lyzing an executable to determine if two address expressitay be aliases. Our anal-
ysis yields more precise results than theirs: for the pmogshown in Fig. 1, their al-
gorithm would be unable to determine the valueedi , and so the analysis would
considefedi] ,[eax] , and[ebx] to be aliases of each other. Hence, the slice ob-
tained using their alias analysis would also consist of thele/program. Cifuentes et
al. [5] proposed a static-slicing algorithm for executabiehey only consider programs
with non-aliased memory locations, and hence would idgrtif unsafe slice of the
program in Fig. 1, consisting only of the instructial, 15, 4, 2, andl. (See$9 for a
more detailed discussion of related work.)

The remainder of the paper is organized as folldi2gdescribes how value-set anal-
ysis fits in with the other components of CodeSurfer/x86,diadusses the assumptions
that underlie our work§3 describes the abstract domain used for value-set andjgsis
describes the value-set analysis algoritf.summarizes an auxiliary static analy-
sis whose results are used during value-set analysis whemiating conditions and
when performing wideningi6 discusses indirect jumps and indirect function calfs.
presents preliminary performance resu§8.discusses soundness issuygsdiscusses
related work. (Value-set analysis will henceforth be nefdito as VSA.)

2 The Context of the Problem

CodeSurfer/x86 is the out- -
come of a joint project be- sinay .|

. . Executable Connector Plug-in CFes

tween the Univ. of Wis- \

. Value-set
consin and GrammaTech, CFGsL

IDAPro
+

CodeSurfer

/ Analysis CFGs "

Use, Kill, &
|nC. COdeSUrfer/XSG makes Affine Relations Affin_e Cii?l selts,...
use of both IDAPro [17], Analysis Relations

a disassembly toolkit, and
GrammaTech’s CodeSurfer
system [7], a toolkit for building program-analysis andgastion tools. This section
describes how VSA fits into the CodeSurfer/x86 implemeotati

The x86 executable is first disassembled using IDAPro. litaddo the disassem-
bly listing, IDAPro also provides access to the followinfpirmation:

Statically known memory addresses and offsetstDAPro identifies the statically
known memory addresses and stack offsets in the programremaanes all oc-
currences of these quantities with a consistent name. Wehissgatabase to define
the a-locs.

Information about procedure boundaries: X86 executables do not have information
about procedure boundaries. IDAPro identifies the bouedari most of the pro-
cedures in an executable.

Fig. 3. Organization of CodeSurfer/x86.

1 IDAPro does not identify the targets of all indirect jumpsiandirect calls, and therefore the
call graph and control-flow graphs that it constructs arecoatplete §6 discusses techniques

Calls to library functions: IDAPro discovers calls to library functions using an algo-
rithm called the Fast Library Identification and Recogmititechnology (FLIRT)
[13]. This information is necessary to identify callstalloc .

IDAPro provides access to its internal data structures midRI that allows users
to create plug-ins to be executed by IDAPro. GrammaTechigeovus with a plug-
in to IDAPro (called the Connector) that augments IDAPragadstructures. VSA is
implemented using the data structures created by the Ctomés described irg5,
VSA makes use of the results of an additional preliminarylyais, which, for each
program point, identifies the affine relations that hold aghtre values of registers.
Once VSA completes, the value-sets for the a-locs at eadjrgmmopoint are used to
determine each point’s sets of used, killed, and possilllgeka-locs; these are emitted
in a format that is suitable for input to CodeSurfer.

CodeSurfer is a tool for code understanding and code inigetttat supports both
a GUI and an API for accessing a program’s system dependeapé ¢SDG) [16],
as well as other information stored in CodeSurfer’s intatiae representations (IRs).
CodeSurfer’s GUI supports browsing (“surfing”) of an SD&raj with a variety of
operations for making queries about the SDG—such as slj¢@jgand chopping [25].
The API can be used to extend CodeSurfer’s capabilities litjngmprograms that tra-
verse CodeSurfer’s IRs to perform additional program asedy

A few words are in order about the goals, capabilities, asdmptions underlying
our work:

— Given an executable as input, the goal is to check whethentbeutable conforms
to a “standard” compilation model—i.e., a runtime stack &imtained; activation
records (ARs) are pushed on procedure entry and popped cadue exit; each
global variable resides at a fixed offset in memory; eachlleadable of a proce-
dure reside at a fixed offset in the ARs fgt actual parameters ¢f are pushed
onto the stack by the caller so that the corresponding fopagmeters reside at
fixed offsets in the ARs forf; the program’s instructions occupy a fixed area of
memory, are not self-modifying, and are separate from tbgnam’s data.

If the executable does conform to this model, the systemondglate an IR for it.
If it does not conform, then one or more violations will beatigered, and corre-
sponding error reports will be issued (3.

We envision CodeSurfer/x86 as providing (i) a tool for s@guwmalysis, and (ii) a
general infrastructure for additional analysis of exeblgs. Thus, in practice, when
the system produces an error report, a choice is made abaubhaccommodate
the error so that analysis can continue (i.e., the error tisnigtically treated as a
false positive), and an IR is produced; if the user can deterithat the error report
is indeed a false positive, then the IR is valid.

— The analyzer does not care whether the program was compdedd high-level
language, or hand-written in assembly. In fact, some pietése program may
be the output from a compiler (or from multiple compilers;, diifferent high-level
languages), and others hand-written assembly.

— In terms of what features a high-level-language progranersitted to use, VSA
is capable of recovering information from programs thatglebal variables, local
variables, pointers, structures, arrays, heap-allocstim@ge, pointer arithmetic,

for using the abstract stores computed during VSA to augthentall graph and control-flow
graphs on-the-fly to account for indirect jumps and indiczatdis.

indirect jumps, recursive procedures, and indirect calteugh function pointers
(but not runtime code generation or self-modifying code).

— Compiler optimizations often make Vass difficult, because more of the compu-
tation’s critical data resides in registers, rather thamemory; register operations
are more easily deciphered than memory operations.

— The major assumption that we make is that IDAPro is able tasdismble a pro-
gram and build an adequate collectionppéliminary IRs for it. Even though (i)
the CFG created by IDAPro may be incomplete due to indiraopjs, and (i) the
call-graph created by IDAPro may be incomplete due to irdicalls, incomplete
IRs donoat trigger error reports. Both the CFG and the call-graph vélfleshed out
according to information recovered during the course of \(S#e$6). In fact, the
relationship between VSA and the preliminary IRs createt#Pro is similar to
the relationship between a points-to-analysis algorithea© compiler and the pre-
liminary IRs created by the C compiler’s front end. In botses, the preliminary
IRs are fleshed out during the course of analysis.

3 The Abstract Domain

The abstract stores used during VSA over-approximate $etmarete stores. Abstract
stores are based on the conceptsnefmory-regions and a-locs, which are discussed
first.

3.1 Memory-Regions

Memory addresses in an executable forenit machine are:-bit numbers. Hence, one
possible approach would be to use an existing numeric saatitysis domain, such as
intervals [8], congruences [14], etc., to over-approxirthe set of values (including
addresses) that each data object can hold. However, thergeaeral problems with
such an approach: (1) addresses get reused, i.e., the sanessdan refer to differ-
ent program variables at runtime; (2) a variable can haveraévuntime addresses;
and (3) addresses cannot be determined statically in nexases (e.g., memory blocks
allocated from the heap viaalloc).

Even though the same address can be shared by multiple ARgogsible to distin-
guish among these addresses based on what procedure ésadtie time the address
is generated (i.e., a reference to a local variable dbes not refer to a local variable
of g). VSA uses an analysis-time analog of this: We assume thaddress-space of a
process consists of several non-overlapping regionschaenory-regions. For a given
executable, the set of memory-regions consists of onemgggoprocedure, one region
per heap-allocation statement, and a global region. We tlassume anything about
the relative positions of these memory-regions. The reg&swociated with a procedure
represents all instances of the procedure’s runtime-ARIl&ily, the region associated
with a heap-allocation statement represents all memorgkblallocated by that state-
ment at runtime. The global region represents the uniizgdtdata and initialized-data
sections of the program.

Fig. 2(b) shows the memaory-regions for the program from Eigihere is a single
procedure, and hence two regions: one for global data antbotiee AR ofmain .

The analysis treats all data objects, whether local, glavah the heap, in a fashion
similar to the way compilers arrange to access variablesdal lARs, namely, via an
offset. We adopt this notion as part of our concrete semsirgi¢concrete” memory
address is represented by a pair: (memory-region, offSgtus, the concrete seman-

tics already has a degree of abstraction built into it.) Agl&xed below, an abstract
memory address will track possible offsets using a numéastraction.

For the program from Fig. 1, the address of local varighlarrayO is the pair
(AR_mai n, - 44) , and that of global variablear t 2Val ue is (@ obal , 8) .

At the enter node of a proceduPeregisteresp points to the start of the AR d?.
Therefore, the enter node of a procedBis considered to be a statement that initializes
esp with the addressAR P, 0). A call onmal | oc at program point is considered to
be a statement that assigns the addmness oc L, 0).

3.2 A-Locs

Indirect addressing in x86 instructions involves only stgis. However, it is not suffi-
cient to track values only for registers, because registande loaded with values from
memory. If the analysis does not also track an approximatioime values that memory
locations can hold, then memory operations would have tadsead conservatively,
which would lead to very imprecise data dependences. ldsteause what we call the
a-loc abstraction to track (an over-approximation of) the valfamemory locations.

An a-loc is roughly equivalent to a variable in a C programe B8Hoc abstraction is
based on the following observation: the data layout of tligam is established before
generating the executable, i.e., the compiler or the adyepnbgrammer decides where
to place the global variables, local variables, etc. Glehdll be accessed via direct
operands in the executable. Similarly, locals will be asedssia indirect operands with
esp (orebp) as the base register, but a constant offset. Thus, exaonratdirect and
indirect operands provides a rough idea of the base addrasdesizes of the program'’s
variables. Consequently, we define an a-loc to be the setafitms between two such
consecutive addresses or offsets.

For the program from Fig. 1, the direct operands[a4¢ and[8] . Therefore, we
have two a-locsmem4 (for addresses..7) andnmem8 (for addresse8..11). Also, the
esp/ebp-based indirect operands dresp+0] , [esp+4] , and[esp+24] . These
operands are accesses on the local variables in the ARiaf. On entry tomai n, esp
= (AR.mmi n, 0) ; the difference between the valueadp on entry tomai n and the
value ofesp at these operands ig44. Thus, these memory references correspond to
the offsets 44, - 40, and- 20 in the memory-region foAR_mai n. This gives rise to
three more a-locazar 44, var _40, andvar _20. In addition to these a-locs, an a-loc
for the return address is also defined; its offsediimai n is 0.

Note thatvar 44 corresponds to all of the source-code varigblar r ay0. In
contrastyar _40 andvar _20 correspond to disjoint segments of aragy] : var _40
correspondsta[0. . 4] ; var _20 correspondsta[5. . 9] .

Similarly, we have one a-loc per heap-region. In additiothiese a-locs, registers
are also considered to be a-locs.

Offsets of an a-loc:Once the a-locs are identified, the relative positions o$¢he
a-locs in their respective regions are also recorded. Tisetadf an a-loa in a region
rgn will be denoted byof f set (rgn, a). For example, for the program from Fig. 1,
of f set (ARmai n, var _20) is- 20.

Addresses of an a-locThe addresses that belong to an adaran be represented
by a pair(rgn, [offset, offset + size — 1]), wherergn represents the memory region to
which it belongs tooffset is the offset of the a-loc within the region, aside is the size
of the a-loc. A pair of the fornfu, b] represents the set of integdrsla < = < b}. For

the program from Fig. 1, the addresses of adac _20 are (AR.mai n, [—40, —21]).
Thessize of an a-loc may not be known for heap a-locs. In such cages,= cc.

3.3 Abstract Stores

An abstract store must over-approximate the set of memadyeades that each a-loc
holds at a particular program point. As described3nl, every memory address is a
pair (memory-region, offset). Therefore, a set of memoragses in a memory region
rgn is represented a3gn, {01, 02,...,0,}). The offsetwy, 0o, ..., 0, are numbers;
they can be represented (i.e., over-approximated) usingreric abstract domain, such
as intervals, congruences, etc. We use a reduced intemvgiwence (RIC) for this pur-
pose. A reduced interval congruence is the reduced carplindlict [9] of an interval
domain and a congruence domain. For example, the set of merfib8,5,9 can be
over-approximated as the RIQZ + 1) N [0,9]. Each RIC can be represented as a
4-tuple: the tuple (a,b,c,d) stands forx [b, ¢] + d, and denotes the set of integers
{aZ + d|Z € [b,c]}.2 For instance{1, 3, 5, § is over-approximated by the tuple
(2,0,4,1), which equalq1, 3,5,7, 9.

An abstract store is a value of type a-loe—~ (memory-region— RIC). For con-
ciseness, the abstract stores that represent addressea-lo@for different memory-
regions will be combined together into aftuple of RICs, where is the number of
memory regions. Such antuple will be referred to as walue-set. Thus, an abstract
store is a map from a-locs to value-sets: a-lecRIC". For instance, for the program
from Fig. 1, at statemenmt, eax holds the addresses of the first five elementsafn’s
local array, and thus the abstract store meas to the value-setL, 4]0, 4] — 40).

We chose to use RICs because, in our context, it is importarthe analysis to
discover alignment and stride information so that it caernpitet indirect-addressing
operations that implement either (i) field-access opematin an array of structs, or (ii)
pointer-dereferencing operations.

When the contents of an a-lacis not aligned with the boundaries of a-locs, a
memory access oha can fetch portions of two a-locs; similarly, a write @ can
overwrite portions of two a-locs. Such operations can bel tadorge new addresses.
For instance, suppose that the address of a¢li& 1000, the address of a-log is
1004, and the contents & is 1001. Then* a (as a 4-byte fetch) would retrievi
bytes ofx and1 byte ofy.

This issue motivated the use of RICs because RICs are caphbépresenting
certain non-convex sets of integers, and ranges (alonapar8uppose that the contents
set ofa is {1000, 1004}; then*a (as a 4-byte fetch) would retrieve or y. The
range [1000, 1004] includes the addresk@81, 1002, and1003, and hence *[1000,
1004] (as a 4-byte fetch) could result in a forged addressvener, because VSA is
based on RICS,1000, 1004} is represented exactly, as the RIC 4[0,1]+1000. If VSA
were based on range information rather than RICs, it wodlteehave to try to track
segmentsof (possible) contents of data objects, or treat such demeées conservatively
by returningT, thereby losing track of all information.

Value-sets form a lattice. The following operators are defifor value-sets. All
operators are pointwise applications of the correspondioperator.

— (vs1 C vso): Returns true if the value-ses; is a subset ofs9, false otherwise.
— (vs1 Mws2): Returns the intersection (meet) of value-setsandvss,.

2 Because is allowed to have the valueco, we cannot always adjustandd so thatb is 0.

— (vs1 Uwse): Returns the union (join) of value-sets; andvss.

— (vs1Vuss): Returns the value-set obtained by widening with respect tovs,,
e.g.,ifvs; = (10,4[0, 1]) andvse = (10,4[0, 2]), then(vs; Vusz) = (10, 4[0,]).

— (vsHc): Returns the value-set obtained by adjusting all values iny the constant
¢, e.g., ifvs = (4,4[0,2] + 4) andc = 12, then(vs H ¢) = (16, 4[0, 2] + 16).

— x(vs, s): Returns a pair of set&, P). F represents the set of “fully accessed” a-
locs: it consists of the a-locs that are of sizand whose starting addresses are in
vs. P represents the set of “partially accessed” a-locs: it asif (i) a-locs whose
starting addresses aredn but are not of size, and (ii) a-locs whose addresses are
in vs but whose starting addresses and sizes do not meet theioasdd be inF.

— RempovelLower Bounds(vs) : Returns the value-set obtained by setting the lower
bound of each component RIC tax. For example, ifvs = ([0, 100], [100, 200]),
thenRenpvelLower Bounds(vs) = ([—oo, 100], [—00, 200]).

— RempoveUpper Bounds(vs) : Similar to RemovelLower Bounds, but sets the
upper bound of each componentta

To represent the abstract store at each program point effigieve use applicative
dictionaries, which provide a space-efficient represériadf a collection of dictio-
nary values when many of the dictionary values have neaglgéime contents as other
dictionary values in the collection [26, 21].

4 Value-Set Analysis (VSA)

This section describes the value-set analysis algoritts I an abstract interpretation
of the executable to find a safe approximation for the set lofegathat each data object
holds at each program point. It uses the domain of abstratstefined ir§3. The
present implementation of VSA is flow-sensitive and contezensitive?

VSA has similarities with the pointer-analysis problentthas been studied in great
detail for programs written in high-level languages. Fattewariable (say), pointer
analysis determines an over-approximation of the set dabkles whose addresses
can hold. Similarly, VSA determines an over-approximatifrthe set of addresses
that each data object can hold at each program point. Thégegl/SA can also be
used to find the a-locs whose addresses a given a-lmmntains. On the other hand,
VSA also has some of the flavor of numeric static analysesrevtie goal is to over-
approximate the integer values that each variable can holldition to information
about addresses, VSA determines an over-approximatiomeo$eét of integer values
that each data object can hold at each program point.

4.1 Intraprocedural Analysis

This subsection describes an intraprocedural version &.\F8r the time being, we
will consider programs that have a single procedure and dioeict jumps. To aid in
explaining the algorithm, we adopt a C-like notation forgmam statements. We will
discuss the following kinds of instructions, whe®& andR2 are two registers of the
same size, and, ¢;, andc, are explicit integer constants:

Rl =R2+¢ R1
*(R1+Cl) = R2+ ¢ R1
R].:*(R2+Cl)+c2

c

R2

IV IA

% In the near future, we plan to extend the implementation te laadegree of context-sensitivity,
using the call-strings approach to interprocedural datadioalysis [29].

Label on e Transfer function for edge e
R1=R2+c let (R2—wvs)ce. Before
e. After :=e.Before —[Rl— %] U[RL — vsH (]
*(Rl+c1)=R2+c;y |l et [RL — vsp1],[R2 — vsgpo] € €. Before, (F,P) = *(vsp1 B ey, s),
tnp=e.Before—{la—=«||ac PUF}U{[p— T]|pe P}, and
Proc be the procedure containing the statenent
if (JF|=1 and |[P|=0 and
(Proc is not recursive) and (F has no heap objects)) then
e. After :=(tnpU{[v—vspaB] |veF}) !/ Strong update
el se // Weak update
e. After :=(tnpU{[v— (vsga B c2) Uvs,] |v € F,[v— vs,] € e. Bef ore})
Rl=*(R2+c;)+ca|l et (R2 +— vsgo) € €. Before and (F, P) = x(vsgs B ey, s)
if |Pl=0 then
let vsyps = {vsy|v € F,[v— vs,] € e. Bef ore}
e. After :=e.Before —[Rl+—] U[RL — (vs;ns B c2)]

el se
e.After :=e.Before—[Rl— *x]U[RL— T]
Rl <c¢ let [Rl— vspi|ce. Before and vs. = ([-o0,¢], T,...,T)
e.After :=e.Before — [RL— «] U[RL — vspy Mvs,]
Rl > R2 let [RL— vspi],[R2 — vspo] € e. Before and vs;, = RenbveUpper Bounds(vsp2)

e.After :=e.Before —[Rl— %] U[RL — vsgs Movsp)

Fig. 4. Transfer functions for VSA. (In cases 2 ands3gpresents the size of the deref-
erence performed by the instruction.)

Conditions of the last two forms are obtained from the predsor(s) of conditional
jump instructions that affect condition codes.

The analysis is performed on a CFG for the procedure. The GHSists of one
node per x86 instruction; the edges are labeled with theucisbn at the source of
the edge. If the source of an edge is a conditional, then the exdlabeled accord-
ing to the outcome of the conditional. For instance, the edfge:L. 1 will be labeled
ecx<5, whereas the eddget—15 will be labeledecx >5. Once we have the CFG, an
abstract store is obtained for each program point by alistrecpretation [8]. Sample
transformers for various kinds of edges are listed in Figzach transformer takes an
abstract store and returns a new abstract store. Becausé&Raegion of a procedure
that may be called recursively—as well as each heap regiatenpally represents
more than one concrete data object, assignments to thegsastust be modeled by
weak updates, i.e., the new value-set must be unioned vétbxisting one, rather than
replacing it (see case two of Fig. 4). Furthermore, unaligwetes can modify parts
of various a-locs (which could possibly create forged asiss). In case 2 of Fig. 4,
such writes are treated safely by setting the values of dilghg modified a-locs toT .
Similarly, case 3 treats a load of a potentially forged adslas a load of .

The abstract store for the entry node consists of the infdomabout the initialized
global variables and the initial value of the stack poiné=).

The abstract domain has infinite ascending chains. Hena@mdoare termination,
widening needs to be performed. Widening needs to be castitdt at least one node
of every cycle in the CFG; however, the node at which wideismgerformed can affect
the accuracy of the analysis. To choose widening pointsjroplementation of VSA
uses techniques from [3].

Example 2. For the program from Fig. 1, the abstract store for the emderofrrai n
is{esp+— (L,0),mem4 — (0, L),mem8 — (1, 1)}.

The fixpoint solution of VSA for instructior? is {esp — (L, —44), mem4 —
(0,L1),mem8 — (1, L),eax — (L,4[0,00]—40),ebx — (L,4[0,00]—20),var 44

— (L, —40), ecx — ([0,4], L)} and that of instructiorl6 is {esp — (L, —44),
mem4 — (0, L), mem8 — (1, 1), eax — (L,4[1, 00] — 40), ebx — (L, 4[1, 0] —
20),var 44— (1,—40),ecx — ([5,5], L), edi — (L,—40)}.

Note that the value-sets obtained by the analysis can betas#idcover the data
dependence that exists between instructibread 16. At instruction7, eax — (L
,4[0, 00] — 40), and thust(eax H 0,4) returns the possibly-killed set d¥ar 40,
var 20, ret _mai n}. Similarly, at instructiorll6, x(esp H 8, 4) returns the use set
as{var _40}. Reaching-definitions analysis based on this informataweals that in-
structionl6 is data dependent on instructi@nSimilarly, reaching-definitions analysis
reveals that instructioh6 is not data dependent én

Note that the a-loc et _mai n is also included in the set of a-locs accessed through
eax at instruction?. This is because the analysis was not able to determine ar upp
bound foreax. Observe thatax is dependent on the loop varialdex. We discuss in
§5 how the implemented system actually finds upper or lowendsdior variables that
are dependent on the loop variable. X

4.2 Interprocedural Analysis

Let us now consider procedure calls, but for now ignore extijumps and calls. Inter-
procedural analysis presents new problems because thal&ofma procedure and the
actuals of a call need to be identified. This information is dicectly available in the
disassembly because parameters are typically passed statthkein the x86 architec-
ture. Further, the instructions that push the actual patensien the stack need not occur
immediately before the call. Example 3 will be used to expthe interprocedural case.

Example 3. Fig. 5 shows a program with two proceduresj n andi ni t Ar r ay (see
also Fig. 6). Procedureri n has an integer arrag, which is initialized by calling
i ni t Array. After initialization,mai n returns the second element of areay X

Actual parameters and register saves proc initArray
In an x86 program, stack operations likei n; part 1var ye=1, ;W
push/pop implicitly modify some locations ~ part2val ue=0; 3add ebx, 20

in the AR of a procedure (say). These void initarray(int a[], Llf%gizo[ﬂ
locations correspond to the actual param-7,>'25 ' «par2: oroy Lem] s
eters of a call and to those used for regis- o' 1 8 mov [eb'x];1 edx
ter spilling and caller-saved registers. The partz=gas]; 10 200 ebx 4
locations accessed by push/pop instruc-L2 U2 =stzeis)] Mine e o
tions are not explicitly found assp/ ebp- *part2=part 2Val ue; 31 1
relative addresses, and so the algorithm 2arizee et

that identifies a-locs will not introduce a- 1 15 e oo 44

locs for the memory locations accessed by ' 10 W%x
these stack operations; consequently, W& min(){ 18push 5
introduce additional a-locs, which we call it | al10). -parrayo: B0 T array
extended a-locs, for memory locations that initArray(a.5); g;m%[gwo]
are implicitly accessed by such stack oper-return 23
ations. To do this, the smallesp_del ta '’ 24 add esp, 44

for P is determined. This represents the -y
maximum limit to which thepstack can (2) € program (b) Disassembly

grow in a single invocation d®. (The stack Fig.5. Interprocedural example
can grow deeper due to calls madeRphowever, these operations are not relevant be-
cause we are concerned merely with identifying the size efAR for P.) If we are

unable to find a finite minimum, the analysis issues a repbthelre is a finite mini-
mum, thenextended a-locs are added to the AR on 4-byte boundaries to fill the space
between the lowest local a-loc and the minimspdel t a.

Global AR_main Formal parameters On entry to a pro-
reUmain cedure,esp points to the return address,
s - and the parameters to the procedure are the
§ bytes beyond the return address (in the posi-
tive direction). Hence the offsets for the for-
arman-20 Mal parameters will be positive. Hence, a-
ammanas 10CS With positive offsets are considered to

be the formal parameters.
At a call on a procedure that hds
_ . formals, the last extended a-locs repre-
Fig. 6. Memory-regions sent the actual parameters. Fig. 6 shows
the extended a-locs for procedumai n and the formal parameters for procedure
i ni t Array for the program in Example 3.

Handling of calls and returns The interprocedural algorithm is similar to the intrapro-
cedural algorithm, but analyzes the supergraph of the ¢ablau In the supergraph,
each call site has two nodes: a call node and an end-call mbdeanly successor of the
call node is the entry node of the called procedure and thepredecessor of the end-
call node is the exit node of the procedure called by the spaeding call node. The
call—entry and the exit-end-call edges will be refereed to kskage edges. Nodes,
edges and edge-transformers for all other instructionsiar#ar to the intraprocedural
CFG.

The transformer for the caltentry edge assigns actuals to formals and also changes
esp to reflect the change in the current AR. First the join of thetedzt stores at the
call-sites ofP is computed; then the value-set@é$p in the newly computed value is
setto(L,...,0,...,1), where the 0 occurs in the slot fBr In addition, each formal
parameteFor mal ; is initialized as follows:

Global+8

Global+4 i

229« AR_main-20
5

AR_ini tArray

ARinitArray+8 [arg_4 ¢

AR initArray+a [@l g_ 0™

AR_main-48

AR initArray+o [et_initArra

AR_main-52

(Ff, PY) = x(as.|esp] H (of f set (ARP, For mal ;) — 4), S;)
T #it | Fr#o

as Formal ;| = cecal | sites(P)
encer-?l ! |_| as.[v] # otherwise

cecal | sites(P) ,veFy?

whereas.. is the abstract store at call-siteof P and S; is the size ofFor nal ;. That
is, the value-set for a formal on entry is the join of the vadets of the corresponding
actuals at the callers. The offset of the actual in the AR efdtiller is determined from
the offset of the formal parameter. In the fixpoint solution EExample 3, the abstract
store for the enter node ohi t Array is: {nrem4 — (0, L, 1), mem8 — (1, L, 1),
arg0w— (L,—40,1),arg4+— (5,1, 1), eax — (L,—40,L1),esp— (L, 1,0),
ext 48 — (5,1,1), ext 52 — (L,—40,1) }. The regions in the value-sets are
listed in the following order:@ obal , AR.mai n, AR ni t Arr ay).

The transformer for the exitend-call edge ordinarily restores the value-setsb
to the value before the call. This corresponds to the norass# evhen the callee restores
the value ofesp to the value before the call. However, in some proceduresdhee

does not restoresp. For instanceal | oca allocates memory on the stack by sub-
tracting some number of bytes fromsp. VSA takes care of those change®sp that
are just additions/subtractions to the initial value whegan determine that the change
is always some constant amount. In such casep,is restored to the value before the
call plus/minus the change. If VSA cannot determine thattienge is a constant, then
it issues an error report.

5 Affine Relations

Recall thatin Example 2, VSA was unable to find finite uppemuforeax atinstruc-
tion 7 andebx at instruction9. This causes et _nai n to be added to the possibly-
killed sets for instructiong and9. This section describes how our implementation of
VSA obtains improved results, by identifying and then expig integer affine rela-
tions that hold among the program’s registers, using ampndeedural algorithm for
affine-relation analysis due to Muller-Olm and Seidl [1TBhe algorithm is used to de-
termine, for each program point, all affine relations thatitaenong an x86’s 8 registers.
More details about the algorithm can be found in [19].

An integer affine relation among variables(i = 1...n) is a relationship of the
formag + Y i, a;r; = 0, where theu; (i = 1...n) are integer constants. An affine
relation can also be represented agran 1)-tuple,(ag, a1, . . ., a,). There are two op-
portunities for incorporating information about affineatibns: (i) in the interpretation
of conditional instructions, and (ii) in an improved widegioperation. Our implemen-
tation of VSA incorporates both of these uses of affine resesi

Atinstruction14 in the programin Fig. leax, esp, andecx are all related by the
affine relationeax = (esp + 4 x ecx) + 4. When the true branch of the conditional
j 1 L1 is interpretedecx is bounded on the upper end by 4, and thus the value-set
ecx atL1l is (]0,4], L). (A value-set in which all RICs aré. except the one for the
A obal region represents a set of pure numbers, as well as a seth#l glddresses.)
In addition, the value-set fasp atL1 is (L, —44). Using these value-sets and solving
for eax in the above relation yields

eax = (L,—44)+4x ([0,4], L) +4= (L, —44)+4 x [0,4] +4 = (L, 4]0, 4] — 40).

In this way, a sharper value feax atL1 is obtained than would otherwise be possible;
Such bounds cannot be obtained for loops that are controfledcondtion that is not
based on indices; however, the analysis is still safe in sasks.

Halbwachs et al. [15] introduced the “widening-up-to” ogterr (also calledimited
widening), which attempts to prevent widening operations from “ew#tening” an ab-
stract store te-oco (or —oo). To perform limited widening, it is necessary to assocéate
set of inequalitied/ with each widening location. For polyhedral analysis, tHefined
PV Q to be the standard widening operatiBivV @, together with all of the inequal-
ities of M that satisfy bothP and (). They proposed that the s&f be determined
by the linear relations that force control to remain in thedoOur implementation of
VSA incorporates a limited-widening algorithm, adaptedreduced interval congru-
ences. For instance, suppose tRat= (z — 3[0,2] +5), Q@ = (z — 3[0,3] + 5),
andM = {x < 28}. Ordinary widening would produce: (— 3[0, +oo] + 5), whereas
limited widening would producex{— 30, 7] + 5). In some cases, however, the a-loc
for which VSA needs to perform limited widening is a register but not the register
that controls the execution of the loop (s&y. In such cases, the implementation of

limited widening uses the results of affine-relation anialygogether with known con-
straints oo and other register values—to determine constraints that hrald onr;.
For instance, if the loop back-edge has the lakek 20, and affine-relation analysis
has determined that = 4 x o always holds at this point, then the constraint< 80
can be used for limited widening of’'s abstract store.

The performance evaluation &7 uses a version of affine-relation analysis that
models the restoration of callee-save registers acrofs €At present, certain tech-
nical difficulties preclude a similar treatment of call@ws registers. We have also not
yet implemented a check to determine that the code obeysattiegcconventions for
caller-save and callee-save registers.)

6 Indirect Jumps and Indirect Calls

The supergraph of the program will not be complete in thegures of indirect jumps
and indirect calls. Consequently, missing jump and calbsdgeed to be inserted during
VSA. For instance, suppose that VSA is interpreting an gxtijump instructiord 1:
j mp 1000[eax* 4], and let the current abstract store at this instructiofidsex +—
([0,9],L,...,1). Edges need to be added frdr to the instructions whose addresses
could be in memory locationgl000, 1004, .., 1036}. If the addresse§1000, 1004,
..., 1036} refer to the read-only section of the program, then the adeéi® of the
successors of 1 can be read from the header of the executable. If not, thecades
of the successors dfl in locations{1000, 1004, .., 1036} are determined from the
current abstract store atl. Due to possible imprecision in VSA, it could be the case
that VSA reports that the locatioq4000, 1004, . ., 1036} have all possible addresses.
In such cases, VSA proceeds without adding new edges. Hoytkigeecould lead to an
under-approximation of the value-sets at program poirtisr&fore, the analysis issues
areport to the user whenever such decisions are made. Wefgillto such instructions
asunsafe instructions. Another issue with using the results of VSA is that an adglres
identified as a successor #1 might not be the start of an instruction. Such addresses
are ignored, and the situation is reported to the user.

Indirect calls are handled similarly, with a few additiocamplications.

— A successor instruction identified by the method outlineal/abmay be in the mid-
dle of a procedure. In such cases, the analysis reportstthe tuser.

— The successor instruction may not be part of a procedurenthstidentified by
IDAPro. This is due to the limitations of IDAPro’s procedtfirding algorithm:
IDAPro does not identify procedures that are called exetlgivia indirect calls.
In such cases, VSA can invoke IDAPro’s procedure-findingatgm explicitly,
to force a sequence of bytes from the executable to be dedotbea sequence of
instructions and spliced into the IR for the program. (Atgenet, this technique has
not yet been incorporated in our implementation.)

7 Performance Evaluation

Table 1 shows the running times and storage requirementsrgfrototype implemen-
tation for analyzing a set of Win32 and Linux/x86 progrante program version is
shown in parentheses. As a temporary expedient, callsrarjifunctions are treated
during analysis as identity transformers. The analyses werformed on a Pentium-4
with a clock speed of 3.06GHz, equipped with a physical mgmb4GB and running
Windows 2000. (The per-process address space was limit&@Bo)

Value- | Affine-

J .__IMalloc| Indirect Indirect Memory set |relation
Program Proceduregnstructions . Calls ! usage .]
sites | Jumps calls MB) analysisanalysig
((sec.) | (sec.)
javac 36 3555 1 0 133 79 51 76 2
cat (2.0.14) 123 3892 1 3 138 4 42 9 26
cut (2.0.14) 129 4329 2 3 182 4 48 7 42
grep (2.4.2) 245 16808 18 4 654 6 102 117 75
gcce (2.96) 252 22984 8 3 1048 4 232 108 295
tar (1.13.19) 581 47739 11 21 2553 29 258 220 156
awk (3.1.0) 595 69927 84 33 3669 | 152 623 1017 1011
winhlp32 (5.0.2195.2014) 1018 108380 0 10 6002 | 1005 | 737 1712 1290

Table 1.Running times and storage requirements for VSA and affitegioa analysis.

To contrast the capabilities of VSA with analysis algoriththat treat memory ac-
cesses very conservatively—i.e., if a register is assignedlue from memory, it is
assumed to take on any value—we compared it with a versionS#,\¢talledcrude
VSA, that always sets the value-sets for all non-register a40d . Table 2 shows the
number of flow-dependence edges obtained with three metfipdsthout using VSA
at all (which causes dependences to be missed); (ii) with V&8 (iii) with crude
VSA.

8 Soundness Issues

Soundness would mean that value-se

'

, ; ;) FProgram | No VSA VSA [Crude VSA
analysis would identify used, Killed, [avac 51507 52884 54996
and possibly-killed sets that would|cat(2.0.14) 17932 32826 33632
never miss any data dependence, gput(2.0.14) 23116 37834 39114
though they might cause spurious degfe%zé‘é-)z égggg; 5321?)2? 53%2(5’2)

P QCC . Y g
pendences to be reported. This is tar (1.13.19) 644518 4088659 4305444

lofty goal; however, itis not clear thata
tool that achieves this goal would haveTable 2. Comparison of 3 variants of VSA.
practical value. There are less lofty
goals that do not meet this standard—but may result in a maetipal system. In
particular, we may not care if the system is sound, as longj @mi provide warnings
about the situations that arise during the analysis th&aten the soundness of the
results. This is the path that we are following in our work.

Here are some of the cases in which the analysis can be unsouingthere the
system generates a report about the nature of the unsouwndnes

— The program is vulnerable to a buffer-overrun attack. Thisloe detected by iden-
tifying a point at which there can be a write past the end of enorg-region.

— The control-flow graph and call-graph may not identify altseissors of indirect
jumps and indirect calls. Report generation for such casdscussed if6.

— Arelated situation is a jump to a code sequence concealéd iregular instruction
stream; the alternative code sequence would decode as adelgasequence when
read out-of-registration with the instructions in whiclisitoncealed. The analysis
could detect this situation as an anomalous jump to an aslthesis in the code
segment, but is not the start of an instruction.

— With self-modifying code, the control-flow graph and calagh are not avail-
able for analysis. The analysis can detect the possiblity the program is self-
modifying by identifying an anomalous jump or call to a maalifie location.

9 Related Work

There is an extensive body of work on analyzing executafilese.work that is most
closely related to VSA is the alias-analysis algorithm fxe@utables proposed by De-
bray et al. [11]. The basic goal of their algorithm is simitarthat of VSA: for them,
it is to find an over-approximation of the set of values thatheeegister can hold at
each program point; for us, it is to find an over-approxinrabbthe set of values that
each (abstract) data object can hold at each program pdiet,erdata objects include
memory locations in addition to registers. In their anaysi set of addresses is ap-
proximated by a set of congruence values: they keep tracklgftbe low-order bits of
addresses. However, unlike our algorithm, their algoritoas not make any effort to
track values that are not in registers. Consequently, they & great deal of precision
whenever there is a load from memory.

Cifuentes and Fraboulet [5] give an algorithm to identifyirsnaprocedural slice of
an executable by following the program’s use-def chainsvél@r, their algorithm also
makes no attempt to track values that are not in registedshance cuts short the slice
when a load from memory is encountered.

Past work on decompiling assembly code to a high-level laggs also related to
our goals [6, 4, 20]. However, that work has also not done ntoicialdress the problem
of recovering information about memory accesses.

The idea of inferring the layout of a program’s data struesurased on the access
patterns in the program is similar to the idea behind the Aggte Structure Identifica-
tion (ASI) algorithm of Ramalingam et al. [24]. However, A&innot be applied to x86
code without having the results of VSA already in hand: ASjuiees points-to, range,
and stride information; however, this information is noagable for an x86 executable
until after VSA. The good news is that ASI can be applied &M8A to refine the pro-
gram'’s a-locs, which can allow some clients of value-selyma—such as dependence
analysis—to compute more precise results. We plan to usénA&injunction with the
results of value-set analysis in future work.

Xu et al. [31] also created a system that analyzed execwtablthe absence of
symbol-table and/or debugging information. The goal ofrtegstem was to establish
whether or not certain memory-safety properties held inf®Axecutables. Initial in-
puts to the untrusted program were annotated with typestatenation and linear con-
straints. The analyses developed by Xu et al. were basediesical theorem-proving
techniques: the typestate-checking algorithm used thectiwh-iteration method [30]
to synthesize loop invariants and Omega [23] to decide Rrgsb formulas. In con-
trast, the goal of the system described in the present pagerrecover information
from an x86 executable that permits the creation of inteiatedepresentations similar
to those that can be created for a program written in a higétlanguage. VSA uses
abstract-interpretation techniques to determine uséiddkand possibly-killed sets for
each instruction in the program.

Several people have developed techniques to analyze ekéesiin the presence of
additional information, such as the source code, symbaétmformation, or debug-
ging information [18, 2, 1, 27]. Analysis techniques thaguame access to such infor-
mation are limited by the fact that it must not be relied on whealing with programs
such as viruses, worms, and mobile code (even if such inftlome present).

Dor et al. [12] present a static-analysis technique—imgleted for programs writ-
ten in C—whose aim is to identify string-manipulation es;uch as potential buffer
overruns. In their work, a flow-insensitive pointer anadyisifirst used to detect point-

ers to the same base address; integer analysis is then udetktd relative-offset re-
lationships between values of pointer variables. The paigprogram is translated to
an integer program that tracks the string and integer méatipus of the original pro-
gram; the integer program is then analyzed to determinégrkhips among the inte-
ger variables, which reflect the relative-offset relatiips among the values of pointer
variables in the original program. Because they are prignarierested in establishing
that a pointer is merelwithin the bounds of a buffer, it is sufficient for them to use
linear-relation analysis [10], in which abstract stores esnvex polyhedra defined by
linear inequalities of the forny_"_, a;z; < b, whereb and theua; are integers, and the
x; are integer variables.

In our work, we are interested in discovering fine-grainddrimation about the
structure of memory-regions. As already discusseddrB, it is important for the
analysis to discover alignment and stride information s thcan interpret indirect-
addressing operations that implement field-access opasain an array of structs or
pointer-dereferencing operations. Because we need tegepr non-convex sets of
numbers, linear-relation analysis is not appropriatertkis reason, the numeric com-
ponent of VSA is based on reduced interval congruences hndrie capable of repre-
senting certain non-convex sets of integers.

Rugina and Rinard [28] have also used a combination of poartd numeric anal-
ysis to determine information about a program’s memory see® There are several
reasons why their algorithm is not suitable for the problbat tve face: (i) Their anal-
ysis assumes that the program’s local and global varialwe&rrown before analysis
begins: the set of “allocation blocks” for which informatis acquired consists of the
program’s local and global variables, plus the dynamioeation sites. (ii) Their anal-
ysis determines range information, but does not determigeraent and stride infor-
mation. (iii) Pointer and numeric analysis are performguhsately: pointer analysis is
performed first, followed by numeric analysis; moreoveis ihot obvious that pointer
analysis could be intertwined with the numeric analysis ithased in [28].

Our analysiscombines pointer analysis with numeric analysis, whereas the anal-
yses of Rugina and Rinard and Dor et al. use two separate gphasi@ter analysis
followed by numeric analysis. An advantage of combining the two analis¢hat in-
formation about numeric values can lead to improved tragkiinpointers, and pointer
information can lead to improved tracking of numeric valuasour context, this kind
of positive interaction is important for discovering aligant and stride information (cf.
§3.3). Moreover, additional benefits can accrue to clientg®A; for instance, it can
happen that extra precision will allow VSA to identify thagtaong update, rather than a
weak update, is possible (i.e., an update can be treatedilasadHer than as a possible
kill; cf. case two of Fig. 4). The advantages of combiningyei analysis with numeric
analysis have been studied in [22]. In the context of [22nbiming the two analysis
only improves precision. However, in our context, a combtiaealysis is needed to
ensure safety.

References

1. J. Bergeron, M. Debbabi, J. Desharnais, M.M. Erhioui, &vdie, and N. Tawbi. Static
detection of malicious code in executable programs.J. of Reg. Eng., 2001.

2. J. Bergeron, M. Debbabi, M.M. Erhioui, and B. Ktari. Statinalysis of binary code to
isolate malicious behaviors. WETICE, pages 184-189, 1999.

10.
11.
12.
13.

14.
. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verificatibmeal-time systems using linear

16.

17.
18.

19.
20.
. E.W. Myers. Efficient applicative data types.Rrinc. of Prog. Lang., pages 6675, 1984.
22.
23.
24.

25.
26.

27.
28.
29.

30.

31.

F. Bourdoncle. Efficient chaotic iteration strategiethwiidenings. Innt. Conf. on Formal
Methods in Prog. and their Appl., Lec. Notes in Comp. Sci. Springer-Verlag, 1993.

C. Cifuentes and A. Fraboulet. Interprocedural data flegovery of high-level language
code from assembly. Technical Report 421, Univ. Queensib9@i7.

C. Cifuentes and A. Fraboulet. Intraprocedural stat@rgj of binary executables. Imt.
Conf. on Softw. Maint., pages 188-195, 1997.

C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to fiéyel language translation. In
Int. Conf. on Softw. Maint., pages 228-237, 1998.

CodeSurfer, GrammaTech, Inc., http://www.grammaterh/products/codesurfer/.

P. Cousot and R. Cousot. Static determination of dynanaipgsties of programs. IRroc.
2nd Int. Symp. on Programming, pages 106—130. Dunod, Paris, France, 1976.

P. Cousot and R. Cousot. Abstract interpretation: A uhifitice model for static analysis
of programs by construction or approximation of fixpointsPrinc. of Prog. Lang., 1977.

P. Cousot and R. Cousot. Automatic discovery of lineatragts among variables of a
program. InPrinc. of Prog. Lang., pages 84-97, 1978.

S.K. Debray, R. Muth, and M. Weippert. Alias analysis xé@itable code. Ifrinc. of
Prog. Lang., pages 12-24, 1998.

N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistat for statically detecting all
buffer overflows in C. IrProg. Lang. Design and Impl., pages 155-167, 2003.

Fast library identification and recognition technoloBataRescue sa/nv, Liege, Belgium,
http://www.datarescue.com/idabase/flirt.htm.

P. Granger. Static analysis of arithmetic congruenicgsJ. of Comp. Math., 1989.

relation analysisFormal Methods in System Design, 11(2):157-185, 1997.

S. Horwitz, T. Reps, and D. Binkley. Interproceduralisly using dependence grapfisans.
on Prog. Lang. and Syst., 12(1):26-60, January 1990.

IDAPro disassembler, http://www.datarescue.corbAda/.

J.R. Larus and E. Schnarr. EEL: Machine-independerduéakle editing. IrProg. Lang.
Design and Impl., pages 291-300, 1995.

M. Muller-Olm and H. Seidl. Precise interprocedurahlgsis through linear algebra. In
Princ. of Prog. Lang., 2004.

A. Mycroft. Type-based decompilation. Huropean Symp. on Programming, 1999.

A. Pioli and M. Hind. Combining interprocedural poingatalysis and conditional constant
propagation. Tech. Rep. RC 21532(96749), IBM T.J. WatsweReh Center, March 1999.
W. Pugh. The Omega test: A fast and practical integerrproming algorithm for depen-
dence analysis. |Bupercomputing, pages 4-13, 1991.

G. Ramalingam, J. Field, and F. Tip. Aggregate strudtigetification and its application to
program analysis. IRrinc. of Prog. Lang., pages 119-132, 1999.

T. Reps and G. Rosay. Precise interprocedural choppirfgound. of Softw. Eng., 1995.

T. Reps, T. Teitelbaum, and A. Demers. Incremental stwkependent analysis for
language-based editor$rans. on Prog. Lang. and Syst., 5(3):449-477, July 1983.

X. Rival. Abstract interpretation based certificatié@ssembly code. Imt. Conf. on \erif.,
Model Checking, and Abs. Int., 2003.

R. Rugina and M.C. Rinard. Symbolic bounds analysis aftpcs, array indices, and ac-
cessed memory regions. New York, NY. ACM Press.

M. Sharir and A. Pnueli. Two approaches to interprocaldiata flow analysis. In S.S. Much-
nick and N.D. Jones, editorBrogram Flow Analysis: Theory and Applications, chapter 7,
pages 189-234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

N. Suzuki and K. Ishihata. Implementation of an arrayrnsbahecker. IrPrinc. of Prog.
Lang., pages 132-143, 1977.

Z. Xu, B. Miller, and T. Reps. Safety checking of machinde InProg. Lang. Design and
Impl., pages 70-82, 2000.

