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Abstract

Error diagnosis, which is the process of identifying the

root causes of bugs in software, is a time-consuming pro-

cess. In general, it is hard to automate error diagnosis

due to the unavailability of a full “golden” specification of

the system behavior in realistic software development. We

propose a repair-based proof-guided error diagnosis (PED)

framework, that provides a first-line attack to find the root

causes of the errors in programs by pin-pointing the possi-

ble error-sites (buggy statements), and suggesting possible

repair fixes. Our framework does not need a complete sys-

tem specification. Instead, it automatically “mines” par-

tial specifications of the intended program behavior from

the proofs obtained by static program analysis for standard

safety checkers. It uses these partial specifications along

with the multiple error traces provided by a model checker

to narrow down the possible error sites. It also exploits in-

herent correlations among the program statements. To cap-

ture common programming mistakes, it directs the search to

those statements that could be buggy due to simple copy-

paste operations or syntactic mistakes such as using ≤ in-

stead of <. To further improve debugging, it prioritizes the

repair solutions. We implemented and integrated the PED

tool as a plug-in module to a software verification frame-

work. We show the efficacy of such a framework on public

benchmarks.

1. Introduction

Model checking is one of the most successful techniques

used to identify bugs in software and hardware [3]. One

of the advantages of model checking is that it provides a

concrete error trace in the program that shows how the er-

ror state is reachable (i.e., how the bad behavior manifests).

Such error traces can be very long and complex, and there-

fore, it is quite cumbersome and time consuming to manu-

ally examine the trace to identify the root cause of the error.

In several cases, a bug may be due to problems in more than

one statement that are quite far apart in the error trace. Fur-

ther, it is very hard to identify the root cause of an error just

by examining a single error trace.

Error diagnosis is the process of automatically identify-

ing the root causes of program failures. Several error di-

agnosis techniques have been proposed in the recent past

[2, 4, 10, 11, 12, 15, 24, 26, 28]. Stumptner and Wotowa

present an excellent survey of various error diagnosis tech-

niques [25]. The main problem faced by all error diagnosis

techniques is that it is not practical to have a “golden speci-

fication” of the correct program behavior against which the

behavior of a buggy program can be compared to identify

the root causes of an error. Previous methods rely on the

availability of correct traces or derive such traces explicitly

using model checking tools. The differences between er-

roneous and correct traces are used to infer the causes of

the errors. Most often these differences do not provide an

adequate explanation of the failures.

We propose a repair-based proof-guided error diagnosis

(PED) framework that will assist a programmer in prior-

itizing or pin-pointing the root causes of program errors

reported by model checkers. In such a repair-based ap-

proach (also, referred as replacement diagnosis [25]), the

buggy program is first modified to obtain a repair program

in which the behavior of the statements or branches can be

controlled via auxiliary program variables referred to as se-

lector variables. Analysis is carried out on the repair pro-

gram to identify values for the selector variables such that

the behavior of only a small set of statements or branches

need to be modified in the repair program to prevent the er-

ror. Such an approach, in general, produces a large set of

possible repair solutions. Our approach improves such re-

placement diagnosis by identifying the most relevant repair

solutions in the following novel ways:

Mining Partial Specifications: We do not need a com-

plete specification of the intended program behavior. In-

stead, we automatically extract the partial specification of

the intended behavior from the results of static analysis. In

many cases, static program-analysis algorithms can prove

that standard safety checkers, such as array-bound viola-

tions checker and null-pointer dereferences checker, cannot

be violated for all possible executions of the program. In
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such cases, we extract the invariants relevant for the proofs

efficiently and use them as partial specification of the in-

tended behavior of the program. For more restrictive repair

solutions, we also identify the program statements that are

relevant for the proofs and mark them as “trusted”. The

idea is not to modify these statements in repair program,

and restrict the search for error sites to untrusted program

statements.

Syntactic Closeness: Significant number of errors in soft-

ware are caused due to copy-paste operations [20]. Further,

many errors are caused due to syntactic mistakes such as us-

ing ≤ instead of<. We give preferences to “syntactic close-

ness” of operators and expressions to improve error local-

ization. (We use syntactic closeness as a heuristic to guide

our search for repair solutions; our techniques are general

and not restricted to just finding such syntactic mistakes in

the program. )

Correlation: We also exploit the inherent correlation

among the statements occurring in the use-def chains and

statements corresponding to the unrolling of the loop body

in an error-trace to reduce the set of repair solutions.

Multiple Error Traces: Presence of a bug often results in

violation of many checkers. By taking an intersection of

the repair solutions corresponding to error traces for the vi-

olation of different checkers, we narrow down the set of

possible error-sites, which improves debugging.

Ranking: We also propose several ranking criteria for the

repair solutions (such as prioritizing solutions with minimal

changes in the repair program) so that the user only has to

examine the most relevant fixes.

We have implemented and integrated our PED tool as

a plug-in module to a software verification framework F-

SOFT [14] (as shown in Fig. 1). Using the PED tool, a

programmer can fix the code by reviewing only the prior-

itized repair solutions before moving to next phase of time-

consuming debugging. Note that our technique is not spe-

cific to the F-SOFT framework. We evaluated the PED tool

on a set of publicly available benchmarks, and show that

buggy statements can easily be found by manual debugging

of a handful of repair solutions.

The rest of the paper is organized as follows: §2 pro-

vides an overview of the F-SOFT tool and describes how

the proof-guided error diagnosis technique is incorporated

into the F-SOFT tool chain. §3 describes the various com-

ponents of the PED tool. §4 describes improvements to the

basic PED technique. §5 presents various ways to rank the

solutions provided by the error diagnosis tool. §6 presents

our experience with using the PED tool on a collection of

publicly available benchmarks.

Error Trace
Slicing

Program w/ checkers

“Syntactic-close 
operator” 
mapping

Model Checker 
(Error Finder)

Mark Untrusted
Code

Create “Repair 
Program” from 
Untrusted Code

Static Analyzer

Derive trusted 
Slice

Invariants Used
In Proofs (I)

Proved 
Properties
p1, . . ., pn

Errors     e1, . . ., em

1

2

3

4

5

6 7

8

Weights wi

G
u

id
e

d
 E

rr
o

r 
D

ia
g

n
o

s
is

 (
P

E
D

)
F

S
O

F
T

“Mining”

Specifications

mapping Untrusted Code

Constraint Solver

Rank 
Error Sites

Min Σ ndSeli .wi

Constraint: I ∧

¬e1 ∧ … ∧ ¬ em1

10

11

P
ro

o
f-

G
u

id
e

d
 E

rr
o

r 
D

ia
g

n
o

s
is

 (
P

E
D

)

Correlation Constraints 
(Use-Def Chains, Repeating 

Statements)
9

Figure 1. Proof-Guided Error Diagnosis Tool.

2. F-SOFT Overview

F-SOFT is a program verifier that works on C pro-

grams [14]. It uses a combination of static analysis and

model checking techniques to identify array out-of-bound

violations, null-pointer dereferences, improper usage of C

String API, etc. The components of F-SOFT are shown in

Fig. 1.

Example 2.1 Consider the function sum shown in

Fig. 2(a). It computes the sum of the elements in array a,

which is of size n. The function has an array out-of-bounds

error because the loop-terminating condition is i ≤ n (in

bold) instead of i < n. �

As a first step, a given program is annotated with checks

for the violation of safety properties that are of interest to

the user. A safety property is a pair 〈S, ϕ〉, where S is a

label in the program and ϕ is an assertion on the states that

can reach the label S. A safety property is violated if an ex-

ecution of the program reaches label S with a state that does

not satisfy the assertion ϕ. For a safety property 〈S, ϕ〉, the

statement “if(¬ϕ) ERR();” is inserted at label S in the pro-

gram, where ¬ϕ is the logical negation of ϕ, and ERR() is

a function that aborts the program. Such annotations are

referred to as property checkers.

Fig. 2(b) shows the program in Fig. 2(a) annotated with

array out-of-bounds checkers at P1 and P2. The variables

a lo and a hi refer to the lowest and the highest possi-

ble addresses for array a, respectively. Property P1 corre-

sponds to the underflow out-of-bounds error, while property

P2 corresponds to the overflow out-of-bounds error.
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int sum(int a, int n) {
int i, s = 0;

for(i=0; i<=n; ++i) {
s = s + a[i];

}
return s;

}

/* sum elements of */

/* array a */

int main() {
int a[10];

sum(a, 10);

return 0;

}

int sum(int a, int n) {
int i, s = 0;

for(i=0; i<=n; ++i) {
P1: if(a+i<a lo) ERR();

P2: if(a+i>a hi) ERR();

s = s + a[i];

}
return s;

}

int main() {
int a[10];

sum(a, 10);

return 0;

}

(a) (b)

Figure 2. (a) Buggy code, and (b) with check-

ers.

Static Analyzer The annotated program is analyzed by

a static analyzer, which uses various dataflow algorithms

ranging from simple constant folding to more complex nu-

merical analysis algorithms such as intervals [5], octagons

[21], polyhedra [13], and disjunctive numerical domains

[23] to compute state invariants for all the statements in the

program. A safety property 〈S, ϕ〉 is proved by the static

analyzer if the invariant ψ computed at label S is such that

ψ ∧ ¬ϕ is false .

For the program in Fig. 2, the static analyzer computes

the invariant a + i ≥ a lo at P1, which implies that the

underflow condition a + i < a lo never occurs at P1.

However, the static analyzer is not able to prove P2. In this

case, it is because the program has an array out-of-bounds

error. However, in general, the computed invariants may not

be precise enough to establish the fact that a safety property

is not violated in the program (even if that is the case).

Model Checker The property checkers for the safety prop-

erties that are proved by the static analyzer are pruned away,

and the resulting program is analyzed by a model checker.

F-SOFT performs bounded model checking to determine

if any of the remaining safety properties are violated. If

the model checker finds any violations, it generates an er-

ror trace showing how the property is violated. The error

trace generated by the model checker is sliced with respect

to the variables in the violated property, and the sliced trace

is shown to the user.

Without loss of generality, we assume that there are only

three kinds of steps in an error trace: (1) an assignment of

the form x := expr, where x is a program variable and

expr is an expression in the program, (2) an evaluation of a

Boolean predicate P that corresponds to a control statement,

such as if, while, and for, in the program, and (3) a step

representing the violation of a safety property.

Step Statement

1 i = 0;

2 Loop condition (i ≤ n) is true.

3 i = i+ 1;

4 Loop condition (i ≤ n) is true.
...

...

19 i = i+ 1;

20 Loop condition (i ≤ n) is true.

21 i = i+ 1;

22 Loop condition (i ≤ n) is true.

23 Safety check (a+ i ≤ a hi) fails.

Figure 3. An error trace showing the violation
of the property checker P2 in Fig. 2(b).

For the property P2 in Fig. 2, the model checker finds

the error trace shown in Fig. 3. The statements that are not

relevant to the violated property have been sliced away. In

this example, the assignments to variable s have been re-

moved from the error trace. The error trace consists of 23

steps. Steps 1, 3, 5, . . . , and 21 refer to the assignments to

variable i, steps 2, 4, . . . , and 22 refer to the evaluation of

the loop condition in the program, and step 23 corresponds

to violation of the property checker P2.

3. Proof-guided Error Diagnosis (PED)

We give the basic terminology, and discuss our repair-

based error diagnosis framework. Later, we discuss how we

improve the basic diagnosis using static analysis.

3.1 Terminology

An error (or error symptom) is the violation of a safety

property. An error trace is the concrete trace provided by

the model checker for an error. Given an error trace, the root

causes (or error sites) of an error are the set of buggy state-

ments or conditions that are responsible for the error. Error

localization refers to the process of locating the error-sites.

A repair solution to an error is a set of modified statements

and/or conditions, i.e, fixes, that prevents the corresponding

error symptom. For the program in Fig. 2(b), the violation

of the property checker P2 is an error. A root cause (i.e., an

error site) for the error is the buggy terminating condition

i<=n of the“for loop”. A repair solution consists of a fix

with the condition i<=n modified to i<n.

3.2 Basic Framework

In this section, we provide an overview of the PED tool,

which is shown in Fig. 1. Let e1, . . . , em be the violated
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safety checkers i.e., errors found by a model checker. Let

T1, . . . , Tm be the corresponding error traces. Given an er-

ror trace Tj , the goal of PED is to identify the statements

or conditions in the program that are responsible for error

ej . Let p1, . . . , pn be the properties proved by the static

analyzer.

Marking untrusted code Certain statements or conditions

in the program cannot be a root cause for a given error. For

example, the assignments to s in the program in Fig. 2 are

not responsible for the violation of the property checker at

P2. Similarly, some of the assignments and conditions in

the error trace cannot be a root cause for the error. We refer

to those statements and conditions that are not possible root

causes as trusted and the other statements and conditions as

untrusted. For a given error trace, an error diagnosis tool

only has to consider the statements or conditions in the pro-

gram that are untrusted. The simplest way to determine the

untrusted code is to compute a slice [27] of an error trace

with respect to the given safety property. In §4.1, we dis-

cuss how to identify untrusted statements and conditions in

the program using the results of static analysis.

Repair Program After identifying the trusted and untrusted

code in the program, PED creates a repair program for the

given error trace.

Statements: For a trusted statement S in the error trace, the

repair program has the statement S as is. For an untrusted

assignment “x := expr” at step k in a given error trace,

the repair program has the following assignment:

x := ndSel k ? ndRes k : expr;

Variable ndSel k is a new non-deterministic Boolean in-

put variable. Variable ndRes k is a non-deterministic in-

put variable that has the same type as the result of expr.

Variable ndSel k is referred to as a selector variable, and

variable ndRes k is referred to as the result variable.

Conditions: For a trusted condition P in the error trace, the

repair program has the following if statement:

if(!P) goto END;

Label END in the goto statement refers the last statement

in the repair program.

For an untrusted condition P at step k in the error trace,

the repair program has the following if statement:

if(ndSel k?ndRes k:!P) goto END;

ndSel k and ndRes k are new non-deterministic Boolean

input variables, !P refers to the logical negation of condi-

tion P, and END refers to the last statement in the repair pro-

gram. As in the case of the untrusted assignment, variable

ndSel k is referred to as a selector variable, and variable

ndRes k is referred to as the result variable.

For a step that represents the violation of a safety condi-

tion P, the repair program has the following statement:

if(P) goto END;

Finally, a call to ERR() is added to the repair program

1: i = ndSel1?ndRes1:0;

2: if (ndSel2?ndRes2:(i>n)) goto END;

3: i = ndSel3?ndRes3:i + 1;

4: if (ndSel4?ndRes4:(i>n)) goto END;

.

.

.

19: i = ndSel19?ndRes19:i + 1;

20: if (ndSel20?ndRes20:(i>n)) goto END;

21: i = ndSel21?ndRes21:i + 1;

22: if (ndSel22?ndRes22:(i>n)) goto END;

23: if (a+i <= a hi) goto END;

24: ERR();

END:

Figure 4. Repair program for the error trace

shown in Fig. 3.

after adding the statements for each step in the error trace. A

call to ERR() aborts the program. Note that setting all the

selector variables to the value false in the repair program

corresponds to the original error trace. Therefore, the call

to ERR() is always reachable if false is assigned to all the

selector variables in the repair program.

The repair program has no loops as it is based on an un-

rolled error trace. The if conditions in the repair program

are referred to as branch statements. Also, the values of in-

put variables in the original program are fixed based on the

error trace. Fig. 4 shows the repair program for the error

trace in Fig. 3. Statement at label k in the repair program

corresponds to step k in the error trace.

Error Localization After creating the repair program, PED

performs error localization using the algorithm in Fig. 5.

For a given error trace T , the algorithm creates a repair pro-

gram R. The algorithm also creates the Static Single As-

signment (SSA) form R′ of the repair programR, and con-

vertsR′ into a Satisfiability Modulo Theory (SMT) formula

M [8]. For each branch B with predicate P , the algorithm

checks if the formula M ∧ P (ignore D in Fig. 5 for now)

is satisfiable using a SMT Solver. If the formula is satisfi-

able, the solver provides a satisfying assignment β for the

formula. The satisfying assignment provided by the solver

is referred to as the repair solution.

The repair solution provides a way to identify the possi-

ble root causes for an error trace. If the conditionM ∧ P is

satisfied, then the assignments to the variables in the repair

solution provide an execution trace of the repair program

such that the predicate P is true when the branch statement

B is executed. In such an execution, the call to ERR() is

never reached because the target of the branch statement is

END. In other words, the repair solution provides a way for

the repair program to avoid the error.

Recall that if the value false is assigned to the selector

variables in the repair program, ERR() is always executed.

Therefore, if M ∧ P is satisfied, at least one of the vari-
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1: proc LocalizeError(P : Program, T : Error Trace)

2: Let R be the repair program for error trace T .

3: Let R′ be the SSA form of R.

4: Let M be the SMT formula representingR′.

5: F = ∅. // Set of repair solutions.

6: for each branch statement B in R′ do

7: D = ∅.

8: Let P be the predicate on the branch statement B.

9: while (M ∧ P ∧D) is satisfiable do

10: Let β be the satisfying assignment.

11: H = {S|S is a statement in R′∧ the selector

variable of S is true in β.}
12: Add set H to F .

13: D = D ∧ ¬β
14: return F .

Figure 5. Algorithm to localize error.

ables in the repair program has the value true. Assigning

the value true to a selector variable at step k corresponds to

changing the semantics of the statement at step k in the er-

ror trace. That is, changing the semantics of the statements

for which the selector variable has the value true has en-

abled the program to avoid the error. The error localization

algorithm reports these statements as possible error sites to

the user. The process is repeated after adding a blocking

clause ¬β to the condition M ∧ P to find other error sites.

Formula D represents the blocking clause for all the fixes

reported by the algorithm for branch B so far.

For the program in Fig. 2, the algorithm provides the

following solution (among others): false for ndSel1,

ndSel2, . . ., ndSel21, true for ndSel22, and true for

ndRes22. This solution corresponds to changing the loop

condition i <= n in the program such that the loop exits

at an earlier step, thereby avoiding the array out-of-bound

error. Therefore, i <= n is a possible error site for the

violation of property P2.

4. Improving Error Diagnosis

The basic framework, described in §3, generates all pos-

sible repair solutions. In this section, we describe various

ways in which these repair solutions can be pruned to ob-

tain the solutions that are the most relevant for debugging.

4.1. Mining Partial Specifications

One problem with the technique described in §3 is that

the constraint solver may provide solutions that violate one

or more of the safety properties proved by the static ana-

lyzer. For instance, one of the solutions provided by the

constraint solver for the repair program in Fig. 4 assigns

true to ndSel1 and −1 to ndRes1. While this solution

provides a fix for property P2, it violates the underflow

property P1. In this section, we describe how one can ex-

tract a partial specification of the intended behavior of the

program based on the properties that are proved by abstract

interpretation.

The aim of abstract interpretation [6] is to determine the

set of states that a program reaches in all possible execu-

tions, but without actually executing the program on spe-

cific inputs. To make this feasible, abstract interpretation

explores several possible execution sequences at a time by

running the program on descriptors that represent a collec-

tion of states. The universal set A of state descriptors is

referred to as an abstract domain. The set A forms a math-

ematical lattice 〈A,⊆A,⊔A,⊓A〉, where ⊆A is the lattice

ordering, ⊔A is the lub operator, and ⊓A is the glb operator.

Abstract interpretation is performed on a control-flow

graph (CFG) of the program. A CFG G is a tuple

〈N,E, V, µ, n0, ϕn0
〉, where N is a set of nodes, E ⊆

N × N is a set of edges between nodes, V is a set of vari-

ables, n0 ∈ N is the initial node, ϕn0
is an initial condition

specifying the values that variables in V may hold at n0, and

each edge e ∈ E is labeled with a condition or update µ(e).
An abstract interpreter annotates each node n in the

CFG with an abstract state descriptor from the abstract do-

main. The abstract state descriptor ϕn represents an over-

approximation for the set of states that a program reaches at

the node n in all possible executions. During abstract inter-

pretation, the effects of executing an edge e ∈ E with label

µ(e) in the program is modeled by an abstract transformer

µ♯(e) that computes an over-approximation to the effects of

executing the original statement in the program.1 Fig. 6

shows a CFG and the reachable states computed by abstract

interpretation using the octagon abstract domain [21].

Definition 4.1 (Safety Projection) Let n ∈ N , 〈nS, ϕ〉 be

a safety property, and P be the set of paths from n to nS

in CFG G. The safety projection of a property 〈nS , ϕ〉 onto

a node n, denoted by χn is the disjunction of the weak-

est preconditions of ϕ with respect to every path in P :

χn =
∨

p∈P WP (p, ϕ), where WP (p, ϕ) is the weakest

precondition of ϕ with respect to the path p.

Intuitively, the safety projection of a property 〈nS , ϕ〉 onto

a node n represents the set of states at n that cannot reach

an error state at node nS . For instance, consider the safety

projection of property 〈n4,e ≤ 2〉 onto node n1 shown in

Fig. 6. If the value of e at node n1 does not satisfy the safety

projection condition e ≤ 5, then the assertion at node n4

1In our abstract interpreter, the abstract state for a node n is com-

puted as follows: absState′[n] = absState[n] ⊔A (
⊔

p∈Pred(n) µ
♯(p →

n, absState[p])). Consequently, the abstract state for a node n always in-

creases (with respect to lattice order ⊆A). Therefore, we have monotonic-

ity even if a non-monotonic widening operator is used.
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fails. Therefore, the safety projection of a property provides

a constraint on the set of permissible values for the variables

at every node in the CFG, which is a partial specification of

the intended behavior of the program. To improve the qual-

ity of the repair solutions provided by the error localization

algorithm, we compute the safety projections of the proper-

ties that are proved by the static analyzer onto every node

in the CFG, and use the safety projections as constraints on

the values of the result variables in the repair program.

For the program in Fig. 4, abstract interpretation based

on the interval domain [5] gives the following constraints

for the non-deterministic result variables: 0 ≤ ndRes1 ≤
10, −1 ≤ ndRes3 ≤ 10, −1 ≤ ndRes5 ≤ 10, . . .,

−1 ≤ ndRes22 ≤ 10. These constraints prevent the con-

straint solver from picking −1 for variable ndRes1. Con-

sequently, the constraint solver does not provide a solution

that violates the safety property.

Mining Relevant Invariants Because there may be an in-

finite number of paths in the CFG of a program, computing

the exact safety projection is not computationally feasible.

Therefore, we compute an over-approximation to the safety

projection of 〈nS , ϕ〉 at each node using abstract interpre-

tation. First, a new CFG G′ = 〈N,E′, V, µ′, nS ,¬ϕ〉 is

created from the CFG G = 〈N,E, V, µ, n0, ϕ0〉 of the pro-

gram. The set of edges in G′ is such that (n,m) ∈ E′ if

(m,n) ∈ E, i.e., the edges in G are reversed in G′. Every

edge (n,m) ∈ E′ is labeled with the weakest precondition

operator for the update or condition µ(m,n) ∈ G. The ini-

tial node for G′ is nS , and the initial condition for G′ is

the safety condition ϕ. The abstract value χ♯
n computed at

a node n ∈ N by performing abstract interpretation on G′

represents an over-approximation for the safety projection

χn. We use χ♯
n as a constraint on the values of the result

variable at node n.

Because χ♯
n is an over-approximation to the actual safety

projection χn, χ♯
n may include states at n that lead to the

violation of ϕ at nS . Therefore, it is not guaranteed that

constraint solver will never provide a solution that violates

the property. However, the constraints on the values of non-

deterministic result values obtained as outlined above works

well in practice. On the set of benchmarks described in §6,

the number of error sites reported by the error localization

algorithm is substantially reduced.

Mining Trusted Code For more restrictive repair solu-

tions, in addition to determining constraints for the result

variables, we identify a subset of the program statements

that are relevant for the proofs obtained from static analy-

sis, and mark them as “trusted”. The idea is not to modify

the trusted statements in repair program, and restrict the re-

pair solutions to untrusted program statements.

Definition 4.2 (Error Projection) Let n ∈ N , 〈nS , ϕ〉 be a

CFG Reachable Safety Error

States Projection Projection

(ϕn) (χn) (ψn)

n0 true true ∅
e := 4

√

n1 e = 4 e ≤ 5 e > 5

e := e− 2
√

n2 e = 2 e ≤ 3 e > 3

e := e− 1

n3 e = 1 e ≤ 2 e > 2

j := j+ 1

n4 e = 1 e ≤ 2 e > 2

ASSERT(e ≤ 2)

n5

Figure 6. Reachable states, error projec-

tion, and safety projection for the property

〈n4,e ≤ 2〉. √ refers to the relevant edges.

safety property, and P be the set of paths from n to nS in

the CFG. The error projection of a safety property 〈nS , ϕ〉
onto a node n, denoted by ψn is the disjunction of the weak-

est preconditions of ¬ϕ with respect to every path in P :

ψn =
∨

p∈P WP (p,¬ϕ), where WP (p,¬ϕ) is the weak-

est precondition of ¬ϕ with respect to the path p.

Intuitively, the error projection of a property 〈nS , ϕ〉 onto a

node n represents the set of states at n that reach an error

state at node nS . For instance, consider the error projection

of property 〈n4,e ≤ 2〉 onto n1 shown in Fig. 6. If the

value of e satisfies the error projection condition e > 5,

then the assertion e ≤ 2 at node n4 fails. Analogous to

safety projections, we use abstract interpretation to compute

an over-approximation ψ♯
n for the concrete error projection

ψn at each node n in the program. In the following, we

first define relevant edge, and then discuss how we use error

projections to find trusted statements or conditions in the

program.

Definition 4.3 (Relevant Edge) Let 〈nS , ϕ〉 be a safety

property that is proved by static analysis, ϕn be the invari-

ant at node n computed by static analysis on G and ψn

be the error projection of 〈nS , ϕ〉 onto node n. An edge

m→ n ∈ E is relevant if the following holds:

(ϕn ∧ ψn = ∅) ∧ (ϕm ∧ ψn 6= ∅) (1)

The conjunct (ϕn∧ψn = ∅) encodes the fact that error state

is not reachable from the node n. The conjunct (ϕm∧ψn 6=
∅) encodes that the error state is possibly reachable from m

if the transition m → n is not present in the program. That
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is, if Eqn. (1) is true then the program would reach an error

state when the transitionm→ n is removed. Therefore, the

edge m → n is important for proving the safety property

〈nS , ϕ〉. For the CFG in Fig. 6, edge n1 → n2 is relevant

because Eqn. (1) holds. For n1 → n2, we haveϕn1
: e = 4,

ϕn2
: e = 2, ψn1

: e > 4, and ψn2
: e > 3. Consequently,

ϕn2
∧ ψn2

= ∅ and ϕn1
∧ ψn2

6= ∅. In Fig. 6, only edges

n0 → n1 and n1 → n2 are relevant.

Defn. 4.3 provides a simple and efficient way to identify

the transitions that are important for the static analyzer to

prove a given safety property. We provide a theoretical basis

for such an observation as follows. Let m → n represent

the relevant edge with the abstract transformer µ(m → n)
in a CFG G, with the safety checker 〈nS , ϕ〉.
Lemma 4.1 ϕn (A ϕm.

Proof: Follows from Defn. 4.3. �

Lemma 4.2 If we replace µ(m → n) with the identity

transformer in a modified CFG G′, then ϕn (A ϕ′

n = ϕ′

m,

where ϕ′

m and ϕ′

n refer to the invariants computed at node

m and n, respectively, in G′. Further, ϕnS
⊆A ϕ′

nS
.

Proof: Follows from Lemma 4.1 and monotonicity of the

abstract transformers. �

Observation 4.1 For a given G if we replace all µ(m →
n) with identify transformers to obtain a modified CFG G′,

the static analyzer may no longer find the proof for the

safety checker, i.e., ϕ′

nS
∧ ¬ϕ = ∅ may not hold.

As ϕ′

nS
gets larger (Lemma 4.2), it may likely contain

the error state, and therefore, a static proof may not hold in

G′. On the other hand, a static proof may still hold in G′ if

an edge that is not relevant in G has become relevant in the

modified G′. This can happen when for some edge a → b,

the following condition holds (inadequacy condition): ψb =
∅ in G, but ψ′

b 6= ∅ in G′.

Based on the Observation 4.1, one can obtain a set of ad-

equate relevant edges, by identifying all the relevant edges

in a CFG and replacing the corresponding abstract trans-

formers with the identity transformers in the modified CFG,

and iterating the process on the modified CFG until inade-

quacy condition does not hold. However, for error diagno-

sis, we do not need adequate set of edges, though such a set

would give a more precise result. For efficiency reasons,

we choose a single iteration to obtain the relevant state-

ments from a given CFG, and mark the relevant statements

as “trusted”. For trusted statements, the associated selector

variables are set to false . Consequently, the trusted state-

ments are not modified in the repair program. (Note that,

while safety projections are used to obtain constraints on

the values of the result variables in the repair program, er-

ror projections are used to obtain constraints on the values

of the selector variables in the repair program.)

For the repair program in Fig. 3, the assignment “i =

0” at step 1 is marked as relevant (using the proof of P1).

Therefore, the error localization algorithm does not report

the statement “i = 0” as an error site. Note, that this is an

improvement over the previous case where we only spec-

ify constraints on the result variables. In the previous case,

the error localization algorithm may report “i = 0” as a

possible error site.

4.2. Annotation Library

In the program shown in Fig. 4, the constraint solver may

choose true for the result variable at any branch in the ex-

ecution of the program. That is, the error is avoided triv-

ially by cutting the execution of the program at any arbitrary

branch. Such behavior causes the error diagnosis algorithm

to report useless repair solutions.

To avoid this problem, we use an annotation library. In-

stead of blindly replacing the expressions with new non-

deterministic variables, we rely on a library of possible re-

placements for the operators and expressions in the pro-

gram. The intuition is that, for a particular kind of error,

programmers typically make the same kind of mistakes. For

instance, a majority of the array out-of-bound violations are

typically caused by one of the following kinds of errors: (1)

using the ≤ operator instead of < operator, i.e., off-by-one

errors, (2) using an incorrect variable as the upper bound

for an index, such as using i < m instead of i < n, and (3)

errors caused by copy-paste operations. An example of the

annotation library is as follows:

Operator Alternatives (weight)

≤ < (30), ≥ (20), > (10)

< ≤ (30), > (20), ≥ (10)

> ≥ (30), < (20), ≤ (10)

≥ > (30), ≤ (20), < (10)

The numbers in the parenthesis are weights that refer to

the relative preference among the alternatives. The oper-

ator with higher weight is preferred over another operator

with lower weight. For instance, < is the most preferred

alternative for the ≤ operator. Suppose that annotation li-

brary given above is used, the condition i <= n at step k

of Fig. 3 would be replaced with the condition
(ndSel k == 3)?(i < n):

((ndSel k == 2)?(i >= n):

((ndSel k == 1)?(i > n):(i <= n)))

instead of ndSel k?(ndRes k):(i <= n).

In our current system, an expert manually populates the

annotation library based on the knowledge of the problem

domain. It is also possible to create this library automati-

cally by using machine learning or data mining techniques

on the information from CVS logs or fixes made by the pro-

grammer for other bugs.
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Using the weighted max-sat algorithm When an annota-

tion library is provided, we use the weighted max-sat algo-

rithm (implemented in SMT solver as such [7]) to determine

if M ∧ P ∧ D is satisfiable at step 9 of the error localiza-

tion algorithm shown in Fig. 5. The weights provided in

the annotation library are used as weights in the max-sat al-

gorithm for the constraints that choose an alternative. For

instance, using the annotation library shown earlier, weight

30 is assigned to the constraint ndSel k = 3, weight 20
is assigned to the constraint ndSel k ≥ 2, and weight 10
is assigned to the constraint ndSel k > 3. With these

weights, the SMT solver is more likely to find a solution

that satisfies ndSel k = 3. Therefore, an operator is re-

placed with its most preferred alternative.

4.3. Exploiting Correlation

Repeating Statements A repair program is generated from

an unrolled error trace, which has multiple copies of the

statements in a loop. Therefore, a repair program may have

multiple copies of a statement that occurs in a loop. In the

scheme described in §3, a different non-deterministic selec-

tor variable is used for every statement. Therefore, the er-

ror localization algorithm may provide repair solutions that

make changes to the such statements inconsistently. For in-

stance, the algorithm provides a solution in which the state-

ment i = i + 1 is changed in one step of the error trace,

but not in another step. Such repair solutions are not use-

ful because a change to the semantics of a statement in a

loop has to be applied consistently across all executions

steps of the statement in the loop. Therefore, we add con-

straints so that the SMT solver chooses a consistent value

for the non-deterministic selector variables associated with

the statements that are repeated in the trace.

For the repair program in Fig. 4, we add the following

constraints:
(ndSel2 = ndSel4 . . . = ndSel22) ∧
(ndSel3 = ndSel5 . . . = ndSel21)

(Note, in our implementation, we actually simplify and

propagate the equalities to reduce the formula size.) How-

ever, we cannot add similar constraints for the result vari-

ables of the statements in a loop, because the result of the

computation at each loop step can be different.

Use-Def Chains Consider the following repair program
(comments show the use-def chain in the original program):

x = ndSel1?ndRes1:e; // x = e;

. . .

y = ndSel2?ndRes2:x; // y = x;

. . .

As a repair solution ndSel1=true and ndSel2=true,

does not propagate the repair effect of x to y, we add the

constraint ndSel1=true ⇒ ndSel2=false to avoid such

redundant repair solution.

4.4. Other Improvements

Multiple error traces for a single error We use multiple
error traces to improve error localization. A bug is typically
manifested as multiple error traces for violations of one or
more safety checkers. Consider the following simple C pro-
gram fragment:

N1: x = 0;

if(. . .) {N2: x = x + 2;}
else {N3: x = x + 3;}
N4:if(x > 1) ERR();

The above program reaches an error state, because the con-

dition x > 1 at N4 is always satisfied. The model checker

provides two error traces: (1) N1 → N2 → N4 and (2)

N1 → N3 → N4. If error trace (1) is examined in iso-

lation, the error localization algorithm provides a solution

that suggests that either N1 or N2 or both need to be fixed.

Similarly, if error trace (2) is examined in isolation, the er-

ror localization algorithm provides a solution that suggests

that either N1 or N3 or both need to be fixed. In either

case, changing N1 is the best fix because it fixes both the

error traces. But, it is not possible to arrive at this conclu-

sion by examining the error traces in isolation. Taking the

intersection of the fixes suggested by the error localization

algorithm for the different error traces gives N1 as the only

fix. Therefore, if we have multiple error traces, we just take

the intersection of the fixes for each error trace.

Limiting the number of changes Typically, it would only

require a few changes to the program to fix the error. We

leverage this observation when finding repair solutions. We

add constraints that bound the number of selector variables

that can be assigned true by the solver. By adding such

constraints, the error localization algorithm may be directed

to find solutions that only require a minimal number of

changes to the original program.

5. Ranking the Repair Solutions

The error localization algorithm provides several repair

solutions to avoid the error. However, all the fixes provided

by the tool may not be relevant to the error. Therefore, we

use a simple ranking mechanism to prioritize the repair so-

lutions.

First, the repair solutions are sorted by the number of

steps in the execution of the repair program using the as-

signments from the repair solutions. Recall that the error

localization algorithm provides repair solutions that skip to

the END statement at any of the branches in the repair pro-

gram. This criterion gives preference to the repair solutions

that do not skip large parts of the repair program.

After sorting on the number of steps, the repair solutions

are sorted by the number of fixes suggested by error local-
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ization algorithm. The intuition behind this criterion is that

the programmer would prefer to look at lesser number of

error sites when debugging.

Finally, the repair solutions are sorted by the number of

fixes to non-loop statements. That is, repair solutions that

have more fixes in non-loop statements are given higher

preference. The idea behind this criterion is that the fixes

to non-loop statements change the semantics of only fewer

steps in the program. However, the fixes to loop statements

change the semantics of several steps in the program.

These ranking criteria were obtained based on our expe-

rience with using PED on a set of publicly available bench-

marks. While the criteria are good enough for our set of

benchmarks, it may not necessarily be good for other appli-

cations. The ranking scheme can be generalized by adapt-

ing ranking methods that are based on statistical analysis

and user feedback [18].

6. Experiments

To evaluate the effectiveness of the error localization al-

gorithm, we ran the algorithm on a collection of programs

from the Verisec benchmark suite [19]. The Verisec bench-

mark suite is a collection of programs that include functions

extracted from popular open source programs with known

buffer-overrun vulnerabilities. The statements in the pro-

gram that cause the buffer overflow are also known. We

ran the error localization algorithm with different settings

on the benchmark programs to evaluate the usefulness of

the improvements described in the paper. For the experi-

ments, the maximum number of fixes reported by the tool

was set to 250, and an annotation library was also used.

We modified the SMT-based BMC framework [9] to gener-

ate an SMT formula from the repair program, and used the

YICES SMT solver [7] (version 1.0.10) as the backend con-

straint solver in our PED tool. We used a workstation with

Intel QuadCore 2.4GHz, 8GB of RAM running Linux.

Tab. 1 shows the results of the experiments. The col-

umn labeled “Default” refers to the basic error localization

algorithm described in §3. The column labeled “No Inv”

refers to the algorithm with only the improvements from

§4.3 and §4.4. The column labeled “With Inv” refers to

the algorithm with the invariants extracted using the results

of static analysis as described in §4.1 along with the im-

provements used for “No Inv”. The column labeled “Relv.

Stmnt.” refers to the run of the algorithm with the infor-

mation about the relevant statements obtained from static

analysis as described in §4.1 along with the improvements

used for “With Inv”. The column “#F” represents the num-

ber of fixes reported by the tool. The column labeled “#U”

represents the number of fixes that included the known error

site. Effectively, the “#U” column provides a way to evalu-

ate the usefulness of the reported fix because if a given fixes

includes the known error site then the programmer will find

it useful when debugging.

The results are encouraging. When the improvements

described in §4.3 and §4.4 are used, the number of fixes

reported by the tool is substantially reduced. The number of

fixes reported by the tool without the improvements is 2 to 3

times the number of fixes reported with the improvements.

The advantage of having a lesser number of fixes is that the

user of the tool only has to look a smaller number of fixes

to identify the root cause of the bug.

Similarly, the number of fixes reported by the tool is

substantially reduced if the relevant invariants extracted

from static analysis is used to add constraints on the non-

deterministic result variables. Also, when the information

about relevant statements is used, the number of fixes is re-

duced to less than one-third the number of fixes reported

without the information about relevant statements. (The ex-

amples for which “Relv. Stmnt.” shows improvements over

“With Inv” is highlighted in bold in Tab. 1.)

We see a similar trend in the number of useful fixes re-

ported by the tool. When the improvements are not used,

the useful fixes reported by the tool include the error site

as well as other statements that are not a root cause for the

error, thereby, making it hard for the programmer to use the

reported fix. However, when the improvements described in

§4.1 through §4.4 are used, the error localization algorithm

reports the most relevant fixes that only contain the error

site, thereby, making it more useful for the programmer in

debugging. Further, we found that the ranking scheme de-

scribed in §5 is effective for our examples. When we ex-

amined the fixes provided by the tool for the configuration

“Relv. Stmnt.”, we found that the buggy statement was re-

ported in one of the first five fixes.

The column labeled “#T(s)” represents the time taken (in

seconds) by the error localization algorithm to find the fixes

for a given error trace. We do not include the time necessary

for static analysis and model checking in time reported un-

der “#T” because any error diagnosis tool would incur the

cost of static analysis and model checking to find the error

traces. Similarly, the time to compute the safety projections

and error projections is not included because they are com-

puted during static analysis in our F-SOFT framework [1].

(For our examples, the time required for static analysis is

in the order of a few seconds.) The time required by the

solver to find the fixes is the only additional time required

for error diagnosis. Further, the time to perform error lo-

calization is only dependent on the length of the error trace,

which is a major advantage of our method as opposed to

previous methods [2, 11, 12] that perform additional model

checking on the whole program to find the root causes of an

error. Therefore, we expect our technique to scale to larger

programs.
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Table 1. Results of error localization on Verisec benchmarks. #L denotes the length of the error trace.
“LOC” refers to the number of lines of code. #F represents the number of fixes. #U represents the

number of fixes that included the error site. #T denotes the time taken in seconds.

Program Default No Inv With Inv Relv. Stmnt.

LOC Error (#L) #F #U #T (s) #F #U #T (s) #F #U #T (s) #F #U #T(s)

NetBSD-libc Ex0 167 Err0(246) 219 114 282.16 64 20 237.38 46 21 224.69 15 4 232.18

(CVE-2006-6652) Err1 (83) 232 124 72.56 59 21 405.22 17 5 92.88 17 4 93.07

Err2 (83) 232 124 42.70 36 17 65.20 17 6 63.04 17 6 63.13

Err3 (72) 210 110 7.94 34 17 4.17 21 8 2.39 20 4 3.30

Ex1 159 Err0(59) 69 37 3.30 29 12 4.18 25 9 1.93 17 7 2.35

Err1 (73) 97 52 5.47 33 12 5.72 30 11 2.88 19 7 3.54

Err2 (200) 129 66 209.62 21 7 196.21 21 7 10.33 11 3 12.95

Ex2 49 Err0 (26) 4 2 <1 4 2 <1 4 2 <1 4 2 <1

Apache Ex0 111 Err0 (54) 85 48 4.06 67 33 5.00 43 21 33.67 43 21 33.67

(CVE-2004-0940) Err1 (50) 85 48 3.79 67 33 5.20 43 21 33.39 43 21 33.39

Err2 (51) 107 61 4.43 78 38 5.45 43 21 33.00 43 21 33.66

Ex1 105 Err0 (47) 15 8 32.93 15 8 34.02 14 8 3.10 14 8 3.13

Err1 (50) 21 12 3.27 21 12 5.09 20 12 3.38 20 12 3.42

Ex2 117 Err0 (54) 85 48 4.89 67 33 5.82 40 18 34.06 40 18 34.10

Err1 (60) 107 76 5.59 45 22 6.16 40 18 34.25 40 18 34.00

Ex3 109 Err0 (47) 15 8 33.65 15 8 35.13 14 8 3.81 14 8 3.72

Err1 (56) 21 12 3.82 21 12 5.39 20 12 3.92 20 12 3.75

Sendmail Ex0 40 Err0 (21) 7 7 1.17 7 7 1.17 7 7 1.19 7 7 1.23

(CVE-1999-0047) Ex1 33 Err0 (17) 3 3 <1.00 3 3 <1.00 3 3 <1.00 3 3 <1.00

Sendmail Ex0 59 Err0 (30) 22 13 2.69 16 9 3.48 7 2 32.52 7 2 32.48

(CVE-1999-0206) Err1 (35) 24 14 3.27 16 8 3.76 7 2 33.08 7 2 33.08

Ex1 69 Err0 (33) 18 10 3.07 12 5 4.15 5 1 32.88 5 1 32.86

Err1 (25) 21 15 2.14 18 12 2.53 12 8 2.09 12 8 2.07

Err2 (38) 36 26 3.62 10 4 4.77 7 2 33.12 7 2 33.18

SpamAssasin Ex0 85 Err0 (49) 102 102 7.3 48 10 7.43 36 36 5.66 27 27 6.09

7. Related Work

We briefly review the most related work. In model-

checking based methods [2, 12, 11], the correct traces are

obtained by re-executing the model checker with additional

constraints. Similarities and differences in correct traces

(also referred to as positives) and erroneous traces (nega-

tives) are analyzed transition by transition to obtain the root

causes. These methods are in general limited by the scal-

ability of the model checker. Further, the differences be-

tween positive and negative traces do not always provide a

good explanation of the failure.

In program repair approaches and error correction [10,

16, 24], fault localization is achieved by introducing non-

deterministic repair solutions in a modified system, and us-

ing a model checker to obtain a set of possible causes for

the symptoms. Such an approach has been successful for

hardware. However, they fail to pinpoint the real causes in

software due to the presence of a large number of repair

solutions.

In another work based on static analysis [26], path-based

syntactic-level weakest pre-condition computation is used

to obtain the minimum proof of infeasibility for the given

error trace. This method does not require correct trace,

and does not use expensive model checking. This causal

analysis provides an infection chain of the defect (i.e., rele-

vant statements through which the defect in the code prop-

agates), and not necessarily the root cause of the error.

Test-based error diagnosis methods [17, 22] rely on

availability of good test-suite with large successful execu-

tions. The error traces are compared with the correct traces

to pin-point the possible causes of the failure.

Delta debugging [4, 28] is an automatic experimental

method to isolate failure causes. It requires two programs

runs, one run where the failure occurs, and another where

it does not. The subset of differences between the two is

applied on the non-erroneous run to obtain the failure run.

Such differences are then classified as causes of the prob-

lem. This method is purely empirical, and is different from

formal or static analysis. Also, it may require a large num-

ber of tests to find a difference that pinpoints the error-site.

In game-theoretic based approaches [15], error trace is

partitioned into two segments “fated” and “free”: “fated”

controlled by the environment forcing the system to error,

and “free” controlled by system to avoid the error. Fated

segments manifest unavoidable progress towards the error

while free segments contain choices that, if avoided, can

prevent the error. This approach is significantly more costly

than a standard model checking.

8. Conclusions

We proposed a repair-based proof-guided error diagno-

sis framework. Our techniques improve existing approaches

277277277

Authorized licensed use limited to: NEC Labs. Downloaded on July 20,2010 at 00:40:49 UTC from IEEE Xplore.  Restrictions apply. 



by taking into account information, such as relevant invari-

ants and relevant statements from proofs obtained during

static analysis, syntactic closeness of operators, correlation

among statements, and multiple error traces to improve er-

ror localization. We implemented the technique and inte-

grated it as a plug-in module to the F-SOFT verification

framework. Our experiments show that such an approach

improves the quality of error diagnosis.
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