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Abstract. Modern object-oriented programming languages such as C++ provide
convenient abstractions and data encapsulation mechanisms for software devel-
opers. However, these features also complicate testing and static analysis of pro-
grams that utilize object-oriented programming concepts. In particular, the C++
language exhibits features such as multiple inheritance, static and dynamic type-
casting that make static analyzers for C++ quite hard to implement. In this paper,
we present an approach where static analysis is performed by lowering the origi-
nal C++ program into a semantically equivalent C program. However, unlike ex-
isting translation mechanisms that utilize complex pointer arithmetic operations,
virtual-base offsets, virtual-function pointer tables, and calls to run-time libraries
to model C++ features, our translation is targeted towards making static program
analyzers for C++ easier to write and provide more precise results. We have im-
plemented our ideas in a framework for C++ called CILpp that is analogous to
the popular C Intermediate Language (CIL) framework. We evaluate the effec-
tiveness of our translation in a bug finding tool that uses abstract interpretation
and model checking. The bug finding tool uncovered several previously unknown
bugs in C++ open source projects.

1 Introduction

Modern object-oriented programming languages provide convenient abstraction and
data encapsulation mechanisms for software developers. Such mechanisms include
function and operator overloading, constructors and destructors, multiple class inher-
itance, dynamic virtual-function dispatch, templates, exceptions, functors, standard li-
braries such as STL and BOOST. However, on the flip side, these features complicate
the static analysis of programs that use such features. In the past decade, there have
been numerous approaches for static program analysis techniques based on source code.
These tools rely on abstract interpretation [12] or software model checking [9], such as
ASTREÉ [13], Saturn [40], SLAM [3], CBMC [8], Java PathFinder [16], and Find-
Bugs [17]. However, in practice, these tools have largely been developed and optimized
to either address C or Java. With respect to static program analysis techniques for object-
oriented source code, most work has addressed Java partly because of its less intricate
class hierarchy concept. However, in industry, C++ is one of the predominant develop-
ment languages. Due to its intrinsic complexity mixing object-oriented programming
? Work done while at NEC Labs America.



on top of full-fledged C code, there is a stark need for static program analysis for C++
supporting all of its many features.

There are several popular front-ends, such as Comeau C/C++ [10], EDG [15],
LLVM [19], and ROSE [27], that support all the complex features of C++. In spite
of the availability of C++ front-ends, it is still hard to perform static analysis of C++
programs as observed by the developers of Clang [6, 7]:

“ . . . Support in the frontend for C++ language features, however, does not
automatically translate into support for those features in the static analyzer.
Language features need to be specifically modeled in the static analyzer so
their semantics can be properly analyzed. Support for analyzing C++ and
Objective-C++ files is currently extremely limited, . . . ”

Modeling the C++ features directly in static analysis is a non-trivial task because the
C++ semantics is quite complicated [32]. Moreover, every static analyzer may need to
encode the semantics differently depending upon the requirements of the analysis. For
complex analysis, this process can easily get out of hand. One particular issue in han-
dling of C++ programs compared to other object-oriented programming languages such
as Java is the complexity of allowed class hierarchies. C++ allows multiple inheritance,
where a class may inherit from more than one class. Presence of multiple inheritance
gives rise to complex class hierarchies which must be handled directly (and precisely)
by any static analysis. Furthermore, multiple inheritance complicates the semantics of
otherwise simple operations such as casts and field accesses [33]. Therefore, techniques
developed for Java are not readily applicable to C++ programs. It is important to empha-
size that multiple inheritance is used quite frequently by developers even in large C++
projects. Nokia’s cross-platform UI framework Qt [25], Apache’s Xerces project [1],
and g++ standard IO stream library are good examples.

An alternative approach to analyzing C++ programs with complex hierarchies is to
utilize compiler front-ends that compile C++ programs into equivalent C programs (of-
ten referred to as “lowering of C++ programs”). A number of such approaches exist,
starting from the earliest C++ compilers, such as Cfront [34]. Today, there are com-
mercial C++ front-ends available that provide similar features, for example Comeau
C/C++ [10] or EDG [15]. Such translations are generally geared towards runtime perfor-
mance and small memory footprint. Therefore, these front-ends heavily utilize pointer
arithmetic operations, virtual-base offsets, virtual-function pointer tables, and rely on
runtime libraries, to achieve those goals. Such translations are hardly amenable to pre-
cise program analysis.

Consider, for example, the translation using one such generic lowering mechanism
shown in the middle column of the table in Fig. 1. Note how a static cast operation
in row (a) of Fig. 1 is translated into an adjustment of the source pointer pr by 8 bytes
in the lowered C program. Similarly, the dynamic cast operation is translated into
a call to an opaque runtime function dynamic cast, which may change the source
pointer as in the case of static cast. Such pointer adjustment operations are crucial
for preserving the semantics of class member accesses in the lowered C program. How-
ever, static analysis algorithms typically assume that such pointer adjustments (which
are akin to pointer arithmetic operations) do not change the behavior of the program,
and therefore, may ignore them completely. Consequently, the analysis of the lowered
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Standard C++-to-C lowering CHROME-based lowering

(a)
pb =
((struct B *) ((pr != ((struct R *) 0))
? (((char *)pr) - 8UL) : ((char *) 0)));

assert(pr->soid == B_R);
pb = pr ? pr->dervB : 0;

(b)
pl = ((pr != ((struct R *)0))
? ((struct L *)(_dynamic_cast(...)))
: ((struct L *)0));

assert(pr->soid == B_R);
pl = pr? pr->dervB->baseL : 0;

(c)

// Access virtual function table
_T31 = ((((pl->_b_R)._vptr)) + 1);

// Call virtual function
(((void (*)(struct R * const))
((_T31->f))) (((struct R *)
(((char *) (&pl->_b_R)) +
((_T31->d))))));

switch(pl->soid) {
case B_L:
case L:
{ T* prt = pl->baseT;
prt->T::vfunc(prt);
break;
}
default: assert(false);
}

(d)
((*((struct T *) (((char *) pb) +
((((pb->_b_1L)._vptr))[(-3)])))).tp)
= ((int *) 0);

pb->baseL->baseT->tp
= (int *)0;

Fig. 1: Comparison of the standard C++-to-C lowering and CHROME-based lowering mech-
anisms: (a) pb = static_cast<B*>(pr), (b) pl = dynamic_cast<L*>(pr), (c)
pl->vfunc(), vfunc is a virtual function), and (d) pb->L::tp = 0, L::tp is a field
of a shared base class).

C program is unsound. Alternatively, a conservative treatment of pointer arithmetic op-
erations results in a large number of false positives, thereby reducing the usefulness of
the analysis.

Further, note how a virtual-function call in Fig. 1(c) is translated into a complex
combination of virtual-function pointer table lookups (via vptr variable) and unintelli-
gible field accesses. Furthermore, in row (d) of Fig. 1, even a simple access to a field of
a shared base class (see Sect. 2) is translated into an access through the virtual-function
table [33]. Most conventional static analysis are not well equipped to precisely reason
about such code. In particular, they are generally imprecise in the presence of arrays
of function pointers or pointer offsets (such as the virtual-function pointer table). At a
virtual-function call, a naive analysis may enumerate all potential callees, thus causing
blowup in the computed call graph due to redundant function invocations. Alternatively,
many techniques safely approximate arrays using summary variables, which leads to a
severe imprecision in the resolution of field accesses and virtual-function calls.
Our Approach. In this paper, instead of encoding complex C++ semantics in static ana-
lyzers or simulating the behavior of the compiler, we adopt a more pragmatic approach
to analyzing C++ programs. We believe that in order to allow for a scalable, yet pre-
cise, static analysis of C++, such techniques need not have to reason about the low-level
physical memory layout of objects. Rather, we require a higher level of abstraction of
the memory that is closer to the developer’s understanding of the program.

Towards this goal, we propose a representation for modeling C++ objects that is
different from the object layout representations used by a compiler. The alternative rep-
resentation is referred to as CHROME (Class Hierarchy Representation Object Model
Extension) and uses the algebraic theory of sub-objects proposed by Rossie and Fried-
man [30]. Using the CHROME object model, we employ a sequence of source-to-source
transformations that translate the given C++ program with inheritance into a semanti-
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cally equivalent C++ program without inheritance. Our source-to-source transforma-
tions comprises two main steps. The first step employs a clarifier module which makes
implicit C++ features explicit. An example of such an implicit feature is the invoca-
tion of constructors, destructors, and overloaded operators. The second step involves
the elimination of inheritance-related features using the proposed CHROME model. The
translations are semantics-preserving and static program analysis friendly. Our aim is
to allow state-of-the-art static program analyzers, that are currently oblivious to in-
heritance and multiple inheritance in programs, to naturally handle such transformed
programs while maintaining their efficiency and precision.

The last column in Fig. 1 shows the CHROME-based transformations. The key idea
underlying the CHROME model is to treat sub-objects due to inheritance as separate
memory regions that are linked to each other via additional base class and derived class
pointer fields. Instead of utilizing virtual-function pointer table lookups and address
offset computations to resolve issues related to dynamic dispatch and casts, we instead
follow a path in a sub-object graph utilizing these additional pointers to find the re-
quired sub-object of interest. Note that this sub-object graph walk may require multiple
pointer indirections and would thus be inefficient for runtime performance as well as
less memory efficient. However, static program analyzers routinely reason about heaps
and pointer indirections. Hence, we build upon the strengths of these tools to allow for
a efficient and precise analysis of complex C++ programs. The analysis of the resulting
C++ program is also simplified because program analysis tools can treat casts and ac-
cesses to fields of inherited classes and virtual-function calls in the same way as regulars
casts and accesses to fields of regular classes and normal function calls, respectively.

Our approach has multiple advantages. Various analyses can now focus on the re-
duced subset of C++ in a uniform manner without being burdened with having to deal
with inheritance. Further, we may adopt simpler object-oriented analyses, e.g., those
developed for Java programs, to analyze C++ programs. Finally, because the reduced
subset is quite close to C, the given C++ program can also be lowered to C. This en-
ables reuse of standard static analyses for C programs without necessitating the loss of
high-level data representation.

The transformed source code can be potentially used not only for static analysis
but also for dynamic program analysis, code understanding, re-engineering, runtime
monitoring, and so on. We believe that our approach provides a uniform way to resolve
the principal barrier to analyzing C++ programs, i.e., handling of inheritance precisely
in a scalable fashion.

To illustrate the practical utility of our approach, we experiment with an in-house
bug-finding tool called F-SOFT [18] that uses abstract interpretation [12] and model
checking [9]. Our experiments show that our method provides significant benefits as
compared to a straightforward C++-to-C lowering-based approach. We found a total of
ten previously unknown bugs on some C++ open source projects, of which five were
only found due to the precise modeling of objects using the CHROME object model. We
also experimented with a publicly available bug finding tool called CBMC [8], which
showed similar improvements when using the CHROME object model.

Contributions The key contributions of our paper are as follows:
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– The CHROME (Class Hierarchy Representation Object Model Extension) object
model representation for modeling objects of derived classes.

– An algorithm for translating a C++ program with inheritance into a semantically
equivalent C++ program without inheritance using the CHROME object model.

– Performing the translation without the use of pointer arithmetic operations, virtual-
base offsets, virtual-function tables, and runtime functions. Our source-to-source
translation is designed with program analysis in mind and not for runtime perfor-
mance or a small memory footprint.

– Illustrating the practicality of our approach by evaluating the effectiveness of the
lowered C++ programs for abstract interpretation and model checking.

– A framework for C++ called CILpp that can be used to build analysis and verifi-
cation tools for C++ programs. CILpp is analogous to the popular C Intermediate
Language (CIL) framework for C programs [24].

Our implementation is based on the EDG frontend [15]. This allows us to focus on
the analysis while being able to handle arbitrary C/C++ dialects. Our current lowering
mechanism using the CHROME object model relies on the assumption that the tool
chain is aware of the complete class hierarchy. This restriction simplifies the object
model generation substantially since our generated object models do not have to address
dynamic class loading, for example.

The rest of the paper is organized as follows. Sect. 2 describes the algebraic theory
of Rossie-Friedman sub-objects. Sect. 3 presents the clarifier module that makes im-
plicit C++ features explicit. Sect. 4 presents the CHROME object model and the source-
to-source transformations that eliminate inheritance. Sect. 5 describes the results of our
experiments. Sect. 6 discusses the related work. Sect. 7 concludes the paper.

2 Rossie-Friedman Sub-objects

Informally, the Rossie-Friedman sub-object model [30] is an abstract representation of
the object layout. When a class inherits from another class, conceptually the base class
is embedded into the derived class. Therefore, an object of a derived class consists of
different (possibly overlapping) components that correspond to the direct and transitive
base classes of the derived class. Intuitively, a sub-object refers to a component of a
direct or transitive base class that is embedded in a derived class object. The complete
derived class object is also considered to be a sub-object.

Example 1. Consider a class L that inherits from another class T. An object of type L
consists of two sub-objects: (1) a sub-object of type T corresponding to the base class T,
and (2) a sub-object of type L that corresponds to the complete object itself. Fig. 4(I)(a)
shows the sub-objects of L. �

C++ supports multiple inheritance through which a class inherits from more than one
base class. In case of single inheritance, there is only one copy of every (direct or
transitive) base class in a derived class object. However, with multiple inheritance, the
number of sub-objects corresponding to a direct or transitive base class depends upon
the number of paths between the base class and the derived class in the class hierarchy.
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class T {int tf;}
class L: public T

{int lf;}
class R: public T

{int rf;}
class B: public L,
public R {int bf;}

T

L R

B

Replicated
[B, 〈B,L, T 〉] [B, 〈B,R, T 〉]

[B, 〈B,L〉] [B, 〈B,R〉]

[B, 〈B〉]

(a) (b) (c)

Fig. 2: Replicated multiple inheritance: (a) C++ program, (b) class-hierarchy graph, and (c) sub-
object poset for class B.

Example 2. Consider the program shown in Fig. 2(a). Fig. 4(I)(b) shows the object
layout for B. Because B inherits from L and R, a B-object contains sub-objects of type
L and R. Further, the sub-objects of type L and R each contain a distinct sub-object of
type T. Therefore, a B-object has two distinct sub-objects of type T: one inherited from
class L and the other inherited from class R. �

Virtual base classes It is often not desirable to have multiple sub-objects of a base class
in a derived class. Therefore, to prevent replication of base class sub-objects in a derived
class, C++ provides virtual base classes. Unlike a non-virtual base class, a sub-object
of a virtual base class type is shared among the sub-objects of all its direct and transitive
derived classes.

Example 3. Consider the class hierarchy in Fig. 3(a). The keyword virtual indicates
that class T is a virtual base class. Fig. 4(I)(c) shows the object layout for B. A B-object
contains sub-objects of type L and R as usual. However, because T is a virtual base
class, it is shared among the direct and transitive derived classes L, R, and B. Therefore,
a B-object contains only one sub-object of type T.

When a class inherits from a non-virtual base class, it is referred to as replicated
inheritance. When a class inherits from a virtual base class, it is referred to as shared
inheritance. The class hierarchy graph captures the shared and replicated inheritance
relationships among the classes.

Definition 1 (Class Hierarchy Graph (CHG)). A class hierarchy graph G is a tuple
〈C,≺s,≺r〉, where C is the set of class names,≺s⊆ C×C are shared inheritance edges,
and ≺r⊆ C × C are replicated inheritance edges. Let ≺sr= (≺s ∪ ≺r).

The formal description relies on the following operators to model transitive applica-
tions of≺s and≺r.<s= (≺s)

+,≤s= (≺s)
∗,<r= (≺r)

+, and≤r= (≺r)
∗. Similarly,

<sr= (≺sr)
+, and ≤sr= (≺sr)

∗.
We require that the reflexive and transitive closure ≤sr of ≺sr is antisymmetric.

This ensures that a CHG is acyclic. Note that (C,≤sr) is a poset.

The Rossie-Friedman sub-object model formalizes the notion that, given a derived class
D, a sub-object of a D-object is either the complete D-object or a component of a base
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class T {int tf;}
class L: public
virtual T {int lf;}

class R: public
virtual T {int rf;}

class B: public L,
public R {int bf;}

T

L R

B

Replicated

[B, 〈T 〉]

[B, 〈B,L〉] [B, 〈B,R〉]

[B, 〈B〉]

Shared

(a) (b) (c)

Fig. 3: Shared multiple inheritance: (a) C++ program, (b) class hierarchy graph, and (c) sub-
object poset for class B.

class type B that is embedded in the D-object. Because C++ allows multiple inheritance,
a D-object may have multiple sub-objects of a base class type B. Therefore, it is not
sufficient to represent a sub-object of type B in a D-object simply as a pair 〈D,B〉. Rossie
and Friedman distinguish different sub-objects of the same base class in a derived class
using the path from the base class to the derived class in the CHG.

Definition 2 (Sub-object). Given a CHG 〈C,≺s,≺r〉, a sub-object σ is a pair
[C, 〈X,Y1, Y2, . . . , Yn〉], where

1. C,X, Y1, Y2, . . . , Yn ∈ C
2. X ≺r Y1 ≺r . . . ≺r Yn
3. (C = X) ∨ ∃(Z ∈ C)[C <sr Z <s X]

C is the derived class to which σ belongs, and Yn is the type of the sub-object. The
path X,Y1, Y2, . . . , Yn represents the path in the CHG through which class C inherits
Yn. For a repeated sub-object, X = C. For a shared sub-object, X is the least derived
virtual base class that contains Yn.

Example 4. Fig. 2(c) show the sub-objects of class B with replicated multiple inheri-
tance. The sub-object [B, 〈B,L, T 〉] in class B corresponds to class T that is inherited
transitively by class B through class L. The sub-object path 〈B,L, T 〉 represents the
corresponding path in the CHG. An instance of class B has two copies of T, one in-
herited from L and the other inherited from R. Therefore, there are two sub-objects
[B, 〈B,L, T 〉] and [B, 〈B,R, T 〉] that correspond to class T. The sub-object path of T
determines whether it is inherited from L or R.

Similarly, Fig. 3(c) shows the sub-objects of class B with shared inheritance. Note
that an instance of class B has only one copy of class T. Therefore, there is only one
sub-object that has an effective class type T, namely [B, 〈T 〉]. The sub-object path 〈T 〉
represents the fact that class B shared inherits T because the first class in the sub-object
path is not B. �

3 Clarifier

C++ provides convenient abstractions, such as constructors and destructors, that sim-
plify the life of a software developer. However, such abstractions also introduce ad-
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ditional operations that are implicit in the control flow of the program. For example,
the destructors of the objects allocated on the stack are implicitly invoked whenever the
objects go out of scope. Examples of other such implicit operations are calls to construc-
tors and overloaded operators, the this parameter in member functions, and implicit
casts. The clarifier module exposes such implicit operations in the C++ program.

Example 5. Consider the following C++ program:

int cutLen(const string &s,size_t i,size_t n){
const char *str = s.substr(i,n).c_str();
return strlen(str);

}

The output of the clarifier is shown below:

int cutLen(const string &s,size_t i,size_t n){
const string tmp; // Only declaration, no call to constructor.
// Copy constructor call for ‘tmp’.
tmp.string(s.substr(i,n));
const char *str = tmp.c_str();
// Destruction of temporary ‘tmp’
tmp.˜string();
// Use of invalid pointer ‘str’
return strlen(str);

}

In the output, the copy constructor for the temporary object that gets created at the call to
s.substr(...) is made explicit. Similarly, the destructor for the temporary object
is invoked when the temporary goes out of scope, which happens immediately after
the initialization of str. Method call tmp.c str() returns a pointer to an internal
buffer, which is deallocated when the tmp object is destroyed. Therefore, strlen
uses a deallocated string str, which can cause a segmentation fault.1 The clarifier
maintains the correct C++ semantics by preserving the order in which the constructors
and destructors are invoked, and the order in which the initializations are performed.

The output of the clarifier is an intermediate representation called CILpp that
is largely inspired by the CIL front-end [24] with relevant extensions for C++ spe-
cific features. The CILpp representation consists of a mixture of C and C++ con-
structs. Specifically, the inheritance-related constructs are still present. The inheritance-
related features are eliminated by performing source-to-source transformations using
the CHROME model as described next.

4 CHROME Model

Standard C++-to-C lowering algorithms use a physical sub-object model for represent-
ing objects of derived classes, which is similar to how compilers layout objects at run-
time. In the physical sub-object model, the base classes are embedded into the derived

1 This example is modeled on some bugs that our framework discovered in the gold project,
which provides a faster linker as part of the GNU binutils package [2].
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T

L

pt

pl

(a)

T

R

T

L

B

pb

pt

pl

T

R

L

B

pb

pt

pl

(b) (c)

T’s fields

[B, 〈B,L, T 〉]
T’s fields

[B, 〈B,R, T 〉]

L’s fields

[B, 〈B,L〉]
R’s fields

[B, 〈B,R〉]

B’s fields

[B, 〈B〉]

dervL dervR
baseT

baseT

dervB

dervB
baseL baseR

(I) (II)

Fig. 4: (I) Object layout used by a standard C++-to-C lowering algorithm: (a) class L in Figs. 2
and 3, (b) class B with replicated inheritance in Fig. 2, and (c) class B with shared inheritance in
Fig. 3. (II) CHROME object model for the class B in Fig. 2. (pt, pl, and pb are pointers.)

class objects. Fig. 4(I) shows the physical sub-object model for some classes that use
replicated and shared multiple inheritance.

There are several problems with using the physical sub-object model for analysis.
Because sub-objects are embedded inside the derived classes, a cast between a base and
derived class pointer has to be modeled as an offset adjustment to the source pointer.
For example, for the objects in Fig. 4(I), the cast statement “pl = (L*) pb”, where
pb is a pointer of type B*, requires moving pointer pb to the start of the corresponding
sub-object of type L in the B-object as follows: “pl = ((char*)pb) + 8;”.

In certain cases, the required offsets cannot be determined statically. For example,
consider a cast from a pointer pl of type L* to a pointer of type T*. If pl points to a
sub-object of type L as in Fig. 4(I)(a), no adjustment is necessary. On the other hand,
if pl points to a sub-object of type L in an object of type B as in Fig. 4(I)(c), pointer
pl has to be adjusted by 8 bytes. For such cases, the offsets are stored in the virtual-
function pointer table and are consulted at runtime. Consequently, the code generated
by a standard lowering algorithm includes a lookup of a virtual-function pointer table
even for simple casts. As mentioned in Sect. 1, static analysis algorithms are not precise
in the presence of such low-level pointer offset adjustments and arrays of pointers.

To avoid such problems, we propose the CHROME object model for representing
the objects of a derived class. In the CHROME object model, an object is viewed as a
collection of its sub-objects and no assumptions are made about the layout of the fields
in each class. Whenever an object is created, the sub-objects that belong to the class are
created independently, and are linked to each other via additional pointer fields.

Example 6. Consider the replicated inheritance hierarchy in Fig. 2. The CHROME ob-
ject model representation for a B-object is shown in Fig. 4(II). The different sub-objects
of the class are constructed separately and are connected to each other through addi-
tional pointer fields. For example, the dervL and baseT pointers connect the sub-
objects [B, 〈B,L〉] and [B, 〈B,L, T 〉]. �
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These auxiliary object hierarchy edges are utilized by CHROME to walk the object when
arbitration of inheritance related features is needed. As an example, consider casts,
where, instead of computing pointer offset adjustments, we follow the additional point-
ers in the representation of the B-object. Next, we present the source-to-source trans-
formations for various C++ constructs through examples.

Example 7 (Class Declarations). To facilitate the construction of the CHROME object
model, we add the following fields to every class C in the CHG: (1) a soid field that
is used to identify the sub-object that C represents, (2) a base pointer field and a derived
pointer for every immediate base and derived class of C, respectively. For the program
in Fig. 2, the classes are modified as follows (replicated multiple inheritance):

class T {int soid; L* dervL; R* dervR; int tf;}
class L {int soid; T* baseT; B* dervB; int lf;}
class R {int soid; T* baseT; B* dervB; int rf;}
class B {int soid; L* baseL; R* baseR; int bf;}

For the program in Fig. 3, classes L, and R are modified as shown above, and classes T
and B are modified as follows (shared multiple inheritance):

class T {int soid; L* dervL; R* dervR; B* dervB; int tf;}
class B {int soid; L* baseL; R* baseR; T* baseT; int bf;}

Note that pointers dervB and baseT are added because T is a shared base class of B.

Example 8 (Object Construction). Consider the statement “B* pb = new B()”,
where B is the class from Fig. 2. As a first step, all the sub-objects of the given class B
are allocated2 and the soid and base pointer fields are initialized:

// Create sub-objects
// (see Fig. 2)
B* pb = allocnew B();
L* pb_B_L = allocnew L();
R* pb_B_R = allocnew R();
T* pb_B_L_T = allocnew T();
T* pb_B_R_T = allocnew T();

// Set base pointer fields
pb->baseL = p_B_L;
pb->baseR = p_B_R;
pb->baseL->baseT = p_B_L_T;

pb->baseR->baseT = p_B_R_T;

// Set soid fields
pb->soid = SOID([B, 〈B〉]);
pb_B_L->soid = SOID([B, 〈B,L〉]);
pb_B_R->soid = SOID([B, 〈B,R〉]);
pb_B_L_T->soid=SOID([B, 〈B,L, T 〉]);
pb_B_R_T->soid=SOID([B, 〈B,R, T 〉]);

// Invoke the constructor for B
pb->B();

In addition to the above steps, all the constructors are modified to initialize the
derived pointer fields of every immediate base class and shared base class, and sub-
sequently, invoke their constructors. For example, the constructor for B is modified as
follows:

2 allocnew C() allocates memory for an object of type C on the heap. It should be noted
that we require that related calls to allocnew() either all succeed or the first one itself fails.
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B::B(B* this) {
this->baseL->dervB = this; this->baseL->L();
this->baseR->dervB = this; this->baseR->R();
. . .

}

Similarly, the constructors of T, L, and R are also modified. The invocation of the con-
structors of L and R (which in turn would invoke the constructor of T) ensures that the
sub-objects of B are initialized properly. �

Note that while the number of sub-object types grows exponentially with the size
of the class inheritance graph, the actual number of sub-object instances only grows
linearly with the size of the class inheritance graph. Therefore, we have not seen the
increase in the number of sub-objects affect the scalability of the analysis (see Sect. 5).

Example 9 (Cast and Field Accesses). Consider a cast statement “tgt =(T*)src”,
where tgt is of type T and src is of type S. First, all the sub-objects that src may
legally point-to at runtime are determined. For every such sub-object σ, the access path
ρ starting from src consisting of a sequence of derived and base pointer fields to reach
the required T-sub-object is computed. Finally, a switch..case statement is gener-
ated with a case for every sub-object and access path pair 〈σ, ρ〉 that updates tgt.

Fig. 5 shows a few examples. Consider the translation for the cast state-
ment “pb = (B*) pt”. The sub-objects that pt may point-to at runtime are
[B, 〈B,L, T 〉] and [B, 〈B,R, T 〉] (see Fig. 2(c)). The corresponding access paths are
pt->dervL->dervB and pt->dervR->dervB, which are assigned to the target
pointer pb in the respective cases. Note that if pt does not point to either of the two
sub-objects, the target pointer pb is set to NULL, which mimics the semantics of a
dynamic cast.

The cast statement “pr = (R*)pt” in Fig. 5 demonstrates the case where the
access path consists of derived pointer fields followed by base pointer fields. The trans-
lation is shown in Fig. 5 (after grouping common cases). Note that there is no case
for [L, 〈L, T 〉] because (L ≮sr R), and therefore, [L, 〈L, T 〉] will not be in the set of
sub-objects that pt may legally point to at runtime.

Consider a field access tgt = src->S::m. The statement is transformed in
CHROME by considering it as tgt = ((S*)src)->S::m. The idea is to treat a
field access as equivalent to the code sequence consisting of a cast of src to (S*) fol-
lowed by the field access. Basically, the access path from src is generated and then the
member is accessed. Fig. 5 shows the translation for z = pl->tf. (A similar strategy
is used for member calls without dynamic dispatch.) �

Example 10 (Virtual-function calls). For p->C::foo(p,. . .), where C::foo is a
virtual function, all possible sub-objects that p could be pointing to at runtime is de-
termined. Finally, a switch..case statement is generated with a case for each
sub-object. The actual member function that would be invoked at run-time is called in
each case of the switch statement. Note that, in each case, the access paths need to be
adjusted accordingly for p. Consider the class hierarchy in Fig. 2. Suppose that class
T defines a virtual function vfunc and class L overrides it. The virtual-function call
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// Downcast: pb = (B*)pt
// (B* pb, T* pt)
switch(pt->soid) {

case SOID([B, 〈B,L, T 〉]):
pb = pt->dervL->dervB;
break;

case SOID([B, 〈B,R, T 〉]):
pb = pt->dervR->dervB;
break;

default:
pb = NULL;

}

// Cast: pr = (R*)pt
// (R* pr, T* pt)
switch(pt->soid) {

case SOID([R, 〈R, T 〉]):
case SOID([B, 〈B,R, T 〉]):
pr = pt->dervR;
break;

case SOID([B, 〈B,L, T 〉]):
pr =
pt->dervL->dervB->baseR;

break;
default: pr = NULL;

}

// Upcast: pt = (T*)pl
// (T* pt, L* pl)
switch(pl->soid) {

case SOID([B, 〈B,L〉]):
case SOID([L, 〈L〉]):
pt = pl->baseT;
break;

default: pt = NULL;
}

// Field access: z = pl->tf
// (int z, L* pl)
switch(pl->soid) {

case SOID([B, 〈B,L〉]):
case SOID([L, 〈L〉]):
z = pl->baseT->tf;
break;

default: assert(false);
}

Fig. 5: CHROME translation for casts and field accesses with the class hierarchy in Fig. 2.

pt->vfunc() is translated as shown in Fig. 6. Note that if pt points to a sub-object
inherited from L, L::vfunc is invoked. �

switch(pt->soid) {
case SOID([B, 〈B,L, T 〉]):
case SOID([L, 〈L, T 〉]):

pt->dervL->
L::vfunc(pt->dervL);

break;
case SOID([B, 〈B,R, T 〉]):
case SOID([T, 〈T 〉]):

pt->T::vfunc(pt);
break;

default: assert(false);
}

Fig. 6: CHROME translation for a virtual-
function call.

Special Handling. It is easy to adapt the
transformations described so far to the
other constructs in the C++0x standard
except for the following cases that re-
quire special attention. (1) For virtual-
base classes, the CHROME transforma-
tions ensure that the body of the con-
structor (or destructor) of a virtual base
class is only invoked once and it is al-
ways invoked from the constructor (or
destructor) of the most derived object.
(2) For virtual-function calls on an object
that is being constructed, the CHROME
lowering follows C++ semantics by treat-
ing the partially constructed object as
though it is an object of the type to which the constructor belongs. (3) At object assign-
ments, the CHROME lowering generates additional assignments that copies the sub-
objects associated with the source into the sub-objects associated with the target. (4)
Template classes and functions are instantiated. (5) Exceptional control-flow is made
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explicit for sound static analysis. We have presented an algorithm for transforming a
C++ program with exceptions into a semantically equivalent C++ program without ex-
ceptions elsewhere [26]. The exception-elimination transformations can be performed
in conjunction with the inheritance-elimination transformations described here.

Lowering without the soid field. For ease of presentation, the CHROME transforma-
tions presented so far used the soid field to determine valid paths in the sub-object
graph. However, we can often omit the soid field because the auxiliary base class and
derived class pointers themselves encode valid paths in the sub-object model; invalid
paths are indicated by NULL values for the base class and derived class pointer fields.
For example, the downcast in Fig. 5 can be translated without the soid field as follows:

// Downcast: pb = (B*)pt
// (B* pb, T* pt)
if (pt->dervR && pt->dervR->dervB) {
pb = pt->dervR->dervB;

} else if (pt->dervL && pt->dervL->dervB) {
pb = pt->dervL->dervB;

} else {
pb = NULL;

}

The advantage of using the auxiliary pointers directly is that subsequent static analysis
algorithms need not maintain the relationship between the value of the soid field and
the auxiliary base and derived class pointers.

Correctness of the transformations. Here we provide the intuition as to why the trans-
formations are semantics preserving. At object construction, it is easy to see that all
the sub-objects are allocated and the fields are initialized by the chaining of constructor
calls. After a cast statement, the target of a cast operation has to point to the relevant sub-
object. To achieve this, compilers generate code that adjusts the pointer appropriately at
runtime. The CHROME transformations mimic this behavior by generating access paths
consisting of derived and base pointer fields. Because the derived and base pointer fields
are set up to point to the correct sub-objects at object construction, the lowered code
mimics the behavior of casts correctly. Similarly, at a virtual-function call, the appro-
priate member function is invoked based on the runtime type stored in the soid field,
which is the expected behavior.

Because CHROME uses a different object layout, the memory behavior of a
CHROME-lowered program is different from the original program. This is not an issue
for the correctness of the transformations unless the program modifies the objects us-
ing low-level primitives like memset. However, programmers typically do not perform
low-level operations like memset on objects (like they sometimes do in C) that use in-
heritance because it is highly compiler-dependent and can mess up the virtual-function
pointer tables and other compiler-level data structures. Because we only change the
objects that use inheritance, such low-level operations do not pose a problem for the
semantic correctness of our transformations assuming compiler-independent code.
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Table 1: Characteristics of the C++ benchmarks. LOC: the number of non-empty lines after
preprocessing. #class: the number of classes from the standard libraries (lib) and from the appli-
cation (app). #mult: number of classes with multiple inheritance in standard libraries (lib) and
the actual application (app). #VPTR: number of accesses to the virtual-function pointer table.
#FPTR: number of function-pointer calls. #T: time taken for CHROME-lowering in seconds.

C++ program Lowered C Program
COMPILER CHROME

#class #mult
LOC #T lib app lib app LOC #VPTR #FPTR LOC #FPTR

coldet (1.2) 5.1K 1.7s 32 61 0 4 7.0K 48 31 14.4K 0
mailutils (2.1) 8.3K 2.1s 14 106 0 0 8.7K 2 0 17.1K 0
tinyxml (2.5.3) 4.9K 2.0s 0 59 0 0 12.5K 110 79 21.6K 0
id3lib (3.8.3) 14.5K 8.0s 75 106 6 0 35.7K 632 499 77.7K 0
cppcheck (1.4.3) 30.9K 30s 148 104 7 5 99.9K 217 71 165.0K 0

5 Implementation and Experiments

We have implemented the ideas described in the paper in an in-house extension of
CIL [24] called CILpp. The C++ front-end for CILpp is based on EDG [15], and
therefore, handles all aspects of the C++0x standard. For the experiments, we translated
the given C++ program into an equivalent C program using (1) a standard compiler-
based lowering mechanism, and (2) the lowering mechanism based on the CHROME
object model. Henceforth, we refer to the C program obtained from compiler-based
lowering as COMPILER-lowered C program, and the one obtained from CHROME-based
lowering as CHROME-lowered C program.

Tab. 1 shows the characteristics of the open source benchmarks used for our exper-
iments. The open source library coldet (v1.2) implements collision detection algo-
rithms and is often used in game programming. GNU mailutils (v1.2) is a collection
of mail utilities, servers, and clients. TinyXML (v2.5.3) is a light-weight XML parser
which is widely used in open source and commercial products. The open source library
id3lib (v3.8.3) is used for reading, writing, and manipulating ID3v1 and ID3v2 tags,
which is the metadata format for MP3 audio files. cppcheck (v1.4.3) is a tool for
static C/C++ code analysis3 that uses a library of problematic code patterns to detect
common errors. For the experiments, the sources relevant to the project were merged
into a single C++ file and preprocessed. The preprocessed file was lowered using the
compiler-based and CHROME-based lowering mechanisms.

5.1 Complexity of the lowered C programs

The column labeled “LOC” in Tab. 1 refers to the number of non-empty lines of code
in the merged file after preprocessing. The COMPILER-lowered C program is up to 3

3 We also ran cppcheck on our set of benchmarks, but it did not find any of bugs reported in
Sect. 5.2. The patterns used by cppcheck are not sufficient enough to find bugs that deep
static analyzers are capable of detecting.
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times larger than the original C++. For the mailutils example, which has no virtual-
function calls, the size of the COMPILER-lowered program is roughly the same as the
original C++ program. This suggests that the extra statements generated by compiler-
based lowering mostly relate to the setup and access of virtual-function pointer tables.
The CHROME-lowered C program is roughly three to five times the size of the orig-
inal C++ program, and is roughly twice that of the COMPILER-lowered C program.
The difference in the sizes between COMPILER-based and CHROME-based lowering
is mostly due to switch..case statements generated by the CHROME transforma-
tions. Even though the COMPILER-lowered programs are smaller than the CHROME-
lowered programs, COMPILER-lowered programs contain operations that are hard for
a static analyzer to reason about, such as calls via function pointers and accesses to
virtual-function pointer tables. The column labeled “#FPTR” shows the number of
calls through function pointers, and the column labeled “#VPTR” shows the number
of accesses to virtual-function pointer tables. The function pointer calls in COMPILER-
lowered program correspond to the virtual-function calls in the original C++ pro-
gram. The CHROME-lowered programs do not have calls via function pointers because
CHROME-based transformations do not use function pointers for virtual-function calls.
Note that the number of accesses to a virtual-function pointer table is generally more
than the number of calls via function pointers, which indicates that virtual-function
pointer tables are also used for purposes other than dispatching virtual-function calls.

5.2 Effectiveness of Lowering for Software Verification

Table 2: Results of memory leak and
pointer validity checker using F-SOFT

on the lowered programs. #N: the num-
ber of NULL-pointer dereferences.
#M: the number of memory leaks. The
number in parenthesis shows the num-
ber of real bugs. The time limit was set
to 20 minutes for each function.

COMPILER CHROME

#N #M #N #M
coldet 0 0 5(2) 0
mailutils 0 0 0 0
tinyxml 3(0) 0 0 2(0)
id3lib 4(3) 1(1) 6(5) 6(1)
cppcheck 1(1) 0 3(2) 1(0)

For this experiment, we analyzed the COMPILER-
lowered and CHROME-lowered programs using
F-SOFT [18]. F-SOFT is a tool for finding bugs
in C programs, and uses a combination of ab-
stract interpretation and model checking to find
common programming mistakes, such as NULL-
pointer dereferences, memory leaks, buffer over-
runs, and so on. Given a C program, F-SOFT sys-
tematically instruments the program in such a way
that an assertion is triggered whenever a safety
property is violated. For example, at every deref-
erence of a pointer, the program is instrumented
to trigger an assertion if the pointer is NULL. An
abstract interpreter [12] is used as a proof engine
in F-SOFT. The abstract interpreter computes in-
variants that can be used to prove that certain as-
sertions can never be reached. Our abstract inter-
preter is inter-procedural, flow and context sensi-
tive. It is built in a domain-independent and extensible fashion, allowing for various
abstract domains such as constants, intervals [11], octagons [22], symbolic ranges [31]
and polyhedra [14]. These domains are applied in increasing order of complexity. After
each analysis is run, the assertions that are proved to be unreachable are removed and
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const uchar* ID3_FieldImpl::GetRawBinary() const
{
const uchar* data = NULL;
if (this->GetType() == ID3FTY_BINARY) {
data = _binary.data();

}
return data;

}
void ID3_FieldImpl::RenderBinary(ID3_Writer& writer)
{
writer.writeChars(this->GetRawBinary(),

this->Size());
}

Fig. 7: NULL pointer dereference in id3lib.

the program is simplified by constant propagation and slicing. After abstract interpreta-
tion, the remaining properties are checked by a SAT-based bounded model checker. If
the model checker finds any violations, they are reported to the user along with a witness
trace. For the sake of usability, F-SOFT does not report sound analysis results, and uses
heuristics to identify patterns that commonly result in false warnings and eliminates
them.

Tab. 2 summarizes the results of a pointer-validity checker and a memory-leak
checker in F-SOFT, where the number of witnesses reported by the model checker is
presented along with the number of real bugs reported in parenthesis. The time limit was
set to 20 minutes for each function. It should be noted that the lowering techniques pro-
duce entirely different (but semantically equivalent) programs. Therefore, the number
of properties in the CHROME-lowered program is different from the number of prop-
erties in the COMPILER-lowered program. In summary, F-SOFT found a total of ten
real bugs, of which five were found only when F-SOFT analyzed the CHROME-lowered
program. Note, that all of these bugs were previously unknown. Finally, we note that
all witnesses found using the COMPILER-lowered were also found by F-SOFT when
analyzing CHROME-lowered program.

In the following, we highlight a few bugs that were found using the CHROME-
lowered C program. For the CHROME-lowered programs, F-SOFT reported a total of
14 NULL-pointer dereference witnesses of which 9 were found to be real bugs.
NULL-pointer dereference in virtual-function calls. Consider the code snippet from
id3lib shown in Fig. 7. It is possible to dereference a NULL pointer as follows:
the body of writeChars method (not shown) assumes that the first argument to
writeChars is never NULL, but GetRawBinary method may return NULL. The
class hierarchy in id3lib is not trivial: ID3 FieldImpl is derived from ID Field
and ID3 Writer is a base class for 9 derived classes of which 7 are immediate
derived classes. Further, all the methods invocations in Fig. 7 are virtual. When an-
alyzing the CHROME-lowered C program, F-SOFT presents a witness that invokes
RenderBinary with an object of type ID3 FieldImpl for the this pointer
and an object of type UnsyncedWriter for the reference parameter writer, fol-
lowed by a call to the method UnsyncedWriter::writeChars, where the NULL
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Table 3: Effectiveness of CHROME in CBMC. C++ features are as follows: inheritance (INH),
multiple inheritance (MI), dynamic cast (DC), and virtual functions (VF). Results are as follows:
false positives (FP), false negative (FN), front-end failure (FF), and OK (

√
).

C++ Features CBMC CBMC F-SOFT

INH MI DC VF goto-cc COMPILER CHROME COMPILER CHROME

P1
√

FP
√ √

FN
√

P2
√ √

FF
√ √

FN
√

P3
√ √

FN FN
√

FN
√

P4
√ √ √

FN
√

FN
√

P5
√ √ √

FN FN
√

FN
√

P6
√ √ √ √

FF FN
√

FN
√

pointer dereference occurs. This bug was not found when the COMPILER-lowered code
is analyzed by F-SOFT because of the use of a virtual-function pointer table at virtual-
function calls.
Interprocedural NULL pointer dereferences. The analysis also discovered four more
scenarios where a NULL pointer dereference may occur in id3lib. These are related
to methods that return NULL pointers instead of valid C-strings under certain error con-
ditions. However, at certain call-sites to these methods, the returned C-string is passed
on to string manipulation functions such as strcmp without checking if the returned
string is NULL, thereby potentially causing segmentation faults. In addition, F-SOFT
found four bugs of a similar kind in coldet and cppcheck.

Finally, in the TiXmlComment::Parse method of the TinyXML project, F-
SOFT reported a NULL-pointer dereference. The NULL pointer dereference occurs
when the input string to TiXmlComment::Parse is empty. However, from further
investigation , it seems unlikely that this function will be called using an empty string.
Memory Leaks. When analyzing the CHROME-lowered program for memory leaks, it
reported 9 warnings, of which 1 was a real memory leak. The memory leak happens
in a method named convert i in file utils.cc of id3lib. F-SOFT reported this
leak for the COMPILER-lowered program also.

5.3 Applicability in other verification tools

In addition to using F-SOFT, we also wanted to investigate the applicability of our
lowering in other verification tools. For this experiment, we created a collection of
microbenchmarks [23] that exercises various aspects of C++. Each program has two
assertions of which one always fails and the other always succeeds at runtime. For
each benchmark, we generated the COMPILER-lowered and CHROME-lowered pro-
grams and analyzed them using the CBMC verfication tool [8]. The CBMC suite uses
the goto-cc C++ front-end to generate an intermediate representation for analysis.

Tab. 3 shows the results of our experiments. The column labeled goto-cc shows
the results of running CBMC directly on the C++ program. A false negative refers to
the case where the tool does not report the failing assertion. A false positive refers
to the case where the tool reports an error for the succeeding assertion. As the table
shows CBMC with goto-cc does not perform well when complex C++ features such
as multiple inheritance and dynamic casts are used. It generates a false positive or a
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false negative in many cases. The results highlight how difficult and error prone it is
to encode C++ semantics in program analyzers. When CBMC is used to analyze the
COMPILER-lowered program, it generates false negatives in many cases.

On the other hand, when CBMC is used to analyze the CHROME-lowered program,
it does not generate any false reports. (F-SOFT also performs well when a CHROME-
lowered program is analyzed.) This points to the effectiveness of using the CHROME
transformations even in other verification tools.

6 Related Work

The sub-object formalism presented by Rossie and Friedman forms the basis of our
CHROME object model transformations [30]. Ramalingam and Srinivasan present a
member lookup algorithm for C++ [28] which operates directly on the class hierar-
chy graph (CHG) instead of the sub-object graph, which may be exponential in the
size of the CHG. The issue of member lookup is orthogonal, but complementary, to the
problem of translating a C++ program with inheritance into a semantically equivalent
program without inheritance. Based on the Rossie-Friedman model, a number of class
hierarchy transformations have also been proposed which preserve the program seman-
tics, e.g., by slicing class hierarchies in libraries according to their clients for producing
optimized code [38].

Various approaches formalize the object layout in C++ to study space overhead
and performance aspects of object layouts [35, 36], and perform formal verification
of object layouts [5, 29, 39]. These formalisms are geared towards devising memory
efficient layouts and the correctness of the layout algorithms. In contrast, the goal of
CHROME is to embed the object model into the program to make it more amenable to
static analysis. However, such formalisms are complementary to our approach and may
be used to establish the correctness of CHROME transformations.

Another work that closely relates to this paper is the LLVM compiler frame-
work [19]. The LLVM framework translates a given C++ program into a low-level three
address code. Unlike our lowering algorithm, LLVM algorithm uses virtual function ta-
bles and runtime libraries during lowering, and therefore, produces code that is not very
amenable for precise program analysis.

The ROSE compiler front-end [27] and Clang static analyzer [6] are other popular
front-ends that generate an Intermediate Representation (IR) for C++ programs. These
front-ends support all C++ language features. However, the IR produced by these front-
ends still contain complex C++ features such as inheritance and casts. Therefore, every
analysis that uses their IR has to deal with inheritance and casts. On the other hand,
the source-to-source transformations presented in this paper eliminate complex C++
features, thereby making the implementation of subsequent analysis easier. The tech-
niques presented here may be used to simplify the IRs generated by ROSE and Clang.

A combination of the notions of delegation [21] (instantiating additional object
fields and forwarding method calls to them) and interfaces has been used [37] to sim-
ulate multiple inheritance in languages. However, these methods do not delve into the
complexities of C++ object model, e.g., handling shared and replicated inheritance,
casting, etc. The CHROME transformations, in contrast, handle these features precisely.
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Chen [5] proposed a typed intermediate language (IL) and a method to compile
multiple inheritance into the language. The IL, however, is quite mathematical in nature
and dedicated analyses must be designed for the IL. In contrast, our target language is
(a subset of) C++ itself, and hence, the target program is immediately amenable to
conventional static analysis.

Finally, there is a vast literature on analysis (static or dynamic) of object-oriented
programs, mostly focused on Java programs [20]. In particular, Chandra et al. proposed
directed call graph construction [4] for Java programs to handle the explosion in the
number of potential virtual method calls, by interleaving call graph construction with
backward symbolic analysis.

7 Conclusions

In this paper, we presented an algorithm to translate a C++ program with inheritance
into a C++ program without inheritance using a representation of sub-objects called
CHROME. We also showed the effectiveness of the CHROME lowering on program anal-
ysis applications such as software model checking. The C program obtained using the
CHROME-based transformations enabled better results than the C program obtained
from a standard compiler-based lowering algorithm. We found a total of ten previously
unknown bugs, of which five were only found due to the precise modeling of objects
using CHROME. The results are quite encouraging and validates that our CHROME-
lowered code is better suited for program analysis.
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