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Abstract

Human communication involves a number of verbal, vocal, and non-verbal cues
that facilitate face-to-face communication. Building a computational understand-
ing of how these cues might facilitate social and cognitive processes will enable
new research directions in social and cognitive sciences and the design of so-
cially interactive systems such as agents and robots. In this paper, we present
preliminary work in modeling a particular communicative mechanism—listener
nods—toward designing humanlike agents and robots that show appropriate so-
cial behavior.∗

1 Introduction
A computational understanding of human social behavior including verbal, vocal, and nonverbal
cues will enable new directions in basic research in social and cognitive sciences and the design of
socially interactive systems such as humanlike agents and robots. Recent work in these areas has
shown that careful studies of temporal and spatial patterns in these cues help to better understand
developmental and traumatic injuries [3, 16] and design more effective communicative mechanisms
for artificial systems, particularly avatars in immersive environments [1], virtual characters [8], and
humanlike robots [14]. These promising results, however, are shadowed by major challenges in
modeling social cues, particularly due to significant differences across individuals, social situations,
and cultures [2, 4, 7] and interdependencies between people [5] and between social cues and cog-
nitive processes [6, 11]. The lack of appropriate computational methods to model these differences
and complex interdependencies further aggravate these challenges.

These challenges have led to the development of new approaches to modeling social cues that draw
on machine learning techniques [17, 12]. Our research seeks to contribute to the efforts in gaining
a computational understanding of human social cues with the goal of building socially adept hu-
manlike agents and robots. Existing approaches to this modeling problem have explored the use of
temporal models such as conditional random fields (CRFs) [13] and dynamic Bayesian networks
(DBNs) with semi-Markov processes [15]. Morency and his colleagues [12] developed a temporal
model called latent-dynamic conditional random fields (LDCRFs) that created a mapping between
observations of verbal and nonverbal cues from the speaker and listener nods and a hidden sub-
structure in a latent conditional model. The predictive power of this model outperforms alternative
stochastic approaches [12] and rule-based models [19]. This approach, however, uses a rich set
of human-coded conversational features that depend on precise speech and video analysis. In this
paper, we focus on building predictive models of social behavior, particularly listener nods in a sto-
rytelling scenario, using a small set of automatically extracted multimedia features that we can later
deploy in real-time human-computer interaction situations.

2 Methodology
Our exploration of how a small set of automatically extracted features might predict listener nods in-
volves (1) collecting multimodal data from a large number of dyadic interactions, (2) processing this
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Figure 1: The spatial and equipment setup of our data collection (left), snapshots from the three
video cameras (center), and automatically-extracted raw features and annotated output class (right).

data using speech and vision processing techniques to extract verbal and nonverbal “raw” features,
(3) engineering a feature vector that incorporates raw features and the temporal and interactional
interdependencies among them, (4) training an SVM-based learning algorithm using data from a
subset of the dyadic interactions we captured, and (5) testing the trained model with data from a
different subset of the interactions. This section describes these steps in detail.

2.1 Data Collection
Experimental Setup – Our experimental setup mimicked stereotypical face-to-face communication
in which two unfamiliar participants sit across each other at a “social distance” [9] of five feet (Figure
1). The data collection equipment included three high-definition video cameras at 1080p resolution
and 30p frame rate, two high-fidelity lapel microphones, and an omni-directional microphone. Two
of the cameras captured the upper torsos of the participants from a direct frontal angle and the lapel
microphones captured participants’ speech. The third camera and the omni-directional microphone
captured the speech and nonverbal behaviors of both participants from the side.

Experimental Task – The experimental task involved three conversational scenarios that we devel-
oped to capture a wide range of behavioral and interactional mechanisms. Nodding while listening is
an example of such mechanisms. These scenarios include storytelling, interviewing, and discussion.
The current study uses data collected only from the storytelling scenario in which one of the partic-
ipants narrated the plot of their favorite movie to the other participant. We expected this scenario to
provide us with a rich context to observe listener nods.

Procedure – The experiment started by providing participants with a brief description of the ex-
periment and asking participants to review and sign a consent form. The experimenter than seated
the participants, provided them with more detail on their conversational roles, and set up the data
collection equipment. Before performing the experimental task, participants performed an acclima-
tion task (getting acquainted). The participants then performed the three conversations in a stratified
order. At the end of the experiment, the experimenter debriefed the participants. The overall exper-
iment took a total of 45 minutes. Participants received $10 for their participation.

Participants – We recruited 48 participants (24 females and 24 males) from the University of
Wisconsin–Madison. They studied a diverse set of majors and aged between 18 and 28. All partic-
ipants were native English speakers. We assigned participants into dyads, conversational roles, and
conversational scenarios following a fully stratified design to control for effects of gender composi-
tion of the dyads and the ordering of conversations.

2.2 Cue Extraction
The final dataset included 4 hours and 52 minutes of audio and video data. To extract features of
social cues from this dataset, we used automatic audio and video processing techniques, particularly
speech segmentation, speaker classification, pitch extraction, head movement detection, and nod
detection. These processes are described below.

Speech Segmentation– To distinguish speech from silence, we calculated the maximum likelihood
of two Gaussian models that we estimated from frame energy using the Audioseg toolkit, 1 labeling
the audio frames with the lowest mean as silence.

1https://gforge.inria.fr/projects/audioseg
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Speaker Classification – We classified each speech segment as belonging to either the speaker or
the listener (while the listener’s role did not involve speaking, we observed a minimal amount of
speaking in the form of backchannel responses) by comparing the amount of energy in recordings
from the two participants’ microphones.

Pitch Extraction – Using the Praat toolkit,2 we calculated the pitch values for each speech segment
of the speaker and its slope to determine whether it ended with a rising or dipping intonation.

Head Movement Detection – To calculate the speaker’s of head movement, we identified the bounds
of the speaker’s face using the Viola-Jones algorithm [18] and calculated the horizontal and vertical
displacement using a frame-by-frame block-matching.

Head Nods – We identified nods by marking significant vertical displacements as backchannel state
changes following the algorithm described by Kawato and Ohya [10].

2.3 Modeling
Our final feature set incorporated a set of “raw” and “derived” features for any given frame of the
video and audio data. The raw features ri, where i indexes video frames, captured the following
binary and normalized continuous variables.

• The absence (0) or presence (1) of speech segments, speech = {0, 1}
• Whether the designated speaker (0) or listener (1) is speaking, speaker = {0, 1}
• The speaker’s head displacement, headx ∈ (0, 1), heady ∈ (0, 1)
• Whether the designated speaker is nodding (1) or not (0), nodding = {0, 1}
• Pitch value for speaker’s speech, pitch ∈ (0, 1)
• The slope of pitch values, s ∈ (0, 1), over the window i− 2n to i, where n = 1, . . . , 9

These features construct the 15× 1 raw feature vector ri,

ri = [ speech speaker headx heady nodding pitch s1 . . . s9 ]
′

The vectors of derived set of features, gm
i , captured the average values of these raw features over the

window i − 2m to i, where m = 1, . . . , 7 and, hm
i , captured the change in average values between

two windows, i− 2m to i and i− 22m to i− 2m. Specifically,

gm
i =

1

2m

2m−1∑
k=0

ri−k and hm
i = gm

i − gm
i−2m

The 225× 1 final feature vector fi expresses the raw features and derived features for frame i,

fi =
[
ri g1

i . . . g7
i h1

i . . . h7
i

]′
The output class characterized whether the listener is nodding (1) or not (0), nods = {0, 1}. Ten per-
cent of all instances had the label “nod.” We established ground-truth for listener nods by manually
labeling the dataset. A primary coder labeled 100% of the dataset. To evaluate coding reliabil-
ity, a second coder labeled 10% of the data. The inter-rater reliability analysis showed substantial
agreement between the two raters with an agreement of 94% and a Cohen’s kappa of 0.72.

3 Results
We conducted four-fold cross-validation experiments to test the predictive performance of our fea-
tures. In each fold, we trained an SVM learner with a randomly-selected set of 18 conversations
and tested the learner with the remaining six conversations. The classification task involved using
features from the speaker to classify the nodding behavior of the listener. To reduce training time,
we subsampled the training set to include all frames with the label “nod” and the same number of
frames with the label “not nods” that we observed immediately before and immediately after the
nodding, producing twice as many instances of “not nods” than “nods.” We used all frames of the
test set for evaluation. We evaluated the predictions of our model using p (precision), r (recall), and
F1 scores. In the context of our experiments, p represents the proportion of the frames classified
as nods that are actually nods, r denotes the proportion of the frames classified as nods out of the
total number of frames that are nods in ground truth, and F1 provides an equally weighted harmonic
mean of the p and r scores. Our cross-validation tests produced a p score of 0.1083, an r score of
0.3165, and an F1 score of 0.1605.

2http://www.fon.hum.uva.nl/praat/
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4 Discussion
In this paper, we presented the very first step of a long-term exploration in modeling human social
cues, obtaining preliminary results from a model for predicting listener nods. While our prediction
results are not directly comparable against those obtained using other datasets, they will serve as a
baseline for our future exploration. The main contribution we sought to make in this paper is the
ability to use a small set of automatically extracted features from multimodal data to predict social
cues. Furthermore, we can later deploy the efficient audio and video processing techniques that
we applied to extract these features to achieve real-time predictions—an important consideration in
building interactive humanlike agents and robots.

Limitations and Future Work – A key limitation of the modeling approach we present here is the
naive representation of temporal dependencies in social cues. In our future work, we plan to in-
vestigate how sequential approaches such as CRFs might allow us to better model these temporal
dependencies. The second major limitation of our modeling approach is the use of video frames
as the unit of analysis to model temporal events. While video frames provide us with a convenient
way to discretize observations, it does not adequately capture the complex patterns in which social
cues might co-occur. Our future work will involve exploring units of analysis and models that can
capture these complex patterns and allow for varying unit lengths (e.g., modeling “events” using
semi-Markov models [15]). Finally, while model predictions provide a valid measure for evalu-
ating how well the model captures the dynamics of social behavior, high prediction accuracies do
not guarantee that a humanlike agent or robot using these predictions to simulate social cues will
communicate with people effectively. We plan to also conduct experiments with human subjects in
which we manipulate the parameters of the predictive model that a humanlike agent or robot uses
and measure the effects of these manipulations on the communicative effectiveness of a socially
interactive system.
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