
Donut Domains: Efficient Non-convex Domains

for Abstract Interpretation

Khalil Ghorbal1, Franjo Ivančić1, Gogul Balakrishnan1,
Naoto Maeda2, and Aarti Gupta1

1 NEC Laboratories America, Inc.
2 NEC Corporation, Kanagawa 211-8666, Japan

Abstract. Program analysis using abstract interpretation has been suc-
cessfully applied in practice to find runtime bugs or prove software cor-
rect. Most abstract domains that are used widely rely on convexity for
their scalability. However, the ability to express non-convex properties is
sometimes required in order to achieve a precise analysis of some numer-
ical properties. This work combines already known abstract domains in
a novel way in order to design new abstract domains that tackle some
non-convex invariants. The abstract objects of interest are encoded as a
pair of two convex abstract objects: the first abstract object defines an
over-approximation of the possible reached values, as is done customar-
ily. The second abstract object under-approximates the set of impossible
values within the state-space of the first abstract object. Therefore, the
geometrical concretization of our objects is defined by a convex set minus
another convex set (or hole). We thus call these domains donut domains.

1 Introduction

Efficient program analysis using abstract interpretation [12] typically uses con-
vex domains such as intervals, octagons, zonotopes or polyhedra [11,13,15,18,27].
However, certain properties of interest require reasoning about non-convex struc-
tures. One approach to non-convex reasoning is to utilize powerset domains of
elementary convex domains [3,5,21,22]. In general, it has proved to be difficult to
provide satisfactory improvements over elementary convex domains with pow-
erset domains while maintaining small enough performance degradation. Fur-
thermore, it would be difficult to maintain enough disjunctions in the powerset
depending on the particular non-convex shape being approximated. Note, how-
ever, that the recently proposed Boxes domain by Gurfinkel and Chaki [21]
can potentially represent exponentially many interval constraints compactly. It
utilizes a BDD-like extension to elementary range constraints called LDD [9].
However, we are interested in relational domains such as octagons, zonotopes or
polyhedra as well.

Additional non-convex domains based on congruence analysis (either lin-
ear [20] or trapezoid [26]) have been developed. Such domains capture a congru-
ence relation that variables satisfy and are suitable for the analysis of indexes of
arrays for instance. Recent work by Chen et al. considered a polyhedral abstract

V. Kuncak and A. Rybalchenko (Eds.): VMCAI 2012, LNCS 7148, pp. 235–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

236 K. Ghorbal et al.

domain with interval coefficients [10]. This abstract domain has the ability to
express certain non-convex invariants. For example, in this domain some mul-
tiplications can be evaluated precisely. Other interesting non-convex abstract
domains were introduced to capture specific invariants such as min-max invari-
ants [2] and quadratic templates [1].

We address a different type of non-convexity commonly occurring in software,
which relates to small sub-regions of instability within a normal operating (con-
vex) region of interest. The non-convex region of values that may cause the bug
is (under-)approximated using a convex inner region (or hole) that is subtracted
from a convex outer region. We call this representation donut domains. Our ap-
proach relies on the usual operations defined on (convex) sub-domains, except
for the need to compute under-approximations in the inner domain. The donut
domains give a convenient framework to reason about disequality constraints in
abstract domains such as in [29]. It can be considered as a generalization of the
work on signed types domain introduced in [28]. There, we start with a finite set
of types, and allow a set-minus operation only from the universal set.

Under-approximations of polyhedra. Under-approximations have been uti-
lized for applications such as test vector generation and counterexample gen-
eration, by providing must-reach sets. Bemporad et al. introduced the notion
of inner-approximations of polyhedra using intervals in [7]. In [24], polyhedra
are under-approximated for test vector generation of Simulink/Stateflow models
using a bounded vertex representation (BVR). Goubault and Putot describe a
method to compute an under-approximating zonotope [19] using modal inter-
vals [17] for non-linear operations.

In this work, we propose a novel technique to find under-approximations of
polyhedra based on a fixed template. We first re-formulate the problem by intro-
ducing an auxiliary matrix. This matrix represents the fact that we are looking
for an inner polyhedral object of a particular shape. Using this auxiliary matrix
re-formulation, we can then use standard convex analysis techniques to charac-
terize an under-approximations of polyhedra.

Motivating example. Figure 1 highlights a code snippet taken from XTide 1.
The XTide package provides accurate tide and current predictions in a number
of formats based on algorithms. Similar patterns may exist in controller-related
software to avoid regions of controller or numerical instability.

After the step marked initializations, (dx, dy) could be any point in R
2

except the origin (0, 0). In our analysis, this particular point is kept and prop-
agated forward as a “hole”. After the if-statement, the set of reachable values
is: (dy > dx ∧ dy > −dx) ∨ (−dy > dx ∧ −dy > −dx). The above region is
non-convex; therefore, a classical abstract domain will end up at this control
point with � for both variables. Moreover, here, the interpretation of the strict
inequality of the test is required to prove that dx �= 0. The else case is even
harder: in addition to the non-convexity of the set of possible values, one needs

1 See www.flaterco.com/xtide

www.flaterco.com/xtide

Efficient Non-convex Domains for Abstract Interpretation 237

static void p_line16_primary (...) {

double dx , dy, x, y, slope;

... /* initializations */

if (dx == 0.0 && dy == 0.0) /* full -zero -test */

return ;

if (fabs(dy) > fabs(dx)) { /* fabs -based test */

slope = dx / dy; /* division -by-dy */

...

} else {

slope = dy / dx; /* division -by-dx */

...

}}

Fig. 1. Motivating example from XTide

to consider the full-zero-test together with the negation of |dy| > |dx|, to
prove that the division by dy is safe.

Contents. The rest of this paper is organized as follows. In section 2, we define
a new set of domains called donut domains. Section 3 proposes a novel method
to compute polyhedral under-approximations for arbitrary linear templates. Fi-
nally, in Section 4, first experiments and promising results are discussed.

2 Donut Abstract Domains

In this section we introduce donut domains, and define the operation on donut
domains based on operations in the component domains.

2.1 Lattice Structure

Let (A1,≤1,∪1,∩1,⊥1,�1, γ1) and (A2,≤2,∪2,∩2,⊥2,�2, γ2) denote two clas-
sical numerical abstract domains, where ≤�, ∪�,∩�,⊥�,��,γ� denote the partial
order, the join and meet operations, the bottom and top elements and the con-
cretization function of the classical abstract domain for � ∈ {1, 2}, respectively.

In this work, we extend a given abstract domain with an under-approximation
operator ᾰ, such that for any concrete object X , we have γ ◦ ᾰ(X) ⊆ X . An

abstract object X�
1\2 of the domain A1 \ A2 is defined by a pair of objects

(X�
1, X

�
2), such that X�

1 ∈ A1 and X�
2 ∈ A2. The object X

�
1\2 abstracts the set of

possible values reached by the variables as follows:

– The object X�
1 ∈ A1 represents an over-approximation of the set of reachable

values.
– The object X�

2 ∈ A2 represents an under-approximation of the set of un-

reachable values (usually within γ1(X
�
1)).

238 K. Ghorbal et al.

The concretization function is defined as follows.

γ1\2(X
�
1, X

�
2)

def
= γ1(X

�
1) \ γ2(X

�
2) .

Figure 2 depicts a concretization of a typical donut object where the domain A1

is the affine sets domain [16] and A2 is the octagons domain.

γ1(X
�
1)

x1

x2

(minus)

γ2(X
�
2)

x1

x2

=
x1

x2

Fig. 2. The concretization of a typical non-convex abstract object

One should keep in mind the implicit set of unreachable values implied by
γ1(X

�
1) – namely R

p \ γ1(X�
1) denoted in the sequel by γ̄1(X

�
1). Indeed, the set

of unreachable values is actually γ̄1(X
�
1) ∪ γ2(X

�
2). As said earlier, γ2(X

�
2) is a

(convex) under-approximation of the set of unreachable values. The fact that

the intersection γ1(X
�
1) ∩ γ2(X

�
2) is not empty permits to encode a hole inside

γ1(X
�
1) (see Figure 2).

Interval Concretization. The interval concretization of the variable xk, 1 ≤
k ≤ p, denoted by [xk], is defined by πk(γ1(X

�
1) \ γ2(X

�
2)), where πk denotes

the orthogonal projection of a given set onto dimension k. Note that [xk] ⊇
πk(γ1(X

�
1)) \ πk(γ2(X

�
2)). For instance in ([−2, 2]× [−2, 2], [−1, 1]× [−∞,+∞]),

we have [x2] = [−2, 2], whereas [−2, 2] \ [−∞,+∞] = ∅.
We embed A1 \ A2 with a binary relation and prove that it is a pre-order.

Definition 1. Given X�
1, Y

�
1 ∈ A1 and X�

2, Y
�
2 ∈ A2, we say that (X�

1, X
�
2) is

less than or equal to (Y �
1 , Y

�
2) denoted by (X�

1, X
�
2) ≤1\2 (Y �

1 , Y
�
2) if and only if

X�
1 ≤1 Y �

1 and

γ̄1(X
�
1) ∪ γ2(X

�
2) ⊇ γ̄1(Y

�
1) ∪ γ2(Y

�
2) . (1)

Proposition 1. The binary relation ≤1\2 is a pre-order over A1 \A2. It defines

an equivalence relation ∼ defined by (X�
1, X

�
2) ≤1\2 (Y �

1 , Y
�
2) and (Y �

1 , Y
�
2) ≤1\2

(X�
1, X

�
2) and characterized by X�

1 = Y �
1 (X�

1 ≤1 Y �
1 and Y �

1 ≤1 X�
1), γ2(X

�
2) ⊆

γ2(Y
�
2) ∪ γ̄1(Y

�
1) and γ2(Y

�
2) ⊆ γ2(X

�
2) ∪ γ̄1(X

�
1). We reuse the symbol ≤1\2 to

also denote the partial order quotiented by the equivalence relation ∼.

With respect to ≤1\2, we have

(⊥1,⊥2) ∼ (⊥1,�2) ≤1\2 (�1,�2) ≤1\2 (�1,⊥2);

Efficient Non-convex Domains for Abstract Interpretation 239

therefore, we define the bottom and top elements of A1 \ A2 by

⊥1\2
def
= (⊥1,−) �1\2

def
= (�1,⊥2) .

2.2 Decidability of the Order

Despite the non-convexity of γ̄, the equivalence class introduced in Proposition 1
suggests particular representatives of objects (X�

1, X
�
2) which are easily compa-

rable. Indeed, γ̄ is no longer involved when the concretization of the hole X�
2

is included in the concretization of X�
1. Moreover, observe that the definition

of the order relation ≤1\2 allows comparing two abstract objects having their
holes in two different abstract domains, since only the concretization functions
are involved in (1).

Proposition 2. Let (X�
1, X

�
2) and (Y �

1 , Y
�
2) be two elements of A1 \A2 such that

γ2(X
�
2) ⊆ γ1(X

�
1), and γ2(Y

�
2) ⊆ γ1(Y

�
1). Therefore, (X�

1, X
�
2) ≤1\2 (Y �

1 , Y
�
2) if

and only if X�
1 ≤1 Y �

1 and γ1(X
�
1) ∩ γ2(Y

�
2) ⊆ γ2(X

�
2).

The condition γ1(X
�
1) ∩ γ2(Y

�
2) ⊆ γ2(X

�
2), can be checked in the abstract world

rather than in the concrete domain up to the use of an expressive enough domain
for both A2 and A1: for instance a box and an octagon can be seen as special
polyhedra and the meet operation of the Polyhedra abstract domain can be used.

Let XP
1 denote the abstract representation in the Polyhedra domain of the

abstract object X�
1, that is αP(γ1(X

�
1)). To decide whether (X�

1, X
�
2) is less than

or equal to (Y �
1 , Y

�
2), we proceed as follows:

1. First, we “upgrade” X�
2 and Y �

2 to the Polyhedra domain. We denote by

(X�
1, X

P
2) and (Y �

1 , Y
P
2) the newly obtained abstract objects.

2. Then, we derive our particular representatives, namely (X�
1, X

P
1 ∩P XP

2) for

(X�
1, X

P
2) and (Y �

1 , Y
P
1 ∩P Y P

2) for (Y �
1 , Y

P
2) (∩P being the meet operation

in the Polyhedra domain).

3. Finally, we use Proposition 2 by checking for the inequalities X�
1 ≤1 Y

�
1 and

XP
1 ∩P Y P

1 ∩P Y P
2 ≤P XP

1 ∩P XP
2 .

2.3 Meet and Join Operations

We start with a simple example to clarify the intuition behind the formal defi-
nition given later.

Example 1. Consider a one-dimensional donut domain where A1 and A2 are
Intervals domains. Assume we are interested in computing

([0, 3], [1, 2]) ∪ ([1, 6], [2, 5]) .

240 K. Ghorbal et al.

The above join yields the following union of four intervals: [0, 1)∪ (2, 3]∪ [1, 2)∪
(5, 6], which can be combined without loss of precision into [0, 2)∪ (2, 3]∪ (5, 6],
or equivalently

[0, 6] \ ([2] ∪ (3, 5]) .

What the example suggests is that when computing a join of two elements
(X�

1, X
�
2) and (Y �

1 , Y
�
2), we often end up with multiple (not necessarily convex nor

connex) holes defined by (γ2(X
�
2)∪ γ̄1(X

�
1))∩ (γ2(Y

�
2)∪ γ̄1(Y

�
1)). By distributing

the meet over the join, we obtain:

(γ2(X
�
2)∩ γ2(Y

�
2))∪ (γ2(X

�
2)∩ γ̄1(Y

�
1))∪ (γ2(Y

�
2)∩ γ̄1(X

�
1))∪ (γ̄1(X

�
1)∩ γ̄1(Y

�
1)) .

An under-approximation of the final element γ̄1(X
�
1) ∩ γ̄1(Y

�
1) is implicit since

the over-approximation of reachable values is given by X�
1 ∪1 Y

�
1 . Thus, only the

intersection of the first three sets will be considered (which is sound). In our
example, γ̄([1, 6]) = [−∞, 1) ∪ (6,+∞], and γ̄([0, 3]) = [−∞, 0) ∪ (3,+∞], this
gives [1, 2] ∩ [2, 5] = [2, 2] and

[1, 2] ∩ ([−∞, 1) ∪ (6,+∞]) = ∅
[2, 5] ∩ ([−∞, 0) ∪ (3,+∞]) = (3, 5] .

As said earlier, the intersection ([−∞, 1) ∪ (6,+∞]) ∩ ([−∞, 0) ∪ (3,+∞]) is
implicit since it is covered by γ̄1([0, 3] ∪ [1, 6]).

We now formalize the join operator:

(X�
1, X

�
2) ∪1\2 (Y

�
1 , Y

�
2)

def
= (X�

1 ∪1 Y
�
1 , (X

�
1, X

�
2)∩̆(Y

�
1 , Y

�
2)),

where ∩̆ is defined by:

(X�
1, X

�
2)∩̆(Y

�
1 , Y

�
2)

def
=

ᾰ((γ2(X
�
2) ∩ γ2(Y

�
2)) ∪ (γ2(X

�
2) ∩ γ̄1(Y

�
1)) ∪ (γ2(Y

�
2) ∩ γ̄1(X

�
1))) .

We may perform heuristic checks to prioritize which hole (if many) to keep,
which may also depend on the under-approximation abstraction function ᾰ. For
instance we may choose an inner approximation (if working with closed domains)
of the hole (3, 5] instead of choosing the hole [2, 2].

Notice also that we have a straightforward fallback operator ∩̆fb, that involves
only X�

2 and Y �
2 :

X�
2∩̆fbY

�
2

def
= ᾰ(γ2(X

�
2) ∩ γ2(Y

�
2)) .

The operator is sound with respect to under-approximation. It focuses only on a
particular hole, namely γ2(X

�
2) ∩ γ2(Y

�
2), instead of considering all possibilities.

In our current implementation, we use this fallback operator in a smart manner:
before computing the meet of both holes, we relax, whenever possible, in a convex
way, these holes. This relaxation is performed by removing all constraints that

Efficient Non-convex Domains for Abstract Interpretation 241

x

y

becomes
x

y

Fig. 3. Relaxing the hole (0, 0) (red circle in the left hand side figure) to x ≥ 0

could be removed while preserving γ1(X
�
1). For instance, if the hole is the point

(0, 0), and the abstraction of X�
1 is given by the conjunction y ≥ x ∧ −y ≥ x,

then the hole (0, 0) is relaxed to x ≥ 0 (see Figure 3).
For the meet operation, we proceed in a similar manner. If the domain A2 is

closed under the meet operation (almost all polyhedra-like abstract domains),
it is possible to replace ᾰ by α, and ∩̆fb by ∩2. In our example, the fallback
operator gives the box [2, 2].

The meet operator ∩1\2 is defined in a similar manner:

(X�
1, X

�
2) ∩1\2 (Y

�
1 , Y

�
2)

def
= (X�

1 ∩1 Y
�
1 , X

�
2∪̆Y

�
2)

where X�
2∪̆Y

�
2

def
= ᾰ2(γ2(X

�
2) ∪ γ2(Y

�
2)) .

We deliberately omit γ̄1(X
�
1) ∪ γ̄1(Y

�
1) in the above definition of ∪̆ because it

is implicit from X�
1 ∩1 Y

�
1 . If the domain A2 is closed under the join operation,

then ∪̆ is exactly equal to ∪2. Very often, however, the join operation leads to
an over-approximation. Therefore the detection of an exact join as in [8,6] is

of particular interest. In our current implementation, if X�
2 and Y �

2 overlap, we
soundly extend, in a convex way, the non-empty intersection. For instance, if
X�

2 = [−2, 1]× [−1, 1] and Y �
2 = [−1, 2]× [−2, 0], the intersection gives the box

[−1, 1] × [−1, 0], and the extension we compute gives the box [−2, 2]× [−1, 0].
If, however, the holes are disjoint, we randomly pick up one of them.

Example 2. Consider 2-dim simple abstract objects. Figure 4 shows a graphical
representation of two overlapping objects. The remaining sub-figures highlight
some of the pertinent steps with respect to the computation of ∪1\2 and ∩1\2
for such overlapping objects.

2.4 Loop Widening

When processing loop elements in abstract interpretation, we may require widen-
ing to guarantee termination of the analysis. For donut domains, we extend the
widening operations defined on the component abstract domains. We use the
pair-wise definition of widening operators ∇. We thus define widening of donut
domains as:

(X�
1, X

�
2)∇1\2(Y

�
1 , Y

�
2) = (X�

1∇1Y
�
1 , X

�
2 ∩2 Y

�
2) .

242 K. Ghorbal et al.

(a) (b) (c) (d) (e)

Fig. 4. Illustrating the join and meet operators using interval component domains.
The donut holes are highlighted using dashed lines. (a) Two initial abstract objects.
(b) The concrete union of the objects. (c) The abstract object representing ∪1\2. (d)
The concrete intersection of the objects. (e) The abstract object representing ∩1\2.

We use the standard widening operator ∇1 for abstract domain A1. Similarly,
we use the standard meet operator ∩2 of abstract domain A2 for the inner region,
which ensures the soundness of ∇1\2. The convergence of the first component is
guaranteed by the widening operator ∇1. The convergence of the second com-
ponent needs however more attention. Note that the simple use of narrowing
operator of A2 is unsound as it may give a donut object which is not an upper
bound. To ensure the termination we add a parameter k which will encode the
maximal number of allowed iterations. If the donut object does not converge
within those k iterations, the hole component is reduced to ⊥2. Note that the
use of the narrowing operator of A2 instead of ∩2 does not give in general an
upper bound of (X�

1, X
�
2) and (Y �

1 , Y
�
2).

2.5 Interpretation of Tests

The ability to express holes allows us to better handle a wide range of non-convex
tests such as the �= test or the strict inequality test. We start with classical tests.
For � ∈ {=,≤} :

�xk � 0��(X�
1, X

�
2)

def
= (�xk � 0��1(X

�
1), �xk � 0��1(X

�
2)),

where �·��2
def
= ᾰ2 ◦ �·�2. Such under-approximation is required so that the newly

computed (exact) hole can be encoded in A2. Therefore, if the exact hole fits
naturally inA2 (say we have a linear constraint andA2 is the Polyhedra domain),

there is no need to under-approximate (�·��2 = �·��2). In Section 3, we detail how
we compute such an under-approximation, whenever needed. If no algorithm is
available for the under-approximation, we keep the object X�

2 unchanged, which
is sound.

The non-equality test �= is defined as follows:

�xk �= 0��(X�
1, X

�
2)

def
= (�xk �= 0��(X�

1), ᾰ(γ2(X
�
2) ∪ �xk = 0��2)) .

Although �xk �= 0��(X�
1) is interpreted as the identity function in standard im-

plementations, nothing prevents the use of any available enhancement proposed

Efficient Non-convex Domains for Abstract Interpretation 243

by the used analyzer. For the hole, we compute the join of the new hole im-
plied by the constraint xk �= 0 together with the already existing hole X�

2. If

holes γ2(X
�
2) and �xk = 0��2 do not overlap, we discard X�

2. In fact, very often
(as will be seen in experiments), the hole induced by the constraint xk �= 0 is
mandatory in order to prove the safety of subsequent computations.

Finally, our approach offers, for free, an interesting abstraction of the strict in-
equality tests. A comparison with Not Necessarily Closed domains [4] is planned
as future work.

�xk < 0��(X�
1, X

�
2)

def
= �xk �= 0�� ◦ �xk ≤ 0��(X�

1, X
�
2) .

2.6 Abstract Assignment

We define in this section the abstraction of the assignment transfer function
in A1 \ A2. We first give an abstraction of the forget transfer function (non-
deterministic assignment) :

�xk ←?��1\2(X
�
1, X

�
2)

def
= (Y �

1 , Y
�
2),

where Y �
1

def
= �xk ←?��1(X

�
1)

Y �
2

def
=

{
�xk ←?��2(X

�
2) if γ1(X

�
1) ∩ γ2(�xk ←?��2(X

�
2)) ⊆ γ2(X

�
2)

⊥2 otherwise .

For Y �
2 , we basically check whether applying the forget operator to X�

2 in-

tersects γ1\2(X
�
1, X

�
2), by checking if this newly computed hole is included in

the original hole, that is γ2(X
�
2). If yes, Y

�
2 is set to ⊥2. For instance, forget-

ting x2 in (X�
1, X

�
2)

def
= ([−2, 2] × [−2, 2], [−1, 1] × [−∞,+∞]) gives ([−2, 2] ×

[−∞,+∞], [−1, 1] × [−∞,+∞]): since �x2 ←?��2(X
�
2) = [−1, 1] × [−∞,+∞],

γ1(X
�
1) ∩ γ2(�x2 ←?��2(X

�
2)) = [−1, 1]× [−2, 2] which is included in γ2(X

�
2). For-

getting x1, however, makes Y �
2 = ⊥2.

The assignment could be seen as a sequence of multiple basic, already defined,
operations. We distinguish two kind of assignments x← e, where e is an arith-
metic expression: (ı) non-invertible assignments, where the old values of x are
lost, such as x ← c, c ∈ R, and (ıı) invertible assignments, such as x ← x + y.
For non-invertible assignment, we have:

�xk ← e��1\2
def
= �xk = e��1\2 ◦ �xk ←?��1\2 .

Invertible assignments are defined in a similar manner. It augments first the set
of variables by a new fresh variable, say v, then enforces the test v = e, and
finally forgets x and (syntactically) renames v to x. Notice that augmenting the
set of variables in A1 \ A2 makes the newly added variable, v, unconstrained in

both components, X�
1 and X�

2. We can suppose that such a variable v already
exists, and used whenever we have an invertible assignment; hence, we obtain:

�xk ← e��1\2
def
= swap(xk, v) in �xk ←?��1\2 ◦ �v = e��1\2 .

244 K. Ghorbal et al.

3 Template-Based under-Approximations of Polyhedra

In this section we develop a new technique to under-approximate holes obtained
after linear tests. Holes obtained after non-linear tests are so far reduced to ⊥2,
which is sound. We plan to improve this as a future work. Consider for instance
the object ([−2, 3]× [−2, 2], [−1, 1]× [0, 1]). Figure 5 depicts the exact evaluation
of a linear assignment. If we use boxes to encode holes, we need to compute a box
inside the white polytope. In Figure 6, an under-approximation is needed for all
convex domains, whereas a non-convex domain such as Interval Polyhedra [10]
can express exactly this kind of pattern.

x1

x2

Fig. 5. Evaluation of a linear expression
�x2 ← x1 + x2�

�
1\2

x1

x2

Fig. 6. Evaluation of a non-linear expres-
sion �x2 ← x1 × x2�

�
1\2

The problem can be seen as follows: given a polyhedron P , we seek to compute
a maximal (in a sense to define) inner polyhedron T (could be boxes, zones,
octagons, linear-templates, etc. depending on A2), which obeys the template
pattern matrix T .

Let P = {x ∈ R
p|Ax ≤ b} be a non-empty polyhedron, where A is a known

m×pmatrix, b a known vector of Rm, and x a vector of Rp. The inner polyhedron
T is expressed in a similar manner: T = {x ∈ R

p|Tx ≤ c}, where T is a known
n× p matrix, and c and x are unknown vectors within R

n and R
p, respectively.

The inclusion T ⊆ P holds if and only if

∃c ∈ R
n, such that T is consistent, and ∀x ∈ R

p : Tx ≤ c =⇒ Ax ≤ b .

The consistency of T (that is the system admits a solution in R
p) discards the

trivial (and unwanted) cases where the polyhedron T is empty. For the non-
trivial cases, the existence of the vector c and the characterization of the set of
its possible values are given by Proposition 3.

Proposition 3. Let C be the set of c such that T is consistent. There exists a
vector c ∈ C such that T ⊆ P if and only if there exists an n ×m matrix Λ,
such that λi,j, the elements of the matrix Λ, are non-negative and ΛT = A. For
a given possible Λ, the set cΛ ⊆ C is characterized by

{c ∈ R
n | Λc ≤ b} .

Efficient Non-convex Domains for Abstract Interpretation 245

Proof. Let x denote a vector of Rp, and b denote a known vector of Rm. Let A
and T be two known matrices with p columns and m and n rows, respectively.
Suppose that c is such that T is consistent. Therefore, we can assume that

〈ti, x〉 ≤ ci, 1 ≤ i ≤ n,

where ti denotes the ith row of the matrix T , is consistent. For a fixed j, 1 ≤
j ≤ m, the inequality 〈aj , x〉 ≤ bj, is then a consequence of the system Tx ≤ c
if and only if there exist non-negative real numbers λi,j , 1 ≤ i ≤ n, such that

n∑
i=1

λi,jti = aj and

n∑
i=1

λi,jci ≤ bj .

The previous claim of the existence of the non-negative λi,j is a generalization
of the classical Farkas’ Lemma (see for instance [30, Section 22, Theorem 22.3]
for a detailed proof). The matrix Λ is then constructed column by column using
the elements λi,j , 1 ≤ i ≤ n for the jth column. Of course, by construction, such
a Λ has non-negative elements, and satisfies ΛT = A, and Λc ≤ b.

On the other hand, if such a matrix exists, and the set {c ∈ R
n | Λc ≤ b} is

not empty, we have by the fact that Λ has non-negative elements

Tx ≤ c =⇒ ΛTx ≤ Λc .

Therefore, ΛT = A and Λc ≤ b, gives Ax ≤ b. ��

On the Consistency of Tx ≤ c. It not obvious in general, given a matrix T , to
characterize the set of c such that T is consistent. However, given a vector c, we
can efficiently check whether the system is consistent or not using its dual form
and a LP solver. Indeed, the system Tx ≤ c is inconsistent if and only if there
exists a non-negative vector λ ∈ R

n such that T tλ = 0 and 〈λ, c〉 < 0, where T t

denotes the transpose of T . Therefore, given a vector c, if the objective value of
the following problem:

min 〈λ, c〉
s.t. T tλ = 0 .

(2)

is non-negative, the system is consistent. Observe that, for simple patterns such
as boxes, the characterization of the set of c that makes the system consistent is
immediate.

Computing Λ. The matrix Λ is built column by column. Let us denote by λ−,j ∈
R

n the jth column of Λ, by aj ∈ R
p, 1 ≤ j ≤ m, the jth row of A, by bj ∈ R the

jth component of b, and by ti ∈ R
p, 1 ≤ i ≤ m, the ith row of T . The vector

λ−,j satisfies
∑n

i=1 λi,jti = aj . To each feasible λ−,j corresponds a pattern

Pλ−,j

def
= {x ∈ R

p |
∧

λi,j>0

〈ti, x〉 ≤ 0},

246 K. Ghorbal et al.

which is included in the affine subspace Pj
def
= {x ∈ R

p | 〈aj , x〉 ≤ 0}. The
maximal pattern (with respect to set inclusion) corresponds to λ̄ defined as the
solution of the following linear program.

min

n∑
i=1

λi,j‖ti‖

s.t.

∑n
i=1 λi,jti = aj

∀0 ≤ i ≤ n, λi,j ≥ 0
.

(3)

Therefore, computing Λ needs solving p instances of the LP (3).

Computing c. We have already established (Proposition 3) that the vector c
verifies Λc ≤ b. Since Λ is known, any feasible c (that is such that Λc ≤ b) that
makes the system Tx ≤ c consistent (the objective value of the LP (2) is non-
negative) gives an under-approximation of P that respects our initial template
T . Of course, it is immediate to see that the set of c that lies on the boundaries
of the feasible region (that is by making Λc = b) gives, in general, a “better”
under-approximation than the strict feasible solutions since the saturation makes
some of the facets of the inner pattern (T) included in those of the under-
approximated polyhedron P . Moreover, in some cases, the saturation gives a
unique consistent solution for c. For instance, when we under-approximate a
shape P which respects already the pattern T , c is uniquely determined and
gives actually b using our technique. In other words, under-approximating an
octagon (for instance) with an octagonal pattern gives exactly the first octagon.

4 Implementation

We have implemented donut domains on top ofApron library [23]. The domains
A1 and A2 are parameters of the analysis and can be specified by the user
among already existing Apron domains. The current version uses an enhanced
implementation of the set-theoretic operators, mainly based on already existing
routines of the underlying abstract domains, as described earlier, and relies on
∪̆fb and ∩̆fb as fallback operators. This very simple approach allows to build
the donut domain without additional effort on top of already existing domains.
The analyzed examples2 (see Table 4) use mainly the absolute value function to
avoid the division by zero (widely used technique). The motiv example is the
motivating example with its two branches. The gpc code is extracted from the
Generic Polygon Clipper project. The examples xcor, goc and x2 are extracted
from a geometric object contact detection library. The WCfS column indicates
the weakest condition that we need to infer to prove the safety of the program.

2 www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php.
The C files are the real source code, while the SPL files extracts the hard piece
of code that leads to false alarms, and with which we feed our proof of concept
implementation.

www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php

Efficient Non-convex Domains for Abstract Interpretation 247

Table 1. Division-by-zero analysis results

WCfS boxes (hole) false alarms

motiv(if) dy �= 0 dy = 0 0
motiv(else) dx �= 0 dx = 0 0

gpc den �= 0 den ∈ [−0.1, 0.1] 0
goc d �= 0 d ∈ [−0.09, 0.09] 0
x2 Dx �= 0 Dx = 0 0
xcor usemax �= 0 usemax ∈ [1, 10] 1

Whenever the negation of this condition is verified by (included in) the donut
hole, the program is proved to be safe. The third column shows the inferred
donut holes when using a non-relational domain (boxes) to encode holes. As
Table 4 shows, our approach permits to catch almost all division-by-zero false
positives that classical domains (even non-convex) fail to prove. Here, the use of
boxes is sufficient to eliminate almost all false alarms here. In the last example,
among the two possible holes, namely usemax ∈ [1, 10] and usemax ∈ {0}, we
choose by default the one created immediately after the test (usemax > 10 or
usemax < 1). Here the safety property can not be proved with this hole and relies
on an earlier (disjoint) hole created by a former test, namely usemax ∈ {0}. We
could also choose systematically (as a heuristic) the hole that contains “zero”,
which is sufficient here to discard the remaining false alarm. Such a property-
driven hole behavior would be an interesting direction for future research.

The proof of the motivating example is really challenging as it requires to
handle both the hole that comes from the full-zero-test, together with strict
inequality tests and the over-approximation that comes from the join operation.
Our technique that consists of relaxing the hole in a convex way before using
the fallback operator works here and is able to prove that in both branches the
division is safe. In goc example, we can see one interesting ability of donuts
domain: when we compute a convex join of two non-overlapping objects, the
hole in between is directly captured which permits a better precision. Finally,
example x2 needs a precise interpretation of strict inequalities.

Under-approximation. We have implemented our technique of Section 3 using
the GLPK [25] solver. Some experiments, obtained for randomly generated poly-
hedra with octagonal template, are shown in Figure 7. Although all shown poly-
hedra are bounded, our technique works perfectly well for unbounded shapes.
The rate of volume, volT

volP , is used as a metric for the quality of the under-
approximation (shown near each pattern in Figure 7). All obtained octagons are
maximal with respect to set inclusion. It is not clear which choice among many
(see the left graph), is the best. Indeed, such a choice depends on the future
computations and the properties one would like to prove.

248 K. Ghorbal et al.

x

y9.72%

14.4%

24.45%

x

y

50%

x

y

83.33%
x

y

16.66%

Fig. 7. Under-approximation of randomly generated polyhedra with octagons

5 Conclusions and Future Work

The donut domains can be viewed as an effort to make some Boolean structure
in the underlying concrete space visible at the level of abstract domains as a
“set-minus” operator. This allows optimization of the related abstract opera-
tors (such as meet and join) to take full advantage of its semantics in terms of
excluded states. While powerset domains allow handling non-convex sets, this
comes at significant cost. In practice, the full expressiveness may not be needed.
We exploit the set-minus operator, which is quite versatile in capturing many
problems of interest - division by zero, instability regions in numeric computa-
tions, sets excluded by contracts in a modular setting, etc. In the future, we wish
to expand the experiments performed using donut domains. Furthermore, other
non-convexity issues may be addressed by trying to combine the work on LDDs
with insights gained here to allow handling many holes in an efficient manner.

Acknowledgments. The authors would like to thank Enea Zaffanella, Sriram
Sankaranarayanan, and anonymous reviewers for their valuable comments on an
earlier draft of this work.

References

1. Adjé, A., Gaubert, S., Goubault, E.: Coupling Policy Iteration with Semi-definite
Relaxation to Compute Accurate Numerical Invariants in Static Analysis. In: Gor-
don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg
(2010)

2. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring Min and Max Invariants Using
Max-Plus Polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 189–204. Springer, Heidelberg (2008)

3. Bagnara, R.: A hierarchy of constraint systems for data-flow analysis of constraint
logic-based languages. In: Science of Computer Programming, pp. 2–119 (1999)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: Not necessarily closed convex polyhedra
and the double description method. Form. Asp. Comput., 222–257 (2005)

Efficient Non-convex Domains for Abstract Interpretation 249

5. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
STTT 8(4-5), 449–466 (2006)

6. Bagnara, R., Hill, P.M., Zaffanella, E.: Exact join detection for convex polyhedra
and other numerical abstractions. Comput. Geom. 43(5), 453–473 (2010)

7. Bemporad, A., Filippi, C., Torrisi, F.D.: Inner and outer approximations of poly-
topes using boxes. Comput. Geom. 27(2), 151–178 (2004)

8. Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of
polyhedra. Comput. Geom. 18(3), 141–154 (2001)

9. Chaki, S., Gurfinkel, A., Strichman, O.: Decision diagrams for linear arithmetic.
In: FMCAD, pp. 53–60. IEEE (2009)

10. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval Polyhedra: An Abstract Domain
to Infer Interval Linear Relationships. In: Palsberg, J., Su, Z. (eds.) SAS 2009.
LNCS, vol. 5673, pp. 309–325. Springer, Heidelberg (2009)

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: 2nd Intl. Symp. on Programming, Dunod, France, pp. 106–130 (1976)

12. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the
variables of a program. In: POPL, pp. 84–97. ACM (January 1978)

14. Dams, D., Namjoshi, K.S.: Automata as Abstractions. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 216–232. Springer, Heidelberg (2005)

15. Ghorbal, K., Goubault, E., Putot, S.: The Zonotope Abstract Domain Taylor1+.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633.
Springer, Heidelberg (2009)

16. Ghorbal, K., Goubault, E., Putot, S.: A Logical Product Approach to Zonotope
Intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 212–226. Springer, Heidelberg (2010)

17. Goldsztejn, A., Daney, D., Rueher, M., Taillibert, P.: Modal intervals revisited: a
mean-value extension to generalized intervals. In: QCP (2005)

18. Goubault, É., Putot, S.: Static Analysis of Numerical Algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

19. Goubault, É., Putot, S.: Under-Approximations of Computations in Real Numbers
Based on Generalized Affine Arithmetic. In: Riis Nielson, H., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 137–152. Springer, Heidelberg (2007)

20. Granger, P.: Static Analysis of Linear Congruence Equalities Among Variables of a
Program. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493,
pp. 169–192. Springer, Heidelberg (1991)

21. Gurfinkel, A., Chaki, S.: Boxes: A Symbolic Abstract Domain of Boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010)

22. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of Linear Hybrid Systems
by Means of Convex Approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS,
vol. 864, pp. 223–237. Springer, Heidelberg (1994)

23. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

24. Kanade, A., Alur, R., Ivančić, F., Ramesh, S., Sankaranarayanan, S., Shashidhar,
K.C.: Generating and Analyzing Symbolic Traces of Simulink/StateflowModels. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 430–445. Springer,
Heidelberg (2009)

250 K. Ghorbal et al.

25. Makhorin, A.: The GNU Linear Programming Kit, GLPK (2000),
http://www.gnu.org/software/glpk/glpk.html

26. Masdupuy, F.: Array abstractions using semantic analysis of trapezoid congruences.
In: ICS, pp. 226–235 (1992)

27. Miné, A.: The octagon abstract domain. In: WCRE, pp. 310–319 (October 2001)
28. Prabhu, P., Maeda, N., Balakrishnan, G., Ivančić, F., Gupta, A.: Interprocedural

Exception Analysis for C++. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813,
pp. 583–608. Springer, Heidelberg (2011)

29. Péron, M., Halbwachs, N.: An Abstract Domain Extending Difference-Bound Ma-
trices with Disequality Constraints. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 268–282. Springer, Heidelberg (2007)

30. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)

http://www.gnu.org/software/glpk/glpk.html

	Donut Domains: Efficient Non-convex Domains for Abstract Interpretation

	Introduction
	Donut Abstract Domains
	Lattice Structure
	Decidability of the Order
	Meet and Join Operations
	Loop Widening
	Interpretation of Tests
	Abstract Assignment

	Template-Based under-Approximations of Polyhedra
	Implementation
	Conclusions and Future Work
	References

