
Analyzing Stripped Device-Driver Executables?

Gogul Balakrishnan??,1 and Thomas Reps2,3

1 NEC Laboratories America, Inc.
2 University of Wisconsin

3 GrammaTech, Inc.
bgogul@nec-labs.com, reps@cs.wisc.edu

Abstract. This paper sketches the design and implementation of Device-
Driver Analyzer for x86 (DDA/x86), a prototype analysis tool for finding
bugs in stripped Windows device-driver executables (i.e., when neither
source code nor symbol-table/debugging information is available), and
presents a case study. DDA/x86 was able to find known bugs (previously
discovered by source-code-based analysis tools) along with useful error
traces, while having a reasonably low false-positive rate.
This work represents the first known application of automatic program

verification/analysis to stripped industrial executables, and allows one to
check that an executable does not violate known API usage rules (rather
than simply trusting that the implementation is correct).

1 Introduction

A device driver is a program in the operating system that is responsible for
managing a hardware device attached to the system. In Windows, a (kernel-
level) device driver resides in the address space of the kernel, and runs at a high
privilege level; therefore, a bug in a device driver can cause the entire system to
crash. The Windows kernel API [27] requires a programmer to follow a complex
set of rules: (1) a call to the functions IoCallDriver or PoCallDriver must occur
only at a certain interrupt request level, (2) the function IoCompleteRequest
should not be called twice with the same parameter, etc.

The device drivers running in a given Windows installation are one of the
sources of instability in the Windows platforms: according to Swift et al. [31],
bugs in kernel-level device drivers cause 85% of the system crashes in Windows
XP. Because of the complex nature of the Windows kernel API, the probability
of introducing a bug when writing a device driver is high. Moreover, drivers are
typically written by less-experienced or less-skilled programmers than those who
wrote the Windows kernel itself.

Several approaches to improve the reliability of device drivers have been pre-
viously proposed [10, 12, 15, 31]. Swift et al. [30, 31] propose a runtime approach
that works on executables; they isolate the device driver in a light-weight pro-
tection domain to reduce the possibility of whole-system crashes. Because their

? Supported by NSF under grants CCF-0540955 and CCF-0524051.
?? Work performed while at the University of Wisconsin.

method is applied at runtime, it may not prevent all bugs from causing whole-
system crashes. Other approaches [10–12, 22] are based on static program anal-
ysis of a device driver’s source code. Ball et al. [10, 12] developed the Static
Driver Verifier (SDV), a tool based on model checking to find bugs in device-
driver source code. A kernel API usage rule is described as a finite-state machine
(FSM), and SDV analyzes the source code for the driver to determine whether
there is a path in the driver that violates the rule.

Our work, which is incorporated in a prototype tool called Device-Driver An-
alyzer for x86 (DDA/x86), is also based on static analysis, but in contrast to the
work cited above, DDA/x86 checks properties of stripped Windows device-driver
executables; i.e., neither source code nor symbol-table/debugging information
need be available (although DDA/x86 can use debugging information, such as
Windows .pdb files, if it is available). Thus, DDA/x86 can provide information
that is useful in the common situation where one needs to install a device driver
for which source code has not been furnished.

Microsoft has a program for signing Windows device drivers, called Windows
Hardware Quality Lab (WHQL) testing. Device vendors submit driver executa-
bles to WHQL, which runs tests on different hardware platforms with different
versions of Windows, reviews the results, and, if the driver passes the tests,
creates a digitally signed certificate for use during installation that attests that
Microsoft has performed some degree of testing. However, there is anecdotal ev-
idence that device vendors have tried to cheat [2]. A tool like DDA/x86 could
allow static analysis to play a role in such a certification process.

Even if you have a driver’s source code (and can build an executable) and
also have tools for examining executables equipped with symbol-table/debugging
information, this would not address the effects of the optimizer. If you want
to look for bugs in an optimized version, you would have a kind of “partially
stripped” executable, due to the loss of debugging information caused by opti-
mization. This is a situation where our techniques for analyzing stripped exe-
cutables should be of assistance.

A skeptic might question how well an analysis technique can perform on a
stripped executable. §4 presents some quantitative results about how well the
answers obtained by DDA/x86 compare to those obtained by SDV; here we
will just give one example that illustrates the ability of DDA/x86 to provide
information that is qualitatively comparable to the information obtained by
SDV. Fig. 1 shows fragments of the witness traces reported by SDV (Fig. 1(a))
and DDA/x86 (Fig. 1(b)) for one of the examples in our test suite. Fig. 1 shows
that in this case the tools report comparable information: the three shaded areas
in Fig. 1(b) correspond to those in Fig. 1(a).

Although not illustrated by Fig. 1, there are ways in which DDA/x86 can
provide higher-fidelity answers than tools based on analyzing source code. This
may seem counterintuitive, but the reason is that DDA/x86 works at a level
in which many platform-specific features are revealed, such as memory-layout
details (e.g., the offsets of variables in activation records and padding between
fields of a struct). Because the compiler is in charge of such choices, and may

KeInitializeEvent(&event, NotificationEvent, FALSE);

IoSetCompletionRoutine(Irp,

(PIO COMPLETION ROUTINE) MouFilter Complete,

&event,

TRUE,

TRUE,

TRUE); // No need for Cancel

status = IoCallDriver(devExt->TopOfStack, Irp);

if (STATUS PENDING == status) {
KeWaitForSingleObject(

&event,
Executive, // Waiting for reason of a driver
KernelMode, // Waiting in kernel mode
FALSE, // No alert
NULL); // No timeout

}

if (NT SUCCESS(status) && NT SUCCESS(Irp->IoStatus.Status)) {
//
// As we are successfully now back from our start device
// we can do work.
//
devExt->Started = TRUE;
devExt->Removed = FALSE;
devExt->SurpriseRemoved = FALSE;

}

//
// We must now complete the IRP, since we stopped it in the
// completion routine with MORE PROCESSING REQUIRED.
//

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = 0;

IoCompleteRequest(Irp, IO NO INCREMENT);

break;

push 1

push 1

push 1

lea ecx, dword ptr [ebp + var 1C]

push ecx

push sub 1002270

mov edx, dword ptr [ebp + arg 4]

push edx

call dword ptr [sdv IoSetCompletionRoutine@24]

mov edx, dword ptr [ebp + arg 4]

mov eax, dword ptr [ebp + var 4]

mov ecx, dword ptr [eax + 8]

call dword ptr [@IofCallDriver@8]

mov dword ptr [ebp + var 20], eax

cmp dword ptr [ebp + var 20], 103h

jnz loc 10013E1

push 0
push 0
push 0
push 0
lea ecx, dword ptr [ebp + var 1C]
push ecx,
call dword ptr [sdv KeWaitForSingleObject@20]

loc 10013E1:

cmp dword ptr [ebp + var 20], 0

jl loc 1001405

mov edx, dword ptr [ebp + arg 4]
cmp dword ptr [edx + 18h], 0
jl loc 1001405
mov eax, dword ptr [ebp + var 4]
mov byte ptr [eax + 30h], 1
mov ecx, dword ptr [ebp + var 4]
mov byte ptr [ecx + 32h], 0
mov edx, dword ptr [ebp + var 4]
mov byte ptr [edx + 31h], 0

loc 1001405:

mov eax, dword ptr [ebp + arg 4]

mov ecx, dword ptr [ebp + var 20]

mov dword ptr [eax + 18h], ecx

mov edx, dword ptr [ebp + arg 4]

mov dword ptr [edx + 1Ch], 0

push 0

mov eax, dword ptr [ebp + arg 4]

push eax

call dword ptr [sdv IoCompleteRequest@8]

jmp loc 10014B0

(a) (b)

Fig. 1. (a) SDV trace; (b) DDA/x86 trace. The three shaded areas in (b) corre-
spond to those in (a).

also restructure the computation in certain ways, the machine-code level at which
DDA/x86 works is closer than the source-code level to what is actually executed.

Elsewhere [4, 8], we have called this the WYSINWYX phenomenon (What
You See Is Not What You eXecute): computers execute the instructions of
programs that have been complied, and not the source code itself; compilation
effects can be important if one is interested in better diagnosis of the causes
of bugs, or in detecting security vulnerabilities. A Microsoft report on writing
kernel-mode drivers in C++ recommends examining “... the object code to be
sure it matches your expectations, or at least will work correctly in the ker-
nel environment” [3]. As discussed in §4, we encountered a few cases of the
WYSINWYX phenomenon in our experiments, although these concerned the
hand-written environment harnesses that we picked up from SDV [10, 12].

This paper describes the design and implementation of DDA/x86, and
presents a case study in which we used it to find problems in Windows de-
vice drivers by analyzing the drivers’ stripped executables. The key idea that
allows DDA/x86 to achieve a substantial measure of success was to combine the

algorithm for memory-access analysis [4–6] from CodeSurfer/x86 [7] with the
path-sensitive method of interpreting property automata from ESP [17]. The re-
sulting algorithm explores an over-approximation of the set of reachable states,
and hence can verify correctness by determining that all error configurations are
unreachable. The contributions of the work include

– DDA/x86 can analyze stripped device-driver executables, and thus provides
a capability not found in previous tools for analyzing device drivers [11, 22].

– Our case study shows that this approach is viable. DDA/x86 was able to
identify some known bugs (previously discovered by source-code-based anal-
ysis tools) along with useful error traces, while having a reasonably low false-
positive rate: On a corpus of 17 device-driver executables, 10 were found to
pass the PendedCompletedRequest rule (definitely no bug), 5 false positives
were reported, and 2 were found to have real bugs—for which DDA/x86
supplied feasible error traces.

– We developed a novel, low-cost mechanism for instrumenting a dataflow-
analysis algorithm to provide witness traces.

One of the challenges that we faced was to find ways of coping with the differ-
ences that arise when property checking is performed at the machine-instruction
level, rather than on an IR created from source code. In particular, the domains
of discourse—the alphabets of actions to which the automata respond—are dif-
ferent in the two situations. This issue is discussed in §4.

The remainder of the paper is organized as follows: §2 provides background on
recovering intermediate representations (IRs) from executables. §3 describes the
extensions that we made to our algorithm for IR-recovery from low-level code
to perform path-sensitive property checking. §4 presents experimental results.
Related work is discussed in §5.

2 Background on Intermediate-Representation Recovery

DDA/x86 makes use of the IR-recovery algorithms of CodeSurfer/x86 [4–7]. This
section explains some of the ideas used in those algorithms that are important
to understanding how they were extended to support path-sensitivity.

The IR-recovery algorithms of CodeSurfer/x86 recover from a device-driver
executable IRs that are similar to those that would be available had one started
from source code. CodeSurfer/x86 recovers IRs that represent control-flow graphs
(CFGs), with indirect jumps resolved; a call graph, with indirect calls resolved;
information about the program’s variables; possible values of pointer variables;
sets of used, killed, and possibly-killed variables for each CFG node; and data
dependences. The techniques employed by CodeSurfer/x86 do not rely on de-
bugging information being present, but can use available debugging information
(e.g., Windows .pdb files) if directed to do so.

The analyses used in CodeSurfer/x86 (see [4–6]) are a great deal more am-
bitious than even relatively sophisticated disassemblers, such as IDAPro [24].
At the technical level, they address the following problem: Given a (possibly
stripped) executable E, identify the procedures, data objects, types, and libraries

that it uses, and, for each instruction I in E and its libraries, for each inter-
procedural calling context of I, and for each machine register and variable V in
scope at I, statically compute an accurate over-approximation to the set of values
that V may contain when I executes.
Variable and Type Discovery. One of the major stumbling blocks in an-
alyzing executables is the difficulty of recovering information about variables
and types, especially for aggregates (i.e., structures and arrays). When perform-
ing source-code analysis, the programmer-defined variables provide us with the
compartments for tracking data manipulations. When debugging information is
absent, an executable’s data objects are not easily identifiable. Consider, for in-
stance, an access on a source-code variable x in some source-code statement. At
the machine-instruction level, an access on x is performed either directly—by
specifying an absolute address—or indirectly—through an address expression of
the form “[base + index × scale + offset]”, where base and index are registers
and scale and offset are integer constants. The variable and type-discovery phase
of CodeSurfer/x86 [4, 6] recovers information about variables that are allocated
globally, locally (i.e., on the run-time stack), and dynamically (i.e., from the
heap). The recovered variables, called a-locs (for “abstract locations”) are the
basic variables used in the extension of the VSA algorithm described in §3.

To accomplish this task, CodeSurfer/x86 makes use of a number of analyses,
and the sequence of analyses performed is itself iterated [4, 6]. On each round,
CodeSurfer/x86 uses VSA to identify an over-approximation of the memory
accesses performed at each instruction. Subsequently, the results of VSA are
used to perform aggregate structure identification (ASI) [28], which identifies
commonalities among accesses to different parts of an aggregate data value, to
refine the current set of a-locs. The new set of a-locs are used to perform another
round of VSA. If the over-approximation of memory accesses computed by VSA
improves from the previous round, the a-locs computed by the subsequent round
of ASI may also improve. This process is repeated as long as desired, or until
the process converges. By this means, CodeSurfer/x86 bootstraps its way to a
set of a-locs that serve as proxies for the program’s original variables.

3 Property Checking in Executables using VSA

This section describes the extensions that we made to our IR-recovery algorithm
to perform path-sensitive property checking. Consider the following memory-
safety property: p should not be dereferenced if its value is NULL. Fig. 2 shows
an FSM that checks for property violations. One approach to determining if there
is a null-pointer dereference in the executable is to start from the initial state
(UNSAFE) at the entry point of the executable, and find an over-approximation
of the set of reachable states at each statement in the executable. This can be
done by determining the states for the successors at each statement based on
the transitions in the FSM that encodes the memory-safety property.

Another approach is to use abstract interpretation to determine the abstract
memory configurations at each statement in the routine, and use the results to

check the memory-safety property. For executables, we could use the information
computed by the IR-recovery algorithms of CodeSurfer/x86 [7]. For instance, for
each instruction I in an executable, the value-set analysis (VSA) algorithm [4–6]
used in CodeSurfer/x86 determines an over-approximation of the set of memory
addresses and numeric values held in each register and variable when I executes.

Suppose that we have the results of VSA and want to use them to check the
memory-safety property; the property can be checked as follows:

If the abstract set of addresses and numeric values computed for p possibly
contains NULL just before a statement, and the statement dereferences p, then
the memory-safety property is potentially violated.

Unfortunately, the approaches described above would result in a lot of false
positives because they are not path-sensitive. To overcome the limitations of the
two approaches described above, DDA/x86 follows Das et al. [17] and Fischer et
al. [20], who showed how to obtain a degree of path-sensitivity by combining the
propagation of automaton states with the propagation of abstract-state values
during abstract interpretation. The remainder of this section describes how the
propagation of property-automaton states can be incorporated into the VSA
algorithm to obtain a degree of path-sensitivity.

UNSAFE

SAFE

ERROR

p ≠ NULLp = NULL

*p

*

p ≠ NULL

p = NULL

Fig. 2. An FSM that en-
codes the rule that pointer
p should not be dereferenced
if it is NULL.

To simplify the discussion, the ideas are ini-
tially described for a simplified version of VSA,
called context-insensitive VSA [5]; the combi-
nation of automaton-state propagation with the
context-sensitive version of VSA [4, Ch. 3] is dis-
cussed at the end of the section. The context-
insensitive VSA algorithm associates each pro-
gram point with an AbsEnv value [4, 6], which
represents a set of concrete (i.e., run-time) states
of a program. An element in the AbsEnv do-
main associates each a-loc and register in the ex-
ecutable with an abstract value that represents
a set of memory addresses and numeric values.
Let State denote the set of property-automaton
states. The path-sensitive VSA algorithm associates each program point with an
AbsMemConfigps value, where AbsMemConfigps = ((State × State) → AbsEnv⊥).

In the pair of property-automaton states at a node n, the first component
refers to the state of the property automaton at the enter node of the procedure
to which node n belongs, and the second component refers to the current state
of the property automaton at node n. If an AbsEnv entry for the pair 〈s0, scur〉
exists at node n, then n is possibly reachable with the property automaton in
state scur from a memory configuration at the enter node of the procedure in
which the property automaton was in state s0.

The path-sensitive VSA algorithm is shown in Fig. 3. The worklist consists
of triples of the form 〈State, State, Node〉. A triple 〈enter state, cur state, n〉 is
selected from the worklist, and for each successor edge of node n, a new AbsEnv

value is computed by applying the corresponding abstract transformer (line [11]).

After computing a new AbsEnv value, the set of pairs of states for the succes-
sor is identified (see the GetSuccStates procedure in Fig. 3). For an intraprocedu-
ral edge pred→succ, the set of pairs of states for the target of the edge is obtained
by applying the NextStates function to 〈enter state, cur state〉 (line [34]). The
NextStates function pairs enter state with all possible second-component states
according to the property automaton’s transition relation for edge pred→succ.
For a call→enter edge, the only new state pair is the pair 〈cur state, cur state〉
(line [30]). For an exit→end-call edge, the set of pairs of states for the end-call
node is determined by examining the set of pairs of states at the correspond-
ing call (lines [24]–[28]); for each 〈call enter state, call cur state〉 at the call node
such that (call cur state = enter state), the pair 〈call enter state, cur state〉 is
added to the result.

Note that the condition (call cur state = enter state) at line [25] checks if
〈enter state, cur state〉 at the exit node is reachable, according to the property
automaton, from 〈call enter state, call cur state〉 at the call node. The need to
check the condition (call cur state = enter state) at an exit node is the reason for
maintaining a pair of states at each node. If we do not maintain a pair of states,
it would not be possible to determine the property-automaton states at the call
that reach the given property-automaton state at the exit node. (In essence,
we are doing a natural join a tuple at a time: the subset of State × State at
the call node represents a reachability relation R1 for the property automaton’s
possible net change in state as control moves from the caller’s enter node to the
call site; the subset of State × State at the exit node represents a reachability
relation R2 for the automaton’s net change in state as control moves from the
callee’s enter node to the exit node. The subset of State × State at the end-
call node, representing a reachability relation R3, is their natural join, given by
R3(x, y) = ∃z. R1(x, z) ∧ R2(z, y). Thus, technically our extension amounts to
the use of the reduced cardinal power [16, 17, 20] of the edges in the transitive
closure of the automation’s transition relation and the original VSA domain.)

Finally, in the AbsMemConfigps value for the successor node, the AbsEnv

values for all the pairs of states that were identified by GetSuccStates are updated
with the newly computed AbsEnv value (see the Propagate function in Fig. 3).

It is trivial to combine the path-sensitive VSA algorithm in Fig. 3 and the
context-sensitive VSA algorithm to get a VSA algorithm that can distinguish
paths as well as calling contexts to a limited degree. In the combined algorithm,
each node is associated with a value from the following domain (where CallStringk

represents the set of call-string suffixes of length up to k [29]):
AbsMemConfigps-cs = ((CallStringk × State × State) → AbsEnv⊥).

4 Experiments

This section presents a case study in which we used DDA/x86 to analyze the
executables of Windows device drivers. The study was designed to test how well
different extensions of the VSA algorithm could detect problems in Windows
device drivers by analyzing device-driver executables—without accessing source

1: decl worklist: set of 〈State, State, Node〉
2:
3: proc PathSensitiveVSA()
4: worklist := {〈StartState, StartState, enter〉}
5: absMemConfigps

enter[〈StartState, StartState〉] := Initial values of global a-locs and esp
6: while (worklist 6= ∅) do

7: Select and remove a triple 〈enter state, cur state, n〉 from worklist
8: m := Number of successors of node n

9: for i = 1 to m do

10: succ := GetSuccessor(n, i)
11: edge amc := AbstractTransformer(n → succ, absMemConfigps

n [〈enter state, cur state〉])

12: succ states := GetSuccStates(enter state, cur state, n, succ)

13: for (each 〈succ enter state, succ cur state〉 ∈ succ states) do

14: Propagate(enter state, succ enter state, succ cur state, succ, edge amc)
15: end for

16: end for

17: end while

18: end proc

19:
20: proc GetSuccStates(enter state: State, cur state: State, pred: Node, succ: Node): set of

〈State, State〉
21: result := ∅
22: if (pred is an exit node and succ is an end-call node) then

23: Let c be the call node associated with succ
24: for each 〈call enter state, call cur state〉 in absMemConfigps

c do

25: if (call cur state = enter state) then

26: result := result ∪ {〈call enter state, cur state〉}

27: end if

28: end for

29: else if (pred is a call node and succ is an enter node) then

30: result := {〈cur state, cur state〉}

31: else

32: // Pair enter state with all possible second-component states according to
33: // the property automaton’s transition relation for input edge pred → succ
34: result := NextStates(pred→succ, 〈enter state, cur state〉)

35: end if

36: return result
37: end proc

38:
39: proc Propagate(pred enter state: State, enter state: State, cur state: State, n: Node, edge amc:

AbsEnv)
40: old := absMemConfigps

n [〈enter state, cur state〉]
41: if n is an end-call node then

42: Let c be the call node associated with n
43: edge amc := MergeAtEndCall(edge amc, absMemConfigps

c [〈enter state, pred enter state〉])
44: end if

45: new := oldtae edge amc
46: if (old 6= new) then

47: absMemConfigps

n [〈enter state, cur state〉] := new
48: worklist := worklist ∪ {〈enter state, cur state, n〉}
49: end if

50: end proc

Fig. 3. Path-sensitive VSA algorithm. (The function MergeAtEndCall merges
information from the abstract state at an exit node with information from the
abstract state at the call node (cf. [25]). Underlining indicates an action that
manages or propagates property-state information.)

code, symbol-tables, or debugging information. In particular, if DDA/x86 were
successful at finding the bugs that the Static Driver Verifier (SDV) [10, 12] tool
finds in Windows device drivers, that would be powerful evidence that our ap-
proach is viable—i.e., that it will be possible to find previously undiscovered
bugs in device drivers for which source code is not available, or for which com-
piler/optimizer effects make source-code analysis unsafe. We selected a subset of
drivers from the Windows Driver Development Kit (DDK) [1] release 3790.1830
for the case study. For each driver, we obtained an executable by compiling the
driver source code along with the harness and the OS environment model [10]
of the SDV toolkit. (Thus, as in SDV and other source-code-analysis tools, the
harness and OS environment models are analyzed; however, DDA/x86 analyzes
the executable code that the compiler produces for the harness and the models.
This creates certain difficulties, which are discussed below.)

A device driver is analogous to a library that exports a collection of subrou-
tines. Each subroutine exported by a driver implements an action that needs to
be performed when the OS makes an I/O request (on behalf of a user application
or when a hardware-related event occurs). For instance, when a new device is
attached to the system, the OS invokes the AddDevice routine provided by the
device driver; when new data arrives on a network interface, the OS calls the
DeviceRead routine provided by the driver; etc. For every I/O request, the OS
creates a structure called the “I/O Request Packet (IRP)”, which contains such
information as the type of the I/O request, the parameters associated with the
request, etc.; the OS then invokes the appropriate driver’s dispatch routine. The
dispatch routine performs the necessary actions, and returns a value that indi-
cates the status of the request. For instance, if a driver successfully completes
the I/O request, the driver’s dispatch routine calls the IoCompleteRequest API
function to notify the OS that the request has been completed, and returns the
value STATUS SUCCESS. Similarly, if the I/O request is not completed within the
dispatch routine, the driver calls the IoMarkPending API function and returns
STATUS PENDING.

A harness in the SDV toolkit is C code that simulates the possible calls to the
driver that could be made by the OS. An application generates requests, which
the OS passes on to the device driver. Both levels are modeled by the harness.
The harness defined in the SDV toolkit acts as a client that exercises all possible
combinations of the dispatch routines that can occur in two successive calls to
the driver. The harness that was used in our experiments calls the following
driver routines (in the order given below):

1. DriverEntry: initializes the driver’s data structures and the global state.
2. AddDevice: simulates the addition of a device to the system.
3. The plug-and-play dispatch routine (called with an IRP MN START DEVICE

I/O request packet): simulates the starting of the device by the OS.
4. Some dispatch routine, deferred procedure call, interrupt service routine,

etc.: simulates various actions on the device.
5. The plug-and-play dispatch routine (called with an IRP MN REMOVE DEVICE

I/O request packet): simulates the removal of the device by the OS.

6. Unload: simulates the unloading of the driver by the OS.

The OS environment model in the SDV toolkit consists of a collection of
functions (written in C) that conservatively model the API functions in the
Windows DDK. The models are conservative in the sense that they simulate
all possible behaviors of an API function. For instance, if an API function Foo

returns the value 0 or 1 depending upon the input arguments, the model for Foo
consists of a non-deterministic if statement that returns 0 in the true branch
and 1 in the false branch. Modeling the API functions conservatively enables a
static-analysis tool to explore all possible behaviors of the API.

WYSINWYX. We had to make some changes to the OS models used in
the SDV toolkit because SDV’s models were never meant to be compiled and
used, in compiled form, as models of the OS environment by an analyzer that
works on machine instructions, such as DDA/x86. These problems showed up
as instances of the WYSINWYX phenomenon. For instance, each driver has a
device-extension structure that is used to maintain extended information about
the state of each device managed by the driver. The number of fields and the type
of each field in the device-extension structure is specific to a driver. However,
in SDV’s OS model, a single integer variable is used to represent the device-
extension object. Therefore, in a driver executable built using SDV’s models,
when the driver writes to a field at offset o of the device-extension structure, it
would appear as a write to the memory address that is offset o bytes from the
memory address of the integer that represents the device-extension object.

We also encountered the WYSINWYX phenomenon while using SDV’s OS
models. For instance, the OS model uses a function named SdvMakeChoice to
represent non-deterministic choice. However, the body of SdvMakeChoice only
contains a single “return 0” statement.4 Consequently, instead of exploring all
possible behaviors of an API function, DDA/x86 would explore only a subset
of the behaviors of the API function. We had to modify SDV’s OS environment
model to avoid such problems.

Case Study. We chose the following “PendedCompletedRequest” rule for our
case study:

A driver’s dispatch routine should not return STATUS PENDING on an I/O
Request Packet (IRP) if it has called IoCompleteRequest on the IRP, unless
it has also called IoMarkIrpPending.

Fig. 4 shows the FSM for this rule.5

We used the three different variants of the VSA algorithm listed in Tab. 1 for
our experiments on a 64-bit Xeon 3GHz processor with 16GB (only 4GB/process)
of memory, and Tab. 2 presents the results. The column labeled “Result” indi-
cates whether the VSA algorithm reported that there is some node n at which the
ERROR state in the PendedCompletedRequest FSM is reachable, when one starts
from the initial memory configuration at the entry node of the executable.

4 According to T. Ball [9], the C front end used by SDV treats SdvMakeChoice specially.
5 According to the Windows DDK documentation, IoMarkPending has to be called

before IoCompleteRequest ; however, the FSM defined for the rule in SDV is the one
shown in Fig. 4. We used the same FSM for our experiments.

START

PENDING

COMPLETED

PENDING ∧∧∧∧COMPLETED

ERROR

A: “return status ≠≠≠≠ STATUS_PENDING”

A

A,B
A,B

B

B: “return status ==== STATUS_PENDING”

*

C

D C

D

C: IoMarkPending

D: IoCompleteRequest

D C,D

C

Fig. 4. Finite-state machine for the rule PendedCompletedRequest .

Config. A-locs Property Automaton

� IDAPro-based algorithm Fig. 4
} ASI-based algorithm Fig. 4
F ASI-based algorithm Cross-product of the automata in Figs. 4 and 6

Table 1. Variants of the VSA algorithm used in the experiments.

Configuration ‘�’ uses an algorithm that is similar to the one used in IDAPro
to recover variable-like entities. That algorithm does not provide variables of the
right granularity and expressiveness, and therefore, not surprisingly, configura-
tion ‘�’ reports many false positives for all of the drivers.6

Configuration ‘}’, which uses only the PendedCompletedRequest FSM, also
reports a lot of false positives. Fig. 5 shows an example that illustrates one of
the reasons for the false positives in configuration ‘}’. As shown in the right
column of Fig. 5, the set of values for status at the return statement (P3) for
the property-automaton state COMPLETED contains both STATUS PENDING and
STATUS SUCCESS. Therefore, VSA reports that the dispatch routine possibly vi-
olates the PendedCompletedRequest rule. The problem is as follows: because the
state of the PendedCompletedRequest automaton is the same after both branches
of the if statement at P1 are analyzed, VSA merges the information from both
of the branches, and therefore the correlation between c and status is lost after
the statement at P2.

Fig. 6 shows an FSM that enables VSA to maintain the correlation between
c and status. Basically, the FSM changes the abstraction in use, and enables
VSA to distinguish paths in the executable based on the contents of the variable
status. We refer to a variable (such as status in Fig. 6) that is used to keep
track of the current status of the I/O request in a dispatch routine as the status-
variable. To be able to use the FSM in Fig. 6 for analyzing an executable, it is

6 In this case, a false positive reports that the ERROR state is (possibly) reachable at
some node n, when, in fact, it is never reachable. This is sound (for the reachability
question), but imprecise.

� } F

Feasible Feasible Feasible
Driver Procedures Instructions Result Trace? Result Trace? Result Trace? Time Rounds
src/vdd/dosioctl/krnldrvr 70 2824 FP -

√
-

√
- 14s 2

src/general/ioctl/sys 76 3504 FP -
√

-
√

- 13s 2
src/general/tracedrv/tracedrv 84 3719 FP -

√
-

√
- 16s 2

src/general/cancel/startio 96 3861 FP -
√

-
√

- 12s 2
src/general/cancel/sys 102 4045 FP -

√
-

√
- 10s 2

src/input/moufiltr 93 4175 × No × No × Yes 3m 3s 5
src/general/event/sys 99 4215 FP -

√
-

√
- 20s 2

src/input/kbfiltr 94 4228 × No × No × Yes 2m 53s 5
src/general/toaster/toastmon 123 6261 FP - FP -

√
- 4m 1s 3

src/storage/filters/diskperf 121 6584 FP - FP -
√

- 3m 17s 3
src/network/modem/fakemodem 142 8747 FP - FP -

√
- 11m 6s 3

src/storage/fdc/flpydisk 171 12752 FP - FP - FP - 1h 6m 5
src/input/mouclass 192 13380 FP - FP - FP - 40m 26s 5
src/input/mouser 188 13989 FP - FP - FP - 1h 4m 5
src/kernel/serenum 184 14123 FP - FP -

√
- 19m 41s 2

src/wdm/1394/driver/1394diag 171 23430 FP - FP - FP - 1h33m 5
src/wdm/1394/driver/1394vdev 173 23456 FP - FP - FP - 1h38m 5

Table 2. Results of checking the PendedCompletedRequest rule in Windows
device drivers. (

√
: passes rule; ×: a real bug found; FP: false positive.) See

Tab. 1 for an explanation of �, }, and F. (For the examples that pass the
rule, “Rounds” represents the number of VSA-ASI rounds required to prove the
absence of the bug; for the other examples, the maximum number of rounds was
set to 5.)

int dispatch routine(. . .) {
int status, c = 0;

.

.

.

status = STATUS PENDING;
P1:if(. . .) {

status = STATUS SUCCESS;
c = 1;

}
P2:

.

.

.
if(c == 1) {

IoCompleteRequest(. . .)
}
P3: return status;

}

Information at P3 with the FSM shown in Fig. 4
START:

c 7→ {0, 1}
status 7→ {STATUS SUCCESS, STATUS PENDING}

COMPLETED:
c 7→ {0, 1}
status 7→ {STATUS SUCCESS, STATUS PENDING}

Information at P3 with the FSM shown in Fig. 6
ST PENDING:

c 7→ {0}
status 7→ {STATUS PENDING}

ST NOT PENDING:

c 7→ {1}
status 7→ {STATUS SUCCESS}

Fig. 5. An example illustrating false positives in device-driver analysis.

necessary to determine the status-variable for each procedure. However, because
debugging information is usually not available, we use the following heuristic to
identify the status-variable for each procedure in the executable:

By convention, eax holds the return value in the x86 architecture. Therefore,
the local variable (if any) that is used to initialize the value of eax just before
returning from the dispatch routine is considered to be the status-variable.

Configuration ‘F’ uses the automaton obtained by combining the PendedCom-
pletedRequest FSM and the FSM shown in Fig. 6 (instantiated using the above
heuristic) using a cross-product construction. As shown in Tab. 2, for configu-
ration ‘F’, the number of false positives is substantially reduced.

It required substantial manual effort to find an abstraction that had sufficient
fidelity to reduce the number of false positives reported by DDA/x86. To create
a practical tool, it would be important to automate the process of refining the
abstraction based on the property be checked. The model-checking community
has developed many techniques that could be applicable, although the discussion
above shows that the definition of a suitable refinement can be quite subtle.

As a point of comparison, SDV also found the bugs in both “moufiltr” and
“kbfiltr”, but had no false positives in any of the examples. However, one should
not leap to the conclusion that machine-code-analysis tools are necessarily infe-
rior to source-code-analysis tools.

– The basic capabilities are different: DDA/x86 can analyze stripped device-
driver executables, which goes beyond the capabilities of SDV.

– The analysis techniques used in SDV and in DDA/x86 are incomparable:
SDV uses predicate-abstraction-based abstractions [21], plus abstraction re-
finement; DDA/x86 uses a combined numeric-plus-pointer analysis [5], to-
gether with a different kind of abstraction refinement [6]. Thus, there may
be examples for which DDA/x86 outperforms SDV.

Moreover, SDV is a multiple man-year effort, with a professional team at Mi-
crosoft devoted to its development. In contrast, the prototype DDA/x86 was cre-
ated in only a few man-months (although multiple man-years went into building
the underlying CodeSurfer/x86 infrastructure).

Property Automata for the Analysis of Machine Code. Property au-
tomata for the analysis of machine code differ from the automata used for source-
level analysis. In particular, the domain of discourse—the alphabet of actions to
which an automaton responds—is different when property checking is performed
at the machine-code level, rather than on an IR created from source code.

In some cases, it is possible to recognize a source-level action based on in-
formation available in the recovered IR. For instance, a source-code procedure
call with actual parameters is usually implemented as a sequence of instructions
that evaluate the actuals, followed by a call instruction to transfer control
to the starting address of the procedure. The IR-recovery algorithms used in
CodeSurfer/x86 will identify the call along with its arguments.

In other cases, a source-level action is not identifiable. One contributing fac-
tor is that a source-level action can correspond to a sequence of instructions.
Moreover, the instruction sequences for two source-level actions could be inter-
leaved. We did not have a systematic way to cope with such problems except to
rewrite the automaton of interest based on instruction-level actions.

Fortunately, most of the instruction-level actions that need to be tracked boil
down to memory accesses/updates. Because VSA is precise enough to interpret
many memory accesses [4, §7.5], it is possible for DDA/x86 to perform property
checking using the extended version of VSA described in §3. In our somewhat
limited experience, we found that for many property automata it is possible to
rewrite them based on memory accesses/updates so that they can be used for
the analysis of executables.

ST_UNKNOWN

ST_PENDING

ST_NOT_PENDING

A: “status : ==== x, where x ≠≠≠≠ STATUS_PENDING”

C

B

B: “status : ==== STATUS_PENDING”

A

C: “status : ==== ?”B
A

C

C

Fig. 6. Finite-state machine that tracks the contents of the variable status.

Finding a Witness Trace. If the VSA algorithm reports that the ERROR

state in the property automaton is reachable, it is useful to find a sequence of
instructions that shows how the property automaton can be driven to ERROR.
Rather than extending the VSA implementation to generate and manage ex-
plicitly the information required for reporting witness traces, we exploited the
fact that the standard algorithms for solving reachability problems in pushdown
systems (PDSs) [14, 19] provide a witness-trace capability to show how a given
(reachable) configuration is reachable.

The algorithm described in §3 was augmented to emit the rules of a PDS
on-the-fly. The PDS constructed is equivalent to a PDS that would be obtained
by a cross-product of the property automaton and a PDS that models the inter-
procedural control-flow graph, except that, by emitting the PDS on-the-fly as
VSA variant ‘F’ is run, the cross-product PDS is pruned according to what the
VSA algorithm and the property automaton both agree on as being reachable.
The PDS is constructed as follows:

PDS rules Control flow modeled
〈q, [n0, s]〉 ↪→ 〈q, [n1, s

′]〉 Intraprocedural CFG edge from node n0 in state s

to node n1 in state s′

〈q, [c, s]〉 ↪→ 〈q, [enterP, s][r, s
′]〉 Call to procedure P from c in state s that returns

〈q[xP,s
′], [r, s

′]〉 ↪→ 〈q, [r, s′]〉 to r in state s′.
〈q, [xP, s

′]〉 ↪→ 〈q[xP,s
′], ε〉 Return from P at exit node xP in state s′

In our case, to obtain a witness trace, we merely use the witness trace re-
turned by the PDS reachability algorithm to determine if a PDS configuration
〈q, [n, ERROR]〉—where n is a node in the interprocedural CFG—is reachable from
the configuration 〈q, entermain〉.

Because the PDS used for reachability queries is based on the results of
VSA, which computes an over-approximation of the set of reachable concrete
memory states, the witness traces provided by the reachability algorithm may
be infeasible. In our experiments, only for configuration ‘F’ were the witness
traces for kbfiltr and moufiltr feasible. (Feasibility was checked by hand.)

This approach is not specific to VSA; it can be applied to essentially any
worklist-based dataflow-analysis algorithm when it is extended with a property
automaton, and provides a conceptually low-cost mechanism for augmenting
such algorithms to provide witness traces.

5 Related Work

DDA/x86 is the first known application of program analysis/verification tech-
niques to stripped industrial executables. Among other techniques, it combines
the IR-recovery algorithms from CodeSurfer/x86 [4–6] with the path-sensitive
method of interpreting property automata from ESP [17].

A number of algorithms have been proposed in the past for verifying prop-
erties of programs when source code is available [10, 12, 13, 17, 20, 22]. Among
these techniques, SDV [10, 12] and ESP [17] are closely related to DDA/x86.
SDV builds a Boolean representation of the program using predicate abstrac-
tion; it reports a possible property violation if an error state is reachable in the
Boolean model. In contrast, DDA/x86 uses value-set analysis [5, 4] (along with
property simulation) to over-approximate the set of reachable states; it reports
a possible property violation if the error state is reachable at any instruction in
the executable. To eliminate spurious error traces, SDV uses counter-example-
guided abstraction refinement, whereas DDA/x86 leverages path sensitivity ob-
tained by combining property simulation and abstract interpretation. In this
respect, DDA/x86 is more closely related to ESP—in fact, the algorithm in §3
was inspired by ESP. However, unlike ESP, DDA/x86 provides a witness trace
for a possible bug, as described in §4. Moreover, DDA/x86 uses a different kind
of abstraction refinement [6].

Although combining the propagation of property-automaton states and ab-
stract interpretation provides a degree of path sensitivity, it was not always
sufficient to eliminate all of the false positives for the examples in our test
suite. Therefore, we also distinguished paths based on the abstract state (us-
ing the automaton shown in Fig. 6) in addition to distinguishing paths based
on property-automaton states. While the results of our experiments are encour-
aging, it required a lot of manual effort to reduce the number of false positives:
spurious error traces were examined by hand, and the automaton in Fig. 6 was
introduced to refine the abstraction in use. For DDA/x86 to be usable on a
day-to-day basis, it would be important to automate the process of reducing the
number of false positives. Several techniques have been proposed to reduce the
number of false positives in abstract interpretation, including trace partitioning
[26], qualified dataflow analysis [23], and the refinement techniques of Fisher et
al. [20] and Dhurjati et al. [18]. All of these techniques are potentially applicable
in DDA/x86.

References

1. http://www.microsoft.com/whdc/devtools/ddk/default.mspx.
2. Defrauding the WHQL driver certification process, March 2004.

http://blogs.msdn.com/oldnewthing/archive/2004/03/05/84469.aspx.
3. C++ for kernel mode drivers: Pros and cons, February 2007. WHDC web site,

http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx.
4. G. Balakrishnan. WYSINWYX: What You See Is Not What You eXecute. PhD

thesis, C.S. Dept., Univ. of Wisconsin, Madison, WI, August 2007. TR-1603.

5. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
CC, 2004.

6. G. Balakrishnan and T. Reps. DIVINE: DIscovering Variables IN Executables. In
VMCAI, 2007.

7. G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian,
S. Yong, C.-H. Chen, and T. Teitelbaum. Model checking x86 executables with
CodeSurfer/x86 and WPDS++. In CAV, 2005.

8. G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. WYSINWYX: What
You See Is Not What You eXecute. In IFIP Working Conf. on VSTTE, 2005.

9. T. Ball. Personal communication, February 2006.
10. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-

drusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
In EuroSys, 2006.

11. T. Ball and S.K. Rajamani. Bebop: A symbolic model checker for Boolean pro-
grams. In Spin Workshop, 2000.

12. T. Ball and S.K. Rajamani. The SLAM toolkit. In CAV, 2001.
13. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In PLDI, 2003.
14. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model checking. In CONCUR, 1997.
15. A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of

operating systems errors. In SOSP, 2001.
16. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

POPL, 1979.
17. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in

polynomial time. In PLDI, 2002.
18. D. Dhurjati, M. Das, and Y. Yang. Path-sensitive dataflow analysis with iterative

refinement. In SAS, pages 425–442, 2006.
19. A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to model checking

pushdown systems. Elec. Notes in Theor. Comp. Sci., 9, 1997.
20. J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with predicates. In FSE,

2005.
21. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV,

1997.
22. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL,

2002.
23. L.H. Holley and B.K. Rosen. Qualified data flow problems. TSE, 7(1):60–78, 1981.
24. IDAPro disassembler, http://www.datarescue.com/idabase/.
25. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC, 1992.
26. L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based

static analyzers. In ESOP, 2005.
27. W. Oney. Programming the Microsoft Windows Driver Model. Microsoft, 2003.
28. G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its

application to program analysis. In POPL, 1999.
29. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.
30. M.M. Swift, M. Annamalai, B.N. Bershad, and H.M. Levy. Recovering device

drivers. In OSDI, 2004.
31. M.M. Swift, B.N. Bershad, and H.M. Levy. Improving the reliability of commodity

operating systems. ACM Trans. Comput. Syst., 23(1), 2005.

