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Abstract. We present a technique for detecting semantically infeasible
paths in programs using abstract interpretation. Our technique uses a
sequence of path-insensitive forward and backward runs of an abstract
interpreter to infer paths in the control flow graph that cannot be exer-
cised in concrete executions of the program.

We then present a syntactic language refinement (SLR) technique
that automatically excludes semantically infeasible paths from a program
during static analysis. SLR allows us to iteratively prove more properties.
Specifically, our technique simulates the effect of a path-sensitive analysis
by performing syntactic language refinement over an underlying path-
insensitive static analyzer. Finally, we present experimental results to
quantify the impact of our technique on an abstract interpreter for C
programs.

1 Introduction

Static analysis techniques compute over-approximations of the reachable states
for a given program. The theory of abstract interpretation is used to com-
pute such an over-approximation as a fixpoint in a suitably chosen abstract
domain [5,6]. The degree of approximation as well as the scalability can be
traded-off through a judicious choice of an abstract domain. However, the pres-
ence of approximations can cause the analysis to report false positives. Such false
positives can be avoided, in part, using techniques such as path-sensitive analy-
sis, disjunctive completion, and various forms of refinements [1,7,8,11,13,17,22].

In practice, many syntactic paths in the control-flow graph (CFG) representa-
tion of the program are semantically infeasible, i.e, they may not be traversed by
any execution of the program. Reasoning about the infeasibility of such paths is
a key factor in performing accurate static analyses for checking properties such
as correct API usage, absence of null-pointer dereferences and uninitialized use
of variables, memory leaks, and so on. Our previous experience with building
path-sensitive abstract interpreters [22] also indicates that the benefit of added
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0: if (x > 0)
1: f := 1;
2: else
3: f := 0;
4: y := x;
5: if (f > 0)
6: ASSERT(y >= 0);

n0

n1 : f := 1 n2 : f := 0

n3 : y := x

n4 : y ≥ 0?

n5

x > 0 x ≤ 0

f > 0 f ≤ 0

Fig. 1. An example program (left) along with its CFG representation (right). (Node
numbers do not correspond to line numbers.)

path sensitivity to static analysis seems to lie mostly in the identification and
elimination of semantically infeasible paths.

This paper presents two main contributions. We present a technique based
on path-insensitive abstract interpretation to infer semantically infeasible paths
in the CFG. Secondly, we use a syntactic language refinement scheme for path-
sensitive analysis by iteratively removing infeasible paths from the CFG.

Our technique for inferring semantically infeasible paths performs a sequence
of many forward and backward runs using a path-insensitive abstract interpreter.
We first present infeasibility theorems that use the results of forward/backward
fixpoints obtained starting from different initial conditions to characterize paths
in the CFG that are semantically infeasible. We then present techniques that
enumerate infeasible paths using propositional SAT solvers without repeating
previously enumerated paths.

The infeasible paths detected by our technique are excluded from the CFG
using syntactic language refinement. Starting with the syntactic language de-
fined by the set of all syntactically valid CFG paths, we remove semantically
infeasible paths from the syntactic language to obtain refinement of the original
language. Using a path-insensitive analysis over the refined syntactic language
effectively incorporates partial path-sensitivity into the analysis, enabling us to
prove properties that are beyond the reach of path-insensitive analyses.

Example 1. The program in Fig. 1 depicts a commonly occurring situation in
static analysis. Abstract interpretation using the polyhedral abstract domain is
unable to prove the property since it loses the correlation between f and x by
computing a join at node n3. On the other hand, our techniques allow us to
prove using path-insensitive analysis that any semantically feasible path from
node n0 to node n4 cannot pass through node n2. Syntactic language refinement
removes this path from the CFG, and performs a new path-insensitive analysis
on the remaining paths in the CFG. Such an analysis maintains the correlation
between x and f at node n3 and successfully proves the property.

The F-Soft tool checks C programs for invalid pointer accesses, buffer overflows,
memory leaks, incorrect usage of APIs, and arbitrary safety properties specified
by a user [14]. We use the techniques described in the paper to improve the
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path-insensitive analysis used inside the F-Soft tool to obtain the effects of
path-sensitive analysis. The resulting analyzer proves more properties with a
reasonable resource overhead.

Related Work. Path-sensitive analyses help minimize the impact of the join op-
eration at the merge points in the program. A completely path-sensitive analysis
is forbiddingly expensive. Many heuristic schemes achieve partial path-sensitive
solutions that selectively join or separate the contributions due to different paths
using logical disjunctions [8,9,10,13,17,22]. While path-sensitive analysis tech-
niques modify the analysis algorithm, it is possible to achieve path-sensitivity
by modifying the abstract domain using powerset extensions [1,16]. Finally,
refinement-based techniques can modify the analysis algorithm or the domain it-
self on demand, based on the failure to prove a property. Gulavani and Rajamani
iteratively refine the analysis algorithm by modifying analysis parameters such as
widening delays and using weakest preconditions inside a powerset domain [11].
Cousot, Ganty, and Raskin present a fixpoint-based refinement technique that
refines an initial Moore-closed abstract domain by adding predicates based on
preconditions computed in the concrete domain [7].

Our technique for detecting infeasible paths relies on repeated forward and
backward fixpoints. Similar ideas on using path-insensitive analyses to reason
about specific program paths have appeared in the context of abstract debugging
and semantic slicing [4,20], which help to interactively zero-in on bugs in code
by generating invariants, intermediate assertions, and weakest preconditions.

The use of infeasible paths to refine data-flow analysis has been considered pre-
viously by Bodik et al. [3]. However, our approach is more general in many ways:
(a) we use abstract interpretation in a systematic manner to handle loops, con-
ditions, procedures, and so on without sacrificing soundness, (b) the underlying
analysis used to detect infeasible paths in our approach is itself path-insensitive,
which makes it possible to apply our approach on a whole-program basis without
requiring much overhead or depth cutoffs.

Ngo and Tan [19] use simple syntactic heuristics to detect infeasible paths
in programs that are used in test generation. Surprisingly, their approach seems
to detect many infeasible paths using relatively simplistic methods. Such
lightweight approaches can also be used as a starting point for syntactic lan-
guage refinement.

2 Preliminaries

Throughout this paper, we consider single-procedure (while) programs over in-
teger variables. Our results also extend to programs with many procedures and
complex datatypes. We use control-flow graphs (CFG) to represent programs. A
CFG is a tuple 〈N, E, V, μ, n0, ϕ0〉, where N is a set of nodes, E ⊆ N × N is a
set of edges, n0 ∈ N is an initial location, V is a set of integer-valued program
variables, and ϕ0 specifies an initial condition over V that holds at the start of
the execution. Each edge e ∈ E is labeled by a condition or an update μ(e).
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A state of the program is a map s : V → Z, specifying the value of each
variable. Let Σ be the universe of all valuations to variables in V . A program is
assumed to start from the initial location n0 and a state s ∈ [[ϕ0]].

The semantics of an edge e ∈ E is given by the (concrete) strongest post-
condition post(e, S) and the (concrete) weakest precondition (backward post-
condition) pre(e, S) for sets S ⊆ Σ. The operator post : E × 2Σ → 2Σ yields
the smallest set of states reachable upon executing an edge from a given set of
states S, while the pre : E × 2Σ → 2Σ yields the largest set T such that t ∈ T iff
post(e, {t}) ⊆ S. The pre operator is also the post for the “reverse” semantics
for the edge e.

A flow-sensitive concrete map η : N → 2Σ associates a set of states with each
node in the CFG. We denote η1 ⊆ η2 iff ∀n ∈ N, η1(n) ⊆ η2(n).

Forward Propagation.1 The forward-propagation operator F takes a concrete
map η : N → 2Σ and returns a new concrete map η′ : N → 2Σ such that

η′(m) =
{⋃

�→m∈E post(� → m, η(�)) if m �= n0
η(m) ∪

⋃
�→m∈E post(� → m, η(�)) m = n0

A map η is inductive iff (a) η(n0) ⊇ [[ϕ0]] and (b) η ⊇ F(η). In other words, if η
is inductive, it is also a post fixpoint of F. Since F is a monotone operator, the
least fixpoint always exists due to Tarski’s theorem.

Given a CFG, a property consists of a pair 〈n, ϕ〉 where n ∈ N is a node,
and ϕ is a first-order assertion representing a set of states. Associated with each
property 〈n, ϕ〉, the CFG has a node nE ∈ N and an edge (n → nE) ∈ E
with condition ϕE , where ϕE is ¬ϕ. The pair 〈nE , ϕE〉 is referred to as the
error configuration for property 〈n, ϕ〉. A property 〈n, ϕ〉 is verified if the error
configuration 〈nE , ϕE〉 is unreachable, i.e., if η(nE) = ∅ for an inductive map η.

The least fixpoint of a monotone operator F can be computed using Tarski it-
eration. Starting from the initial map η0, such that η0(n0) = [[ϕ0]] and η0(m) = ∅
for all m �= n0, we iteratively compute ηi+1 = F(ηi) until a fixpoint is reached.
Unfortunately, this process is computationally infeasible, especially if the pro-
gram is infinite state.

To analyze programs tractably, abstract interpretation is used to compute
post fixpoints efficiently. An abstract domain consists of a lattice 〈L, �, 
, �〉,
along with the abstraction map α : 2Σ → L and the concretization map γ :
L → 2Σ. Each abstract object a ∈ L is associated with a set of states γ(a) ⊆ Σ.
The maps α and γ together provide a Galois Connection between the concrete
lattice 2Σ and the abstract lattice L. The abstract counterparts for the union
(∪) and intersection (∩) are the lattice join (
) and lattice meet (�) operators,
respectively. Finally, the concrete post-conditions and concrete preconditions
have the abstract counterparts postL and preL in the abstract lattice L. A flow-
sensitive abstract map η� : N → L associates each node n ∈ N to an abstract
object η�(n) ∈ L. As before, η�

1 � η�
2 iff ∀n ∈ N, η�

1(n) � η�
2(n).

1 Our presentation assumes that the initial node n0 may have predecessors.
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The forward propagation operator F can be generalized to a monotone oper-
ator FL : η� �→ η�′ in the lattice L such that:

η�′(m) =
{⊔

�→m∈E postL(� → m, η�(�)) if m �= n0

η�(m) 

⊔

�→m∈E postL(� → m, η�(�)) m = n0

For a given program, abstract interpretation starts with the initial map η�
0, where

η�
0(n0) = α([[ϕ0]]) and η�

0(m) = ⊥ for all m �= n0. The process converges to a
fixpoint η�

F in L if η�
i+1 � η�

i . Furthermore, its concretization γ ◦ η�
F is inductive

(post fixpoint) on the concrete lattice. In practice, widening heuristics enforce
convergence of the iteration in lattices that do not satisfy the ascending chain
condition.

Backward Propagation. An alternative to verifying a property with error con-
figuration 〈nE, ϕE〉 is backward propagation using the backward propagation
operator B, which takes a map η : N → 2Σ and returns a new map η′ : N → 2Σ :

η′(�) =
{

η(�)
⋃

�→m∈E pre(� → m, η(m)) if � = nE⋃
�→m∈E pre(� → m, η(m)) otherwise

For an error configuration 〈nE , ϕE〉, we compute the least fixpoint of B starting
with the initial map η0 such that η0(nE) = [[ϕE ]] and η0(m) = ∅ for all m �= nE .
A map η is a post fixpoint of the operator B, if B(η) ⊆ η. The property can be
verified if η(n0) ∩ [[ϕ0]] = ∅, which establishes that it is not possible to reach an
error state in [[ϕE ]] at node nE from a state in [[ϕ0]] at the initial node n0.

Analogous to forward propagation, one may compute a backward (post) fix-
point map η�

B in an abstract domain L by extending the operator B to the lattice
L using the precondition map preL to yield BL. The fixpoint map η�

B computed
using BL can be used to verify properties.

3 Infeasible-Path Detection

We now characterize infeasible paths in the program using abstract interpreta-
tion. Rather than focus on individual paths (of which there may be infinitely
many), our results characterize sets of infeasible paths, succinctly. For the re-
mainder of the section, we assume a given abstract domain 〈L, �, 
, �〉 (or even
a combination of many abstract domains) that defines the forward operator
FL and the backward operator BL. These operators transform initial maps η�

F0

(η�
B0

) into post fixpoints η�
F (η�

B) using abstract forward (backward) propaga-
tion. The fixpoint maps η�

F and η�
B are concretized to yield maps ηF = γ ◦ η�

F

and ηB = γ ◦ η�
B , respectively. Therefore, we present our results in the concrete

domain based on concretized fixpoint maps ηF and ηB.
Consider a node n ∈ N and a set [[ϕ]]. We define a basic primitive called

state-set projection that projects 〈n, ϕ〉 onto another node m ∈ N in the CFG
as follows: (a) We compute the forward fixpoint map ηF and the backward
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fixpoint map ηB starting from the following initial map:

η
〈n,ϕ〉
0 (�) =

{
[[ϕ]], � = n
⊥, otherwise

(b) The set ηF (m) is a forward projection and ηB(m) is a backward projection
of 〈n, ϕ〉 onto m.

Definition 1 (State-set Projection). A forward projection of the pair 〈n, ϕ〉
onto a node m, denoted (〈n, ϕ〉 L

↪→ m) is the set ηF (m), where ηF is a forward
(post) fixpoint map starting from the initial map η

〈n,ϕ〉
0 .

Similarly, a backward projection of the pair 〈n, ϕ〉 back onto m, denoted

(m
L←↩ 〈n, ϕ〉) is the set ηB(m), where ηB is the backward fixpoint starting from

the initial map η
〈n,ϕ〉
0 .

Forward and backward state-set projections are not unique. They vary, depend-
ing on the specific abstract interpretation scheme used to compute them. The
projection of a node n onto itself yields the assertion true.

Lemma 1. Let ϕF : 〈n, ϕ〉 L
↪→ m and ϕB : m

L←↩ 〈n, ϕ〉 denote the forward
and backward projections, respectively, of the pair 〈n, ϕ〉 onto m. The following
hold for state-set projections:

(1) If an execution starting from a state s ∈ [[ϕ]] at node n reaches node m with
state t, then t ∈ [[ϕF ]].

(2) If an execution starting from node m with state t reaches node n with state
s ∈ [[ϕ]] then t ∈ [[ϕB ]]. �

3.1 Infeasibility-Type Theorems

The state-set projections computed using forward and backward propagation
can be used to detect semantically infeasible paths in a CFG. Let n1, . . . , nk

be a subset of nodes in the CFG, n0 be the initial node and nk+1 be some
target node of interest. We wish to find if an execution may reach nk+1 starting
from n0, while passing through each of the nodes n1, . . . , nk, possibly more than
once and in an arbitrary order. Let Π(n0, . . . , nk+1) denote the set of all such
syntactically valid paths in the CFG.

Let ϕi : 〈ni, true〉 L
↪→ nk+1, i ∈ [0, k + 1], denote the forward state-set projec-

tions from 〈ni, true〉 onto the final node nk+1. Similarly, let ψi : n0
L←↩ 〈ni, true〉,

i ∈ [0, k + 1], denote the backward projections from 〈ni, true〉 onto node n0.

Theorem 1 (Infeasibility-type theorem). The paths in Π(n0, . . . , nk+1)
are all semantically infeasible if either

1. ϕ0 ∧ ϕ1 ∧ · · · ∧ ϕk ∧ ϕk+1 ≡ ∅, or
2. ψ0 ∧ ψ1 ∧ · · · ∧ ψk ∧ ψk+1 ≡ ∅.
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Proof. The proof uses facts about the forward and backward state-set projec-
tions. From Lem. 1, we conclude that any path that reaches nk+1 starting from
〈ni, true〉 must do so with a state that satisfies ϕi. As a result, consider a path
that traverses all of n0, . . . , nk to reach nk+1. The state at node nk+1 must si-
multaneously satisfy ϕ0, ϕ1, . . . , ϕk. Since the conjunction of these assertions is
empty, we conclude that no such path may exist.

A similar reasoning applies to backward projection from node ni to node n0
using the assertions ψ0, . . . , ψk+1. �

It is also possible to formulate other infeasibility-type theorems that are sim-
ilar to Thm. 1 using state-set projection. Let ηF be the forward fixpoint map

computed starting from 〈n0, ϕ0〉. Let ψi : n0
L←↩ 〈ni, ηF (ni)〉 be the state-set

projection of the set ηF (ni) from node ni onto node n0.

Lemma 2. If ψ1 ∧ . . . ∧ ψk ∧ ψk+1 ≡ ∅ then there is no semantically valid
path from node n0 to node nk+1 that passes through all of n1, . . . , nk. �
A similar result can be stated for a pair of nodes using the forward and the
backward fixpoint maps. Let 〈nE , ϕE〉 be an error configuration of interest, ηF

be the forward (post) fixpoint map computed starting from 〈n0, ϕ0〉 and ηB be
the backward (post) fixpoint map computed starting from 〈nE , ϕE〉.

Lemma 3. Any error trace that leads to a state in the error configuration
〈nE , ϕE〉 cannot visit node n′ if ηF (n′) ∧ ηB(n′) ≡ ∅. �

Example 2. Consider the example program shown in Fig. 1. We wish to prove
the infeasibility of any path that simultaneously visits n0, n2 and n4. Using
state-set projections, we obtain

ψ2 : n0
L←↩ 〈n2, true〉 = {x | x ≤ 0}

ψ4 : n0
L←↩ 〈n4, true〉 = {x | x > 0}

Since ψ2 and ψ4 are disjoint, it is not possible for an execution of the CFG to
visit simultaneously the nodes n0, n2 and n4. Likewise, a semantically valid path

cannot visit n2 and n4 simultaneously, since ϕ2 : 〈n2, true〉 L
↪→ n4 ≡ ∅. �

3.2 Infeasible-Path Enumeration

Thus far, we can detect if all the program paths in Π(n0, . . . , nk+1) are seman-
tically infeasible for a given set n1, . . . , nk, nk+1. We now consider the problem
of enumerating such sets using the results derived in the previous sections. Let
N = {n0, n1, . . . , nm} denote the set of all nodes in the CFG. In order to apply
infeasibility-type theorems such as Thm. 1 and Lem. 2, we compute m+1 state-
set projections ψ0, . . . , ψm corresponding to the nodes n0, . . . , nm, respectively.
Furthermore, to test the subset {ni1 , . . . , nik

} ⊆ N , we test the conjunction
ψi1 ∧· · ·∧ψik

for satisfiability. Therefore, to enumerate all such subsets, we need
to enumerate all index sets I ⊆ {1, . . . , m} such that

∧
i∈I ψi ≡ false . For each

such set I, the corresponding subset of N characterizes the infeasible paths.
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Definition 2 (Infeasible & Saturated Index Set). Given assertions ϕ1,
. . ., ϕm, an index set I ⊆ {1, . . . , m} is said to be infeasible iff

∧
j∈I ϕj ≡ false.

Likewise, an infeasible index set I is said to be saturated iff no proper subset is
itself infeasible.

Note that each infeasible set is an unsatisfiable core of the assertion ϕ1∧· · ·∧ϕm.
Each saturated infeasible set is a minimal unsatisfiable core w.r.t set inclusion.
Given assertions ϕ1, . . . , ϕm, we wish to enumerate all saturated infeasible index
sets. To solve this problem, we provide a generic method using a SAT solver to
aid in the enumeration. This method may be improved by encoding the graph
structure as a part of the SAT problem to enumerate continuous segments in
the CFG. We also present domain-specific techniques for directly enumerating
all the cores without using SAT solvers.

Generic Enumeration Technique. Assume an oracle O to determine if a con-
junctive theory formula ψI :

∧
i∈I ψi is satisfiable. Given O, if ψI is unsatisfiable

we may extract a minimal unsatisfiable core set J ⊆ I as follows: (1) set J = I,
(2) for some j ∈ J , if ψJ−{j} is unsatisfiable, J := J − {j}, and (3) repeat step
2 until no more conjuncts need to be considered. Alternatively, O may itself be
able to provide a minimal core.

Our procedure maintains a family of subsets I ⊆ 2{1,...,m} that have not (yet)
been checked for feasibility. Starting from I = 2{1,...,m}, we carry out steps (a)
and (b), below, until I = ∅:

(a) Pick an untested subset J ∈ I.
(b) Check the satisfiability of ψJ :

∧
j∈J ϕj .

If ψJ is satisfiable, then remove all subsets of J from I: I′ = I − {K | K ⊆
J}. If ψJ is unsatisfiable, compute a minimal core set C ⊆ J . Remove all
supersets of C: I′ = I − {I|I ⊇ C}. Also, output C as an infeasible set.

Symbolic enumeration using SAT. In practice, the set I may be too large to
maintain explicitly. It is therefore convenient to encode it succinctly in a SAT
formula. We introduce Boolean selector variables y1, . . . , ym, where yi denotes
the presence of the assertion ϕi in the theory formula. The set I is represented
succinctly by a Boolean formula F over the selector variables. The initial formula
F0 is set to true. At each step, we may eliminate all supersets of a set J by adding
the new clause

∨
j∈J ¬yj . Fig. 2 shows the procedure to enumerate all infeasible

indices using SAT solvers and elimination of unsatisfiable cores.

Graph-based enumeration using SAT. To further improve the enumeration pro-
cedure, we note that many subsets I ⊆ N may not lead to any syntactically
valid paths through the CFG that visit all nodes in I. Such subsets need not
be considered. Nodes ni and nj are said to conflict if there is no syntactic path
starting from n0 that visits both ni and nj . Let C ⊆ N × N denote the set of
all conflicting node pairs. We exclude conflicting nodes or their supersets from
the enumeration process by adding the clause ¬yi ∨ ¬yj for each conflict pair
(ni, nj) ∈ C. However, in spite of adding the conflict information, syntactically
meaningless subsets may still be enumerated by our technique.
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1: proc GenericSATEnumerateCore(ϕ1 , . . . , ϕm)
2: F := true .
3: Add all syntactic constraints to F.
4: while (F is satisfiable ) do
5: 〈y1, . . . , ym〉 := satisfying assignment to F,
6: Let ψ ≡

∧
yi:true ϕi.

7: if ψ is theory satisfiable then
8: F := F ∧

∨
yi:false

yi.
9: else

10: Let J be the unsat core set for ψ.
11: Output J as an infeasible set.
12: F := F ∧

∨
j∈J ¬yj .

13: end if
14: end while
15: end proc

Fig. 2. SAT-based enumeration modulo theory to enumerate infeasible index sets

Example 3. Consider the CFG skeleton in Fig. 1, disregarding the actual oper-
ations in its nodes and edges. We suppose that all paths between nodes n0 and
n5 are found to be infeasible: i.e., {0, 5} is an infeasible index set. Clearly, due
to the structure of the CFG, there is now no need to check the satisfiability of
the index set {0, 3}, since all paths to node n5 have to pass through node n3.
However, this information is not available to the SAT solver, which generates
the candidate index set {0, 3}. �.

To avoid such paths, we restrict the SAT solver to enumerate continuous seg-
ments in the CFG.

Definition 3 (Continuous Segment). A subset I ⊆ N is a continuous seg-
ment iff for each ni ∈ I, some successor of ni (if ni has any successors) and
some predecessor (if ni has any predecessors) belong to I.

An infeasible index set I is syntactically meaningful iff there exists a contin-
uous segment C such that I ⊆ C. Therefore, it suffices to restrict our SAT
solver to enumerate all feasible continuous segments C in the CFG. The un-
satisfiable core set for any such segment is also a syntactically meaningful set.
Secondly, if a continuous segment C is shown to be semantically infeasible by a
subset I, we are not interested in other infeasible subsets I ′ that show C to be
infeasible.

Let p1, . . . , pm be the indices of predecessors of a node ni (m ≥ 1), and
s1, . . . , sr denote the successors indices (r ≥ 1). We encode continuous segments
by adding the following constraints, corresponding to each node ni in the CFG:

– Forward: If m > 0, add ¬yi ∨ yp1 ∨ yp2 ∨ . . . ∨ ypm .
– Backward: If r > 0, add ¬yi ∨ ys1 ∨ ys2 ∨ . . . ∨ ysr .
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The total size of these constraints is linear in the size of the CFG (number
of nodes, number of edges). Fig. 2 is modified to add the continuous segment
constraints to F, in addition to the conflicts.

Example 4. Again considering the CFG skeleton from Fig. 1, if the index set
{0, 5} is found for the unsatisfiable core of the continuous segment C : {0, . . . , 5},
the additional clause ¬y0 ∨ ¬y5 will prevent any future consideration of this
segment. The index set {0, 3} will not be considered, because, n3 is also part of
the continuous segment C which has already been shown to be infeasible.

Utilizing SMT and MAX-SAT Techniques. In principle, a tighter integration
of the propositional and theory part can be obtained by enumerating all min-
imal unsatisfiable cores of an SMT (Satisfiability Modulo Theories) formula
Ψm : ∧m

i=0((¬yi ∨ ϕi) ∧ (yi ∨ ¬ϕi)), along with other propositional clauses over
y1, y2, . . . , ym arising from conflict pairs and syntactic graph-based constraints
discussed earlier.

The problem of finding all minimal unsatisfiable cores is related to the prob-
lem of finding all maximal satisfiable solutions2 [2,15]. This duality has been ex-
ploited to use procedures for finding maximal satisfiable solutions (MAX-SAT)
for generating all minimal unsatisfiable cores. This could lead to improved per-
formance, since checking satisfiability is usually considered easier in practice
than checking unsatisfiability.
Enumerating Unsatisfiable Cores Directly. In some domains, it is possible to
directly enumerate all the unsatisfiable cores of the conjunction ϕ1 ∧ ϕ2 ∧ · · · ∧
ϕm. Each unsatisfiable core directly yields infeasible index sets. The advantage
of this enumeration method is that it avoids considering index sets for which
the corresponding conjunctions is theory satisfiable. Secondly, the properties of
the underlying abstract domain can be exploited for efficient enumeration. The
disadvantage is that the same infeasible index sets may be repeatedly obtained
for different unsatisfiable cores.

As a case in point, we consider the interval domain. The concretizations of
interval domain objects are conjunctions of the form xi ∈ [li, ui]. Let ϕ1, . . . , ϕm

be the result of the state projections carried out using interval analysis. We
assume that each ϕi is satisfiable. Let ϕi be the assertion

∧
j xj ∈ [lij , uij ],

wherein each lij ≤ uij . The lack of relational information in the interval domain
restricts each unsatisfiable core to be of size at most 2:

Lemma 4. Any unsatisfiable core in
∧

i ϕi involves exactly two conjuncts: lij ≤
xj ≤ uij in ϕi and lkj ≤ xj ≤ ukj such that [lij , uij ] ∩ [lkj , ukj ] = ∅. �
As a result, it is more efficient to enumerate infeasible paths using domain-
specific reasoning for the interval domain. Direct enumeration of unsatisfiable
cores is possible in other domains also. For instance, we may enumerate all the
negative cycles for the octagon domain, or all dual polyhedral vertices in the
polyhedral domain.
2 Specifically, the set of all minimal unsatisfiable cores, also called MUS-es, is equiv-

alent to the set of all irreducible hitting sets of all MCS-es, where each MCS is the
complement of a maximal satisfiable solution.
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1: if (x < 0)
2: x := 1;
3: y := 1;
4: else
5: x := 2;
6: y := 3;
7: if(y = 2)
8: x := x - 2;
9: ASSERT(x >= 0);

n0

n1 : x := 1, y := 1 n2 : x := 2, y := 3

n3

n4 : x := x − 2

n5 : x ≥ 0?

x < 0 x ≥ 0

y = 2

y �= 2

Fig. 3. An example program (left) along with its CFG representation (right). (Node
numbers do not correspond to line numbers.)

4 Path-Sensitive Analysis

In this section, we describe how information about infeasible paths discovered
in §3 can be used to improve the accuracy of a path-insensitive analysis.

Example 5. Consider the program shown in Fig. 3. Clearly, the assertion at line
9 in the program is never violated. However, neither a forward propagation nor
a backward propagation using the interval domain is able to prove the assertion
in node n5. A SAT-based infeasible path enumeration using the interval domain
enumerates the sets {n2, n4} and {n1, n4} as infeasible. �

Syntactic Language Refinement (SLR). Let Π : 〈N, E, μ, n0, ϕ0〉 be a CFG with
a property 〈n, false〉 to be established. The syntactic language of Π consists of all
the edge sequences e1, . . . , em that may be visited along some walk through the
CFG starting from n0. In effect, we treat Π as an automaton over the alphabet E,
wherein each edge ei accepts the alphabet symbol ei. Let LΠ denote the language
of all edge sequences accepted by CFG Π , represented as a deterministic finite
automaton.

The results of the previous section allow us to infer sets I : {n1, . . . , nk} ⊆ N
such that no semantically valid path from node n0 to node n may pass through
all the nodes of the set I. For each set I, we remove all the (semantically invalid)
paths in the set Π(I ∪ {n0, n}) from the syntactic language of the CFG:

L′
Π = LΠ − {π|π is a path from n0 to n, passing through all nodes in I}︸ ︷︷ ︸

LI

Since the sets LΠ and LI are regular, LΠ′ = LΠ − LI is also regular. The
refinement procedure continues to hold even if LΠ is context free, which happens
in the presence of function calls and returns in the CFG.

Let Π ′ be the automaton recognizing LΠ′ . The automaton Π ′ can be viewed
as a CFG once more by associating actions (conditions and assignments) with its
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n1

n2

n3

n4 n5

n6

n7

n8

n9

e1

e2

e3 e4

e5 e6

e7

e8

e9

e10

e11

(a)

n1

n2

n3

n4 n5

na
6 nb

6

na
7 nb

7

n8

n9

e1

e2

e3 e4

e5 e6

e7
e7

e8

e9

e10

e10e11

(b)

Fig. 4. Path-sensitivity can be simulated by syntactic language refinement: (a) original
CFG, (b) paths visiting nodes {n4, n8} are found infeasible and removed

edges. Each edge labeled with the alphabet ei is provided the action μ(ei) from
the original CFG Π . Since LΠ′ ⊆ LΠ , Π ′ encodes a smaller set of syntactically
valid paths. Therefore, abstract interpretation on Π ′ may result in a more precise
fixpoint.

Example 6. Consider the CFG skeleton Π in Fig. 4(a). Suppose nodes {n4, n8}
were found to be infeasible. The refined CFG Π ′ is shown in Fig. 4(b). The
edges and the nodes are labeled to show the correspondences between the two
CFGs. Notice that it is no longer possible to visit the shaded nodes in the same
syntactic path.

A path sensitive static analysis might be able to obtain the same effect by not
using join at node n6, and partially merging two disjuncts at node n7. Borrowing
the terminology from our previous work the CFG Π ′ is an elaboration of the CFG
Π [22], or from the terminology of Mauborgne et al., a trace partitioning [13,17],
that keeps the trace visiting node n4 separate from the other traces. However,
our prior knowledge of the infeasibility of {n4, n8} enables us to automatically
rule out the edge na

7 → n8. �
From the discussion above, it is evident that syntactic language refinement can be
cast in the framework of related schemes such as elaborations or trace-partitions.
However, the key difference is that our scheme always uses the infeasible CFG
paths as a partitioning heuristic. The heuristic used in the elaboration or trace-
partitioning may be unable to guess the right partitions required to detect the
infeasible paths in practice.

Example 7. Returning to the example in Fig. 3, we find that the paths from
n0 � n5, traversing the nodes I0 : {n1, n4} and I1 : {n2, n4} are semantically
infeasible. Therefore, we may remove such paths from the CFG using syntactic
language refinement. The resulting CFG Π ′ is simply the original CFG with the
node n4 removed. A path-insensitive analysis over Π ′ proves the property. �



250 G. Balakrishnan et al.

1: proc VerifyProperty(〈n, ϕ〉)
2: I := N
3: Let 〈nE , ϕE〉 be the error configuration for property 〈n, ϕ〉
4: while ( I �= ∅ ) do
5: Let ηF be the forward fixpoint computed starting from 〈n0, ϕ0〉
6: Let ηB be the backward fixpoint computed starting from 〈nE , ϕE〉
7: I := ∅
8: for all conditional branches � → m ∈ E do
9: if ( ηF (m) 
 ηB(m) ≡ false) then

10: Let I := I ∪ {n ∈ N | n is control dependent on � → m}.
11: end if
12: end for
13: Remove the nodes in I from the CFG
14: if ηF (n) ≡ false then
15: return PROVED.
16: end if
17: end while
18: return NOT PROVED.
19: end proc

Fig. 5. Using infeasible-path detection to improve path-insensitive analysis

In theory, it is possible to first remove infeasible path segments using abstract
interpretation, perform a language refinement, and subsequently, analyze the
refined CFG. In practice, however, we observe that most infeasible paths involve
no more than two intermediate nodes. Furthermore, the size of the refined CFG
after a set I has been removed can be a factor 2|I| larger.

Application. We now present a simple version of the SLR scheme using Lem. 3
that removes at most one intermediate node w.r.t a given property. Secondly,
we repeatedly refine the CFG at each stage by using the improved abstract
interpretation result on the original CFG. Finally, thanks to the form of Lem. 3,
each application of the scheme requires just two fixpoint computations, one in
the forward direction and the other in the backward.

Fig. 5 shows an iterative syntactic language refinement scheme. Each step in-
volves a forward fixpoint from the initial node and a backward fixpoint computed
from the property node. First, infeasible pairs of nodes are then determined us-
ing Lem. 3, and the paths involving such pairs are pruned from the CFG. Since
paths are removed from the CFG, subsequent iterations can produce stronger
fixpoints, and therefore, detect more infeasible intermediate nodes. The language
refinement is repeated until the property is verified, or no new nodes are detected
as infeasible in consecutive iterations.

Example 8. VerifyProperty proves the assertion in the example shown in Fig. 3.
During the first iteration, the condition at line 8 of VerifyProperty holds for the
edge n0 → n2. Consequently, node n2 will be removed before the next forward
fixpoint computation. Hence, interval analysis will be able to determine that
edge n3 → n4 is infeasible, and therefore, the property 〈n5, x ≥ 0〉 is verified. �
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5 Experiments

We have implemented the SLR technique inside the F-Soft C program ver-
ifier [14] to check array, pointer, and C string usage. The analyzer is context
sensitive, by using call strings to track contexts. Our abstract interpreter sup-
ports a combination of different numerical domains, including constant folding,
interval, octagon [18], polyhedron [12] and the symbolic range domains [21]. The
experiments were run on a Linux machine with two Xeon 2.8GHz processors and
4GB of memory.

Infeasible-Path Enumeration. We implemented the algorithm in Fig. 2 using the
octagon abstract domain as a proof-of-concept. Tab. 1 shows the performance
of the infeasible-path enumerator over a set of small but complex functions
written in C [23]. As an optimization, we modified the algorithm to enumerate
infeasible sets solely involving conditional branches. The running time of the
algorithm is a function of the number of conditional branches and the number
of variables in the program. Surprisingly, computing fixpoints accounts for the
majority of the running time. Not surprisingly, almost all saturated infeasible
sets involved exactly two edges. With the additional optimizations described
here and a variable-packing heuristic, we hope to scale this technique to larger
functions.

Syntactic Language Refinement. We implemented the VerifyProperty algorithm
on top of our existing abstract interpreter. Given a program, we first run a series
of path-insensitive analyses. Properties thus proved are sliced away from the
CFG. The resulting simplified CFG is fed into our analysis. Our analysis is run
twice: first, using the interval domain, and then using the octagon domain on the
sliced CFG from the interval analysis instantiation. Tab. 2 shows the performance
of our tool chain on a collection of industrial as well as open source projects. For
each program, we show the number of proofs obtained and the time taken by
the base analysis as well as the additional proofs along with the overhead of the
SLR technique using the intervals and the octagon domains successively. For our
set of examples, the SLR technique obtains 15% more proofs over and above the
base analysis. However, it involves a significant time overhead of roughly 15% for
the interval domain and 75% for the octagon domain. A preliminary comparison

Table 1. Number of saturated infeasible sets from SAT-based enumeration

Time (s)
Prog. LOC #Vars #Branches FixPoint Enum #Inf.Sets
ex1 35 7 13 0.07 0.01 3
ex2 40 6 15 0.08 0.02 10
ex3 79 9 36 1.46 0.12 6
ex4 85 71 41 2160.67 6.12 0
ex5 94 12 40 2.85 3.60 38
ex6 102 38 27 51.76 0.15 2
ex7 115 2 31 0.06 0.02 28
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Table 2. Performance of the tool flow using SLR. (Hi: mobile software application
modules, Li: Linux device drivers, Mi: a network protocol implementation modules.)

Base analysis Additional Proofs with SLR
Simplified Intervals Octagons

Code LOC Proofs Time (s) Proofs Time (s) Proofs Time (s)
H1 2282 7/14 28.08 0/7 0.5 0/7 8.77
H2 3319 33/49 355.85 0/16 7.04 0/16 102.24
H3 2668 23/37 52.49 0/14 1.25 0/14 14.17
L4 4626 12/31 10.21 0/19 5.07 0/19 9.1
M5 5095 67/265 69.62 35/198 84.99 28/163 217.44
L6 5346 6/20 3.62 0/14 1.53 0/14 7.59
L7 5599 5/146 681.48 0/141 198.26 0/141 239.39
M8 6142 109/314 86.85 1/205 173.74 98/204 2008.07
L9 6326 119/135 70.88 0/16 2.74 0/16 8.18
M10 6645 93/385 244.57 25/292 390.15 70/267 990.11
M11 7541 162/442 262.94 77/280 361.08 49/203 1069.1
M12 10206 285/745 1479.29 30/460 1584.45 154/430 6681.36
M13 11803 325/786 1089.86 121/461 859.36 99/340 5710.56
L14 13162 38/114 289.9 34/76 130.98 0/42 263.86
M15 14665 313/606 117.96 163/293 112.19 10/130 204.16
M17 26758 1904/1918 2208.85 0/14 0.95 0/14 8.89
M18 47213 4173/4218 16880.00 21/45 4.07 0/24 20.51
Total 7674/10225 507/2551 508/2044

Table 3. Comparison of SLR with path-sensitive analysis using CFG elaborations [22].
(#T: total time with two outlying data points removed, #P: additional proofs.)

CFG SLR
Base Elaborations [22] Cont. Insens. Cont. Sens.

#Progs Tot. Proofs #T #P #T #P #T #P #T
48 403 178 2.47 +45 76.42 +44 27 +79 36

with our previous work suggests that this overhead is quite competitive with
related techniques for performing path-sensitive analysis [22].

Tab. 3 shows a direct comparison of our implementation with a partially path-
sensitive analysis implemented using CFG elaborations [22]. The comparison is
carried out over a collection of small example programs [23] written in the C
language. These programs range from 20-400 lines of code, and are designed to
evaluate the handling of loops, aliasing, dynamic allocation, type-casts, string li-
brary functions and other sources of complexities in practical programs. Because
the latter implementation is context-insensitive, we compare against a context-
insensitive version of our technique as well. CFG elaboration technique achieves
45 extra proofs with 50x time overhead. Our context-insensitive implementation
proves roughly as many properties as CFG elaborations with a much smaller
overhead (roughly 10x for context-insensitive and 20x for context-sensitive). Our
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implementation proved quite a few properties that could not be established by
elaborations and vice versa. Not surprisingly, added context-sensitivity to our
technique renders it vastly superior.
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14. Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M.K., Kahlon, V., Wang, C., Yang,
Z.: Model checking C programs using f-soft. In: ICCD, pp. 297–308 (2005)

15. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. of Automated Reasoning 40(1), 133 (2008)

16. Manevich, R., Sagiv, S., Ramalingam, G., Field, J.: Partially disjunctive heap
abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279.
Springer, Heidelberg (2004)

17. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, Springer, Heidelberg
(2005)



254 G. Balakrishnan et al.
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