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Abstract. Strings are commonly used in a large variety of software. And
yet, they are a common source of bugs involving invalid memory accesses
arising due to misuses of the string manipulation API. These bugs are
often remotely exploitable, leading to severe consequences. Therefore,
the static detection of invalid memory accesses due to string manipula-
tions has received much attention, especially for C programs using the
standard C library functions. More recently, software development is in-
creasingly being performed in object-oriented languages such as C++
and Java. However, the need to interact with legacy C code and C-based
system-level APIs often necessitates the use of a mixed programming
paradigm that combines features of high-level object-oriented constructs
with calls to standard C library functions. While such programs are com-
monplace, there has been little research on static analysis of such code.
We present heap-aware memory models for C+-+ programs, with an em-
phasis on modeling features such as dynamically allocated memory, use
of null-terminated buffers as strings, C+-+ standard template library
(STL) classes and interactions between these features. We use standard
verification tools such as abstract interpretation and model checking to
verify properties over these models to find potential bugs. Our tool can
find several previously unknown bugs in open-source projects. These bugs
are primarily due to the intricate C+-+ programming model and subtle
interactions with legacy C string functions.

1 Introduction

Buffer overflows are common in systems code. They can lead to memory cor-
ruption and application crashes. They are particularly dangerous if they can be
exploited by malicious users to deny service by crashing a system or escalate
privileges remotely. A large number of overflows are present in deployed com-
mercial as well as open-source software [18]. A significant volume of research on
buffer overflow prevention has focused on the detection of overflows in C code.
Software development teams have shifted their development from C to object-
oriented languages including C++ and Java. The benefits of using an object-
oriented language include reusability, better maintainability, encapsulation and



the use of inheritance. In particular, C++ is often chosen due to its ability to
interact with legacy C-based systems, including system-level C libraries. Thus,
development in C++ often necessitates a mixed programming style combining
object-oriented constructs with lower-level C code. Whereas a large volume of
work on verification has focused on C programs, there has been comparatively
little work on the verification of C++ programs. The modeling of objects in the
heap is a key component of such verification. In this paper, we present heap-aware
static analysis techniques that can verify memory safety of C/C++ programs.
Our approach focuses on the modeling of strings in C/C++ and buffer overflow
errors due to the interaction and misuse of string manipulation functions.

class Object

{

A /* Returns object not ref. */

B: std::string section_name (unsigned int shndx)
C { return this->do_section_name (shndx); }

}s
class Relobj : public Object { ... } ;

1: woid Icf::find_identical_sections(
2: const Input_objects* input_objects,Symbol_table* symtab){

4: for (Input_objects::Relobj_iterator p =
input_objects ->relobj_begin ();

p !'= input_objects->relobj_end(); p++) {
/* (*p) is of type RelObj* */
6: const char* section_name=(*p)->section_name (i).c_str();
/*(*p)->section_name (.) resolved to Object::section_name () */
7: if ( !'is_section_foldable_candidate(section_name) )

/* invalid use */

Fig. 1. Motivating example from GNU binutils v2.21.

Motivating example. A typical “interaction bug” is shown in Figure[Il The
code snippet is taken from the gold project, part of the GNU binutils (binary
utilities) package (v2.21). Gold is a linker that is more efficient for large C++
programs than the standard GNU linker. For convenience, we have added labels
to denote line numbers of interest. Consider the call to c_str () in line 6 of the
function find_identical_sections. The call (*p)->section_name(i) creates
a temporary object (see labels A-C in class Object). The call to the c_str()
method thus obtains a pointer to a C string, pointing into the temporary object.



However, the subsequent uses of that string, stored in the variable section_name,
are invalid. The temporary object (including the pointed to C string) is destroyed
immediately following the call to c_str (). Under certain conditions the freed
memory may be re-used, leading to segmentation fault or memory corruption.
Thus, the call to is_section_foldable_candidate(), and further uses of the
variable not shown here, produce unexpected behavior.

This example shows some typical C++ code. Note that just considering the
call to c_str() is not enough to find this bug. If Object::section_name()
(lines A-C) had returned a reference, this use of c_str() would likely have been
legal. Due to the hidden side effects in C++ and the interaction with legacy
C APIs, such bugs are easy to commit and hard to find. Furthermore, the bug
in binutils had gone unnoticed for at least a year in spite of rigorous testing
(the bug was introduced before the release of v2.20, which was officially released
in October 2009). It is likely that under normal runtime deployment or during
unit testing, the pointer assigned to section_name still contains the original
string even after it is destroyed. However, under large resource constraints, this
bug may manifest itself likely through a segmentation fault upon a later use
of section_name. Finally, note that a static analysis needs to handle numerous
C—++ specific issues including STL classes, complex inheritance, and iterators.

Our Approach. Given a program and the properties to check, we use an
abstraction to model the memory used by arrays, pointers, and strings. The
memory model abstraction only tracks the attributes and operations that are
relevant to the properties under consideration. We focus on providing precise
and scalable memory model for the usage of C and C++ strings. In particular,
we address the intricate interplay between C and C++ strings.

Instead of providing a universal memory model, we partition the set of poten-
tial bugs into various classes, and use different models for the different classes.
Tailoring the memory models to the class of bugs makes the analysis and verifi-
cation more scalable. For instance, while checking for NULL-pointer dereferences
and use-after-free bugs, we use an abstraction that only tracks the status of the
pointer, and does not keep track of buffer sizes and string lengths. On the other
hand, we use a more precise analysis model that keeps track of allocated memory
regions and string lengths for checking buffer overflows.

One particular distinguishing feature of our memory models is that we pro-
vide a wnified framework that addresses correct usage of C-based strings, the
C++ STL string class, as well as the interaction between the C++ string class
and C strings through conversions from one to the other. Whereas heap aware
models for C programs have been well studied [T0/T9120122/26]30], our model
handles C++ objects including memory allocation using new/delete, the string
class in STL and the interaction of these features in C++-. To deal with the inter-
action of C and C++ strings, we introduce a notion of non-transferable ownership
of a C-string. We utilize this ownership notion to find dangling pointer accesses
of C-strings that were obtained through a conversion from a C++ string.

The memory models are weaved into the program under consideration and is
then verified using various static analysis and model checking techniques. First,



we employ abstract interpretation [16] to prove properties using a variety of nu-
merical abstract domains [I517I28]. The proved properties are eliminated, which
enables us to simplify the model of the program. Then, we use a model checker,
in particular a bit-accurate SAT-based bounded model checker [7/14], to find
proofs and violations for the remaining properties. The model checker outputs
concrete witnesses that demonstrate (a) the path taken through the program to
produce the violation and (b) concrete values for the program variables.
The major contributions of this paper are as follows:

[ We present sophisticated, yet scalable, heap-aware memory models for ana-
lyzing overflow properties of C and C++ programs that use features includ-
ing arrays, strings, pointer arithmetic, dynamic allocation, multiple inheri-
tance, exceptions, casting, and standard library usage.

[—Qur approach tackles the interaction of C and C++ strings, thus enabling
our tool to discover subtle bugs in the interaction between the different
string kinds. We separate the checks into two classes: a pointer-validity-based
checking class and a string-length-based checking class. We also introduce a
notion of non-transferable ownership or origination of a C-string for strings
obtained through conversion from the C++ string class.

[We implemented our models and demonstrate their usefulness on real code,
where we found previously unknown bugs in open-source software. To find
these bugs, our tool uses abstract interpretation for proving properties and
bit-precise model checking for finding concrete witness traces.

2 Preliminaries

We provide an overview of our analysis framework for C, and present a taxonomy
of bugs related to the usage of C++ strings. This taxonomy will be used to guide
our subsequent modeling of the string class and its interaction with C strings.

2.1 Overview of Analysis Framework

In the past, we have developed a general analysis framework for C programs
called F-SOFT [26]. It uses both abstract interpretation and bounded model
checking to find bugs in the source code under analysis. F-SOFT contains a
number of “checkers” for various memory safety issues. These include a mem-
ory leak checker (MLC), a pointer validity checker (PVC) and an array buffer
overflow checker (ABC). These checkers use different levels of abstraction, and
thus, explore different trade-offs between scalability and their ability to reason
about intricate pointer accesses. For example, PVC targets bugs such as use-
after-free, accesses of a NULL pointer, freeing of a constant string, etc. On the
other hand, ABC targets violations that require reasoning about sizes of arrays
and strings, and whether strings are null-terminated. To improve scalability of
ABC, properties that could be checked using PVC are not considered by ABC.
In this paper, we omit discussion of other checkers available in our tool for sake



of brevity. These include checkers for the use of uninitialized memory (UUM)
and an exception analysis (EXC) that computes exceptional control flow paths in
C++ programs, for example. The EXC checker can also find uncaught exception
violations [32]. Ultimately, all checkers generate a model of the program with
embedded properties that can be checked by the subsequent analysis engines.

Model Abstract Model
Construction _) Interpreter | Checker [ ] ¢l
S 7 TN\

proofs var. range proofs unresolved

Fig. 2. Main analysis components

Figure [2 depicts the major analysis modules used in our tool. The overall
flow is geared towards maximizing the number of property proofs and concrete
witnesses of property violations. After model construction for a given program,
we analyze the model using abstract interpretation in an attempt to prove that
assertions are never violated. Assertions that can be proved safe are removed
from the model, and the final model is sliced based on the checks that remain
unresolved. In practice, the sliced model is considerably smaller than the origi-
nal. The model is then analyzed by a series of model-checking engines, including
a SAT-based bounded model checker. At the end of model checking, we obtain
concrete traces that demonstrate property violations in the model. These viola-
tions are mapped back to the source code and displayed using an HTML-based
interface or a programming environment such as Eclipse(tm). We briefly describe
the major components in the flow:

Abstract Interpreter Abstract interpretation [16] is used in our flow as
the main proof engine. Our abstract interpreter is inter-procedural, flow- and
context-sensitive. Currently, we have implementations of abstract domains such
as constants, intervals [13], octagons [29], and polyhedra [17]. These domains are
organized in increasing order of complexity. After each analysis is run, the proved
properties are removed and the model is simplified using slicing. The resulting
model is then analyzed by a more complex domain.

Model Checker The model checker creates a finite state machine model
of the simplified program after abstract interpretation. Each integer variable is
treated as a 32 bit entity, character variables as 8 bits and so on. However, the
range information provided by the abstract interpreter for program variables is
used to reduce the number of bits significantly. We use bit-accurate representa-
tions of all operators, ensuring that arithmetic overflows are modeled faithfully.

The model checker verifies the symbolic model for the reachability of the
embedded properties. We primarily use SAT-based bounded model checking [T].
This technique unrolls the program upto some depth d > 0 and searches for the
presence of a bug at that depth by compilation into a SAT problem. The depth



d is increased iteratively until a bug is found or resources run out. The model
checker generates a counterexample (witness trace) which vastly simplifies the
user inspection and evaluation of the error.

2.2 C+H+ String Class Usage Issues

C++ STL strings provide a safer alternative to developers when compared to
C strings. However, as shown in the motivating example (see Figure [), mis-
takes are still easy to make, especially in the interaction with C-based standard
library functions. The string class contains a number of built-in features such
as modification routines (append, replace, etc), operations such as substring
generation, iterators, and others. Additionally, the methods c_str () and data()
can be called to obtain a buffer containing a C string, which is null-terminated
for c_str() and not null-terminated for data(). Our description focuses on
the c_str() method, but is applicable to data() as well. Moreover, the data ()
method is even more error-prone due to it returning a non null-terminated string.
We classify common bugs related to the use of strings below:

(1) Generic bugs: Memory leaks, uncaught exceptions (eg., std: :bad_alloc) [32].

(2) String class manipulation errors:
(a) Out of bounds access. std: :out_of_range exception thrown by the at
and operator [] methods of the string class.

(b) Use of a string object after it has been destroyed.

(¢) Use of a stale string iterator.

Interaction between C and C-++ strings

(a) Access of C-string returned by string::c_str(), after the correspond-
ing C++ object is destroyed.

(b) Certain C library functions called on strings obtained through c_str().

(c) Manipulation of a C-string returned by string::c_str().

(d) C-based buffer overflows on C-string obtained through string: :c_str().

(3)

3 Program Modeling and Memory Checkers

We now discuss the memory models used in our approach. Our approach sup-
ports a hierarchy of memory models ranging from models that simply track few
bits of allocation status for each pointer to the full-fledged tracking of allocated
bounds, string sizes, region aliasing of arrays, and so on. We describe two models
within this spectrum: the pointer validity model that uses simple pointer type
states, and the pointer bounds model that attempts to track allocated bounds,
positions of various sentinels, and contents of cells accurately.

3.1 Pointer Validity Model

The validity model instruments for each pointer a validity status ptrVal(p) to
denote the type of the location pointed-to in memory. These values include null



indicating a null pointer; invalid for a non-NULL pointer whose dereference may
cause a segmentation violation; static for pointers to global variables, arrays and
static variables; stack for pointers to local variables, alloca calls, local arrays,
formal arguments; heap for pointers to dynamically allocated memory on the
heap; and code for code sections, such as string constants.

The validity model does not track addresses of pointers. It also ignores ad-
dress arithmetic. A pointer expression p+i has the same validity status as its base
pointer p. A dereference *p yields an assertion check that is violated if ptrVal(p)
is null or invalid. Similarly, relevant checks are done for other operations. We
distinguish between null and invalid in order to allow delete NULL, which is
allowed per C++ standard, as well as optionally allow free(NULL), which is
handled gracefully by standard compilers such as gcc. Finally, note that it is
easy to extend this model to find invalid de-allocations, such as the case where
memory that was allocated using new is released using free. This can be ac-
complished by separating the validity status heap into sub-regions according to
their allocation method, such as heap — malloc, heap — new and heap — new]|].

3.2 Pointer Bounds Model

The bounds model tracks various attributes for each pointer, including allocation
sizes and sentinel positions, which subsumes information tracked by the validity
model. For a pointer p, the main modeling attributes are as follows (see Figure[3):

1. ptrLo(p), which corresponds to the base address of a memory region that p
currently points to;

2. ptrHi(p), which corresponds to the last address in the memory region cur-
rently pointed to by p that can be accessed without causing a buffer overflow;

3. strLen(p) which corresponds to the remaining string length of the pointer p,
which is the distance to the next null-termination symbol starting at p.

M+5

char *s=malloc(10); s g;‘ ‘ ‘ ‘ ‘ ‘ ’
if (!'s) exit(-1); SE— strLen(?)
strcpy (s, "FoVe00S") ; é\ @ ,,,,,,,
char *t= s+4; / ************ ( ;5;%'

Fig. 3. The memory model for the pointer bounds model after successfully executing
the four statements on the left-hand side: The successful allocation returns a pointer
to some new address M, and the lower bound addresses ptrLo(s) = ptrLo(¢t) = M. The
higher bound addresses are ptrHi(s) = ptrHi(¢) = M + 9. Finally, the string lengths are
determined using the size abstraction, namely strLen(s) = 7 and strLen(t) = 3. The
dotted memory region denotes out-of-bound memory regions for the pointers s and ¢.




For each pointer p, we track its “address”, and its bounds [ptrLo(p), ptrHi(p)],
representing the range of values of the pointer p such that p may be legally
dereferenced in our model. If p € [ptrLo(p), ptrHi(p)] then p[i] underflows iff
p+ i < ptrLo(p). Similarly, p[i] overflows iff p 4+ i > ptrHi(p).

Dynamic Allocation We assign bounds for dynamic allocations with the
help of a special counter pos(L) for each allocation site L in the code. It keeps
track of the maximum address currently allocated. Upon each call to a func-
tion such as p := malloc(n), our model assigns the variable pos(L) to p and
ptrLo(p). It increments pos(L) by n, and sets ptrHi(p) + 1 to this value.

C String Modeling Conventionally, strings in C are represented as an
array of characters followed by a special null-termination symbol. String library
functions such as strcat, and strcpy rely on their inputs to be properly null-
terminated and the allocated bounds to be large enough to contain the results.
We extend our model to check for such buffer overflows using a size abstraction
along the lines of CSSV [22]. The major differences are described in Section [6

For each character pointer p, we use an attribute strLen(p) to track the posi-
tion of the first null-terminator character starting from p. The updates to string
length can be derived along similar lines as those for the pointer bounds. For
instance, calls to the method strcat that append its second argument to the
first lead to assertion checks in terms of the pointer bounds and string lengths
that guarantee its safe execution. Next, the update to the strLen attribute of
the first argument is instrumented. Our approach currently has instrumentation
support for about 650 standard library functions. It provides support for parsing
constant format strings in order to model effects of functions such as sprintf.
We elide the details for lack of space and focus here on the modeling of C+-+
strings and their interaction with C.

4 Modeling the STL String Class

We now present a model for C++ strings that allows us to capture common bugs
arising from the misuse of STL strings. Note that, for the sake of brevity, we
omit the presentation of string iterator related issues in this paper. Furthermore,
we will not discuss issues due to uncaught exceptions when utilizing the C++
string class. Details on our exception handling can be found in [32].

As in Section Bl we separate verification into a light-weight pointer validity-
based checker and a more heavy-weight buffer overflow checker tracking accurate
string lengths using an extension of the pointer bounds model. Finally, it should
be noted that we model a wider class of C++ STL strings than alluded to so
far. For example, we also model the templated class std: :basic_string<T>, of
which std::stringis just a particular instantiation.

4.1 Pointer and String Object Validity

Section 3] introduced a memory model that focusses on validity of pointers.
Here, we extend it by introducing a new validity status that is used to model



| status || * | free |de1ete|delete[]|if—NULL| return | 0 |

null Y (%?) null| null null null null s
invalid Y Y Y Y s invalid Y
stack stack Y Y Y N/A invalid |invalid
global global Y Y Y N/A global Y
code YHon write Y Y Y N/A code Y
env. env. invalid |invalid| invalid null env. invalid
heap-malloc||heap-malloc| invalid Y Y N/A |heap-malloc| X
heap-new || heap-new X invalid Y N/A | heap-new Y
heap-new]] || heap-new]] K oY invalid | N/A | heap-new[] | X
ownerM. || "Fon write K Y o N/A | ownerM. Y

Table 1. Overview of pointer and string object validity model. This table shows the
effect of operations on different validity statuses. A potential error is marked using the
symbol X4 Upon error, the validity status changes to invalid. If the update is safe, the
table provides the resulting status after the client code operation. The entry N/A denotes
that a particular step is not possible in our model. Operation “*” denotes a pointer or
object read/write, “return” denotes the end of a functional scope, “if-NULL” denotes
a pointer equals null check, “7()” denotes a destructor call. Allocation (malloc, new),
initialization operations (constructor calls), and other details are omitted for brevity.

the interaction of C++ strings with C-based strings. We check most issues re-
lated to the interaction of C++ and C strings by developing an extended pointer
and string object validity checker rather than additionally burdening the pointer
bounds model. To do so, we model calls to string::c_str() such that they re-
turn C strings whose validity status is set to a new status that behaves roughly
like the code status, denoting constant strings. A key difference is that the owning
class instance, which returned the string in the first place, is allowed to manip-
ulate this string, while no manipulations are permissible for constant strings.

This naturally leads to a notion of ownership [912] of pointers that is a com-
mon programming idiom. Thus, we introduce a new status ownerMutable. Prior
work used transferable ownership models to find memory leaks in C++ code [23].
However, we only consider C-strings obtained from C++-strings. Thus, we limit
ourselves to a non-transferable ownership model, which tracks the relationship
between originating C++-string and owned C-string. This allows us to declare
such ownerMutable strings as stale (that is, invalid), when the originating C++
object that owns it is modified using a method call.

We summarize the pointer and string object validity checker in Table [ It
shows the effect of various operations in the client code on the defined validity
statuses. The handling of many operations including initialization, allocation,
destructor calls and so on are omitted from the table in order to avoid clutter.

Figure M shows a partial sketch of our custom string object validity model.
The internal assertion checks are represented as calls to a member function
isValid(operation), which can be thought of as utilizing the information in



class string { /* pointer and string object validity model */
private: char *p ;

publac:
string () {
p = new char[1]; /* assumed to not fail x/
}

string(const string &s) {
ASSERT (s.isValid (READ-OP));
p = new char[1]; /* assumed to not fail x/

}
“string () {

ASSERT (this.isValid (DESTRUCT)) ;
deletel] p;
}

string substr(size_t p=0,size_t n=MAX) const{
ASSERT (this.isValid (READ-0P);
return string() ;
}
void push_back (char c) {
ASSERT (this.isValid (WRITE-0OP));
deletel[] p ; /* used to invalidate stale pointers x/
p = new char[1] ; /* assumed to not fail x*/

}

const char *c_str() const {
ASSERT (this.isValid (READ-0P));
setValid (p, OWNER_MUTABLE) ;
return (const char *) p;
}
3

Fig. 4. Partial string object validity model sketch

Table [Tl The sketch shows the use of a setValid(void*,status) method that
can be thought of as setting the validity status for arbitrary pointers. The non-
const function push_back(c) shows how we invalidate C-strings that may have
been obtained through c_str() earlier. Finally, note that we separate the issue
of allocation failures through new from the string validity checking. As mentioned
in the comments, we assume that each new operation succeeds.

Ezxample 1. Figure Bl shows a simple C++ function that manipulates a C++
string and converts it to a C string. It proceeds to call strlen on this C string.
A variety of intermediate transformations are performed on the C++ source
code including transformations that make calls to constructors and destructors
explicit. FigureBlalso shows the result of this transformation for method cutLen,
which we call cutLenX. Note the use of a temporary variable as a result of
our transformation, which is initialized using the copy-constructor, and then



// Simple C++ string use

int cutLen(const string &s,size_t i,size_t n){
const char *str = s.substr(i,n).c_str();
return strlen(str);

}

// Simplified representation of cutlen
int cutLenX (const string &s,size_t i,size_t n){

const string tmp = string(s.substr(i,n)) ;
const char *str = tmp.c_str();
tmp . string() ; //also invalidates str!
return strlen(str);
}
Fig. 5. A simple example illustrating the interaction of C and C++ strings.
||stmt || &s |&tmp| str || ||stmt || &s | s.p | str ||
substr(.,.) stack| stack — initially stack|heap-new[]| —
c_str() stack| stack [ownerM. str=s.c_str() ||stack| ownerM. |ownerM.
tmp. “string()||stack|invalid| invalid s.pushback(’a’)||stack lheap-new][]| invalid
strlen(.) stack|invalid| X strlen(str) stack|heap-new I

(a) (b)

Fig. 6. (a) Updates to the validity status for the simplified code shown in Figure [
assuming that the input string s was initially allocated on the stack. The destruction
of the temporary object tmp.~string() also invalidates the pointer str through alias-
ing. (b) Updates to the validity status for another sequence of statements shown in
the column labeled stmt. The pushback operation first passes the required assertion,
then invalidates the pointer str, and finally resets the internal pointer s.p to a fresh
allocated region. The subsequent call to strlen(str) thus raises an error.

destroyed using an explicit call to “string(). The bug in the code can thus be
detected using the model of Figure @ (see Figure [l (a)).

4.2 Pointer and string bounds model

The array bounds model for C strings is extended by tracking the logical size
of each C++ string. This size is used to handle calls to string::c_str() and
string::data(). Therein, we create valid C strings of the appropriate string
length and allocation size, and null-termination status.

Figure [0 shows a simplified model for the c_str() method. Note that we
do not check whether the string object is valid during calls to c_str() in this
checker. These checks are already performed in the pointer validity model. Simi-
larly, we do not worry that this model leaks memory for calls to c_str () since it
is only used for ABC. It should be highlighted that due to the use of the efficient
validity checker, we can simplify the model for the array bound checking model



class string { /* array bound model */
private: size_t size ;

publac:
const char *c_str comst {
char *res=new[size+1]; /* should not fail x*/
strLen(res)=size; /* thus null -terminated */

return (const char *) res;
}
};

Fig. 7. Array bound model for the string::c_str method.

to only consider the size abstraction. Issues that are related to failed allocations
are, as mentioned before, relegated to the special purpose exception checker.

5 Experiments

We have implemented our methods in an in-house extension of CIL [31] called
CILpp, which handles C++ programs. We present a number of experiments on
some C and C++ benchmarks, and describe some of the previously unknown
bugs in C++ programs discovered by our analysis.

The models described thus far are able to find a wide variety of memory
related issues in C/C++ source code. Since the focus of this paper is on the
modeling of the interaction of C and C++ strings, we first present experiments
that target only this particular aspect. To do so, we have performed experiments
on open-source software packages that contain such interactions. Our analysis
is performed in a scope-bounded fashion [5I25034]. A simple pre-processing tech-
nique is used to identify potential error sites. For the interaction analysis, these
are centered around calls to string library functions and error-prone functions
such as calls to the string::c_str() method. This enables us to choose a set
of objects and methods to be analyzed. We present a number of bugs that have
been uncovered by our experiments, thus far. As our tool is being improved, we
are applying our techniques to more open-source software.

Motivating example Recall the code fragment presented as Figure[lin Sec-
tion[Il The released version of the GNU binutils package at the time of the experi-
ments was v2.21 (official releases are available at [ftp.gnu.org/gnu/binutils),
which was released in December 2010. The bug described earlier was already
present in v2.20 released in October 2009. Our tool discovered the bug in March
2011. The developers of the gold package confirmed this bug. However, the de-
velopers have been aware of this bug internally about a month before our report.
A fix for this bug was finally released with v2.21.1 in June 2011.

Stale uses of c_str-created C-strings In our experiments, we found that
the issue of dangling pointer accesses due to stale uses of C++-to-C converted
strings is the main bug category of interest. We have found many incarnations


ftp.gnu.org/gnu/binutils

void I0::FixSlashes (char *str) {
for (uint8 i=0; i<=strlen(str); i++) {

if ((str[il==>\\" || str[il==>/’) &&
str[i+1]==2\0’) {
str[i] = ’\0°’ ; /* invalid write */
return ;
}
if (str[il == °\0’) return ;

}
}

void I0::FixPatches () {

FixSlashes ((char *)cfg->mysqlpath.c_str());
FixSlashes ((char *)cfg->wowpath.c_str());
}

Fig. 8. Invalid string manipulation

of this bug pattern in addition to the motivating example, which can be found
using the validity-based abstraction model.

We have observed the same issue in a variety of other open-source bench-
marks, including in unit tests for ICU4C (see [icu-project.org/apiref/icudc/),
which provides portable unicode handling capabilities for software globalization
requirements. Similarly, we noticed three uses of a dangling C-string pointer
obtained through string::c_str() in Mosh, a fast interpreter for Scheme as
specified in R6RS, which is the latest revision of the Scheme standard. After we
informed the developers of this actively maintained project about these three
dangling pointer violations, they have confirmed the issue and have fixed them
in the source repository (see http://bit.ly/gCdwva).

Manipulation of ownerMutable strings We also observed rare cases of
direct string manipulation of C-strings obtained through c_str(). As discussed
earlier, this is in explicit violation of the STL C++ string specification. Multiple
such scenarios occurred in the datatrap project, one of which is shown in Figure (8

Buffer overflows due to string conversions In our experiments, we have
also observed rare cases of potential buffer overflows using strings obtained from
a C++ string object. One such example is shown in Figure [@ which is from a
library that transliterates text between different representations. Note that this
warning awaits confirmation, since in our scope-bounded analysis we are not
aware of any global constraint on the maximum size of a string to be converted.

Erlang/OTP Case Study Erlang (see erlang.org) is a programming lan-
guage used to build massively scalable soft real-time systems with requirements
on high availability. Erlang’s runtime system has built-in support for concur-
rency, distribution and fault tolerance. OTP is a set of Erlang libraries pro-
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char *convert(comnst char *in, mode_t mode,
parse_func_t parse, output_func_t output) {
static char buf [4096];

std::ostringstream sout;

(xoutput) (tokens ,sout ,mode) ;

sout << ?\0°’ ;

std::strcpy (buf ,sout.str().c_str()); /* buffer overflow? x/
return buf;

Fig. 9. Potential buffer overflow

viding middle-ware to develop such systems. It includes a distributed database,
applications to interface towards other languages, debugging tools, etc.

We analyzed relevant C and C++ source code of the current Erlang/OTP
release R14B01 (December 2010). The Orber application is a CORBA compliant
Object Request Broker (ORB), which provides CORBA functionality in an Er-
lang environment. Essentially, the ORB channels communication or transactions
between nodes in a heterogeneous environment.

typedef std::stringstream STRINGSTREAM;
typedef std::stringbuf STRINGBUF ;
void InitialReference ::createIDR (
STRINGSTREAM& byte, long length) {
STRINGBUF *stringbuf ;
STRINGSTREAM string;
int i;
const char *c;
const char *bytestr = byte.str().c_str();
for(i = 0,c = bytestr; i<length; c++, i++){
b = *c; /* invalid access %/

}

delete bytestr ; /* invalid call to delete */
/* iorString is a member field */

iorString = (char *)string.str().c_str();

Fig. 10. Erlang/OTP Orber application code

Figure [I0 shows a part of the C++ source code for the InitialReference
class in Orber. The code generates a reference for an Interoperable Object Refer-
ence (IOR), which simplifies the initial reference access from C++. However, the



C++ interface contains a number of invalid uses of C-strings from a C++ string
object in the central createIOR method. Our analysis discovered the invalid
access inside the for-loop, and also reported the invalid call to delete.

We analyzed the complete C++ code inside the Orber module. As is typical
for C++, complexity of the analysis is increased due to standard header files.
While the Orber module only contained about 300 LOC, the effective LOC after
including the relevant headers is about 3k LOC. Our tool analyzed 7 functions of
interest, and reported only the above 2 witnesses using the pointer and string ob-
ject validity checker. The array bound checker did not find any witnesses in this
case study. For one of the functions, the analysis using abstract interpretation
and bounded model checking timed out (we limit the analysis for each function
to 10 minutes). Overall, for 14 function and checker pairs, our tool reported over
40 property proofs, and spent about 20 minutes for the analysis.

However, our tool did not report a third issue, where a dangling pointer is
assigned to the iorString member field. We discovered this issue when inspect-
ing neighboring code to reported warnings. This likely violation of the object
invariant, that all member fields be pointing to valid memory regions, was not
discovered since our scope-bounded analysis did not find a read of the iorString
field. In the future, we would like to extend our analysis to automatically check
for object consistency after method invocations, in order to discover such issues.

The c-icap project The c-icap project is an open-source implementation of
ICAP (Internet Content Adaptation Protocol), a protocol aimed at supporting
HTTP content adaptation. ICAP allows arbitrary content-filtering and on-the-
fly content modification. A common application running ICAP are anti-virus
scanners, for example. The development of the c-icap project started in 2004,
and the project is still actively maintained (see |c-icap.sourceforge.net).

|Bug category |Checker”Reported|Known|Fixed|Important ||
NULL access PVC 23 0 22 1
Memory leak MLC 7 1 6 0
Uninitialized condition UUM 2 0 2 1
Array underflow ABC 1 0 1 0
Partially initialized memory| UUM 1 0 1 1
[Total | [ 3¢ | 1 | 32 ] 3 |

Table 2. Experimental results for c-icap for various checkers (see Section [2.1])

We analyzed the complete c-icap project with our tool, by analyzing individ-
ual modules separately. The tool analyzed over 24k lines of source code written
in C, which includes about 4k lines of header files. The complete analysis, in a
scope-bounded fashion, using abstract interpretation and model checking for all
checkers completes in a few hours. The full investigation of all witnesses found
by the model checker took one expert user about 3 hours.


http://c-icap.sourceforge.net/

The experimental results are summarized in Table[2l The investigation yielded
34 unique bugs that were communicated to the developer of c-icap. 32 of the 34
reported issues have been fixed so far. Three of the reported bugs were deemed
very important by the developer, including one deep inter-procedural NULL ac-
cess. The two bugs that have not been fixed yet have been acknowledged as bugs
as well, and are to be addressed in future releases. Further details are available
at www.nec-labs.com/ivancic/bugs/c-icap.htm.

The MeCab project The MeCab project provides a customizable Japanese
morphological analyzer, which is applied to a variety of natural language pro-
cessing tasks. Its source code (without any header files) contains 6.6k LOC of
C++ code. A verification engineer discovered four bugs using this approach. This
includes 3 paths with invalid NULL accesses, which were found using the pointer
validity checker. Additionally, one uninitialized memory read was discovered.

6 Related Work

Buffer overflows can cause memory corruption which may be hard to detect in-
stantly. Cowan et al. survey different buffer overflow attacks and some attempts
at prevention and detection [I8]. Static approaches use pointer analysis, range
analysis and constraint solvers at various degrees of precision. Wagner et al.
transform the overflow check elimination problem into one of solving interval con-
straints over integers [36]. Rugina and Rinard provide a powerful summary-based
approach that reduces interval analysis problems into linear programming [33].
Many of the early approaches do not completely handle complications involving
dynamic memory allocation, heap data-structures, array contents, type-casting,
etc. Recently, there has been work on more comprehensive approaches, that han-
dle many of the complications mentioned above [4[TT122]35]. However, we are not
aware of any prior work on addressing buffer overflows due to the interaction of
C++ and C string usage. Recently, size-based abstractions for strings have been
proposed for other languages, such as PHP, as well [37].

The CSSV tool [22] implements a comprehensive approach to overflow de-
tection of C code. It constructs a memory model that tracks pointer bounds,
and string lengths of arrays. A precise region-based points-to analysis handles
overlaps between strings. Our memory model is fundamentally similar to that of
CSSV. By combining abstract interpretation with SAT-based model checking in
a scope-bounded fashion [25], we obtain scalable analysis for programs that are
much larger than those reported by Dor et al.

Our approach uses the theory of abstract interpretation [16] along with nu-
merical domains such as Intervals [15], Octagons [28], Polyhedra [17] and other
numerical domains of intermediate precision and complexity. Abstract inter-
pretation has been used in tools such as PolySpace [3], Astrée [8], and so on.
These tools focus on checking embedded applications with special features such
as simple aliasing, no dynamic allocation, simple control flow and no recursion.
However, our approach is designed to be more general purpose. The CoVerity
verifier [I] has also been successfully applied to large industrial and open-source
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projects. From published reports, most uncovered defects pertain to static buffers
and are intraprocedural. Our effort is more ambitious in nature; we focus on ac-
curate memory modeling to detect more complex bugs. CodeSonar from Gram-
maTech [2] is another related commercial tool. Recently, the static analysis of
STL container classes was proposed [2I]. However, we are not aware of any tool
that directly targets the interaction of C and C++ strings.

There have been past approaches to model check programs for buffer over-
flows using various model checking techniques. The CBMC tool due to Clarke
et al. [TI4] uses SAT-based bounded model checking (BMC) to unroll a given pro-
gram upto a fixed depth into a SAT problem, which is checked for the presence
of a violation upto that depth [7]. Our tool uses SAT-based BMC at its back-
end. However, we also use abstract interpretation up front to vastly simplify the
model and obtain a more scalable approach. Predicate abstraction using auto-
matic counterexample-guided abstraction refinement (CEGAR) [13127] has lead
to important tools such as SLAM [6], BLAST [24], and many others. These tools
have been mainly used to find API usage violations. However, our own experi-
ence with predicate abstraction refinement suggests that for properties such as
buffer overflows and strings, the automatic refinement leads to a large number
of predicates and too many refinement iterations.
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