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ABSTRACT
Internet technology is revolutionizing education. Teachers
are developing massive open online courses (MOOCs) and
using innovative practices such as flipped learning in which
students watch lectures at home and engage in hands-on, prob-
lem solving activities in class. This work seeks to explore the
design space afforded by these novel educational paradigms
and to develop technology for improving student learning.
Our design, based on the technique of adaptive content review,
monitors student attention during educational presentations
and determines which lecture topic students might benefit the
most from reviewing. An evaluation of our technology within
the context of an online art history lesson demonstrated that
adaptively reviewing lesson content improved student recall
abilities 29% over a baseline system and was able to match
recall gains achieved by a full lesson review in less time. Our
findings offer guidelines for a novel design space in dynamic
educational technology that might support both teachers and
online tutoring systems.

Author Keywords
Massive open online course (MOOC); flipped learning;
adaptive user interfaces (AUI); brain-computer interfaces
(BCI); electroencephalography (EEG); adaptive content
review; information recall; learning

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces – input devices and strategies, evaluation/
methodology, user-centered design

INTRODUCTION
The rise of internet media is transforming the educational land-
scape by serving as a medium for educational material that can
transcend the traditional barriers of institutional access. Many
organizations, including universities that publish didactic mul-
timedia lectures and companies such as Khan Academy1 and

1 http://www.khanacademy.org/
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Figure 1. This work presents a novel educational system that (1) instructs
users while (2) measuring attention across predefined lesson modules. Fol-
lowing the lesson, the system (3) analyzes the attention measurements to (4)
adaptively determine review content that might best improve learning.

Udacity,2 that offer videos specifically targeted at educational
enrichment, have gained wide audiences by taking advantage
of the ease of online posting to create massive repositories of
free online educational material. Such online education places
technology at the center of an emerging paradigm that has
the potential to revolutionize classroom education, variously
termed “flipped” [43] or “inverted” [23] learning. In these
settings, students are assigned online lectures to watch on their
own schedule, while classroom time is devoted to answering
questions, working on problem sets, experimental activities,
and getting help from the instructor.

Although online education may prove to be an effective sup-
plement to traditional classroom education and a doorway
to innovations such as flipped classrooms, there are still sig-
nificant challenges surrounding this model that must be ad-
dressed. Just as “teachers need knowledge of how to organize
the classroom to maximize student learning” [50], educational
software needs knowledge of how to organize and present
lesson material to optimize interactions with students who
may have lost focus or may be multitasking. Unfortunately,
current computer-based education technology, particularly on-
line educational content that often takes the form of a video
or PowerPoint lecture, is largely solitary, non-social, static,
and lacking in monitoring capabilities that could offer con-
textual information on how well the student paid attention to
the lecture. These drawbacks stand in sharp contrast to high-
immediacy, dynamic classrooms in which teachers monitor

2 http://www.udacity.com/
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students during instruction and students can seek clarifica-
tions and feedback. Despite current limitations, self-directed,
media-based learning, and computer-based education in gen-
eral, continue to rise in popularity. How might new technology
address the challenges and support the unique opportunities
that this novel educational paradigm affords?

One potential approach toward developing technology that sup-
ports online education is to utilize effective teacher techniques
such as questioning students to encourage self-explanation,
varying content order or presentation speed, and reviewing
content with students in order to create personalized educa-
tional experiences. Using this model, we propose a novel
solution by designing a computer-based education system,
incorporating adaptive content review technology, which mon-
itors student attention during initial lesson presentation and
determines in real time the optimal review topic for the student
(Figure 1). This design is implemented in a prototype system
and evaluated in an experimental lesson scenario to determine
how adaptive content review might affect actual and perceived
student learning.

RELATED WORK
Our design was informed by previous research on supporting
education using computer technology. Although the emerging
phenomena of flipped learning represents a relatively nascent
research area, online educational paradigms are part of a con-
tinuous evolution from older, more well-studied computer-
based education practices. Below, we briefly review the
progress of research supporting education with technology,
from intelligent tutors to virtual classrooms, eventually lead-
ing to the innovation of flipped learning. We then examine the
challenges unique to flipped learning scenarios.

Intelligent Tutoring Systems
Computer technology holds significant promise in support-
ing education via computer aided-instruction (CAI) systems,
which provide students with feedback and hints on their an-
swers, and more advanced intelligent tutoring systems (ITS),
which offer a finer granularity of interaction by providing
hints and scaffolding in problem sub-steps. Such computer-
based educational systems have proven effective in reducing
instruction time while increasing student learning gains and at-
titudes towards education [21]. Additionally, computer-based
education has shown improvement over traditional classroom
education in terms of academic achievement [1] and student
motivation [40].

The rise of the internet and virtual classroom technologies such
as Blackboard3 and SLOODLE4 [19], have pushed computer-
based education into the mainstream, providing even more
incentive for effective ITS technologies. Modern ITS appli-
cations, which rely on an embedded assessment of student
knowledge to better present instructional material, have proven
nearly as effective as human tutoring in improving learning
gains [47]. To further improve ITS technology, recent re-
search has explored additional methods of gauging student
knowledge, engagement with the instruction, and affective
3 http://www.blackboard.com/
4 http://www.sloodle.org/moodle/
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Figure 2. In flipped learning, activities that normally take place in the class-
room happen during students’ own time, and vice versa (adapted from [20]).

state, including measuring student eye movements, posture,
heart rate, skin conductance, and electroencephalography sig-
nals [9, 30, 49]. ITS incorporating such additional measures
must consider tradeoffs, balancing learning gains with poten-
tial negative effects such as cost of technology and discom-
fort that may arise from requiring students to wear sensors.
However, decreasing sensor costs and advances in sensor tech-
nology, including miniaturization and utilizing wireless data
transfers, help to mitigate these concerns.

Recently, hybrid classroom-ITS approaches have arisen, creat-
ing blended classrooms and distance learning environments in
which instruction and example problems are shown in online
videos, PowerPoint presentations, and online ITS [22]. While
new monikers, including “e-Learning 2.0,” “Adaptive Edu-
cational Hypermedia Systems,” and “Learning Management
Systems” have arisen to describe the current state of the art in
online classroom environments, such systems are still in the
experimental stage, offering limited capabilities for content
authoring and course administration [26].

Flipped Learning
One emerging model for utilizing internet technology to sup-
port education is the flipped learning paradigm in which events
that traditionally happen within the classroom take place dur-
ing the students’ own time, while work that is usually con-
sidered individual homework happens collaboratively in the
classroom (Figure 2). Such inverted classrooms are motivated
by many factors including devoting class time toward encour-
aging critical thinking [22] and student collaboration [42],
supporting different student learning styles [23], and address-
ing the needs of students who have grown up with online
media technology [6, 10, 17]. Although flipped learning is still
an experimental strategy in need of additional study and objec-
tive learning results, studies suggest that it increases student
perceptions regarding college classes [23], cooperative and
innovative learning [42], and perceived learning [6].

While online educational media and flipped learning
paradigms hold great promise toward increasing student learn-
ing, offering advantages over traditional education by allowing
students to personalize their learning, research also suggest
that students may rate online education significantly lower than
standard classroom settings in measures of content, interaction,
participation, faculty preparation, and communication [39].
These findings suggest that four categories of limitations that
must be overcome for online educational media to reach its
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full potential. The first category relates to technical challenges
implicit in any technology-based educational approach such as
students with older computers or slow internet connections get-
ting frustrated with low-quality or interrupted online lectures.
The second category involves social attitudes toward online
educational technology including difficulties overcoming ini-
tial student skepticism toward online education [6, 43]. The
third category represents usability concerns such as ergonomic
problems that could arise from students spending long hours
watching a computer screen [43]. The final—and perhaps the
most important—limitation surrounds the interaction; viewing
online lectures is inherently asynchronous, static, and unidirec-
tional. Such an experience is severely limited compared with
dynamic classroom settings in which students can interrupt,
ask questions, and gain feedback, and teachers can monitor
how well students pay attention to class material.

The lack of student monitoring capabilities in online education
represents both a potential pitfall and a promising design op-
portunity for developers. In current online systems, teachers
are unable to observe students during instruction and thus have
no means to verify whether students paid attention to the les-
son, understood the material, or even watched the lecture at all.
One of the hallmarks of the current “Millennial” generation
of students is the prevalence of multitasking [10]; students
are accustomed to “watching TV, talking on the phone, doing
homework, eating, and interacting with their parents all at the
same time” [17]. Although flipped learning will likely appeal
to the Millennial preferences for teamwork and technology use,
multitasking students might simultaneously engage in other
activities while watching or listening to online content [25].
Unlike traditional classroom settings that involve less division
of attention [13, 31], such multitasking may negatively affect
student learning and memory. Additional research is needed
to better understand the potential drawbacks of multitasking
on learning, particularly in online contexts. Further investiga-
tion is also needed to better understand how novel technology
might support emerging educational paradigms such as flipped
learning to overcome these challenges.

SYSTEM DESIGN
To investigate how technology might support flipped learning
and ITS applications, we designed and implemented a novel
system that passively monitors student attention to educational
material in real time in order to suggest the optimal review
topic. This research builds on advances in human factors
and educational psychology and informs flipped learning, off-
line computer-based tutoring systems, and even traditional
classroom instruction.

The system design, informed by teacher behaviors, involves
three components: an instruction component, an attention
monitoring component, and a supervisor component (Figure
3). The instruction component uses multimedia instructional
content to teach students by guiding them through several
modular subtopics within a lesson. The attention monitoring
component, based on technology that measures electrical sig-
nals produced by neuronal activity, gauges student attention
during various parts of the lecture. The supervisor component
manages the interaction between the student and the lesson
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Figure 3. The instruction component (1), attention monitoring component
(2), and supervisor component (3) work together to infer student attention
during instruction and determine the optimal review content for students.

by adapting the review content based on measurements from
the attention monitoring component. In our current proof-of-
concept design, students only review a single lecture topic,
which is selected by the supervisor on the basis of having the
lowest average attention score amongst lecture modules.

Instruction
The instruction system draws on the idea of presenting educa-
tional lectures that are divided into coherent, semi-independent
subtopics. Existing computer-based education systems have
already been constructed around the assumption that lesson
plans can be composed of tiered modules [29]. These modules
might be adapted from textbooks, coded by teachers, identified
by crowdsourcing using students themselves, or even parsed
automatically using artificial intelligence techniques.

Our prototype instruction component, based on a four-module
lesson plan, offers four minutes of instruction for each module,
leading to a total instructional time of 16 minutes. The lecture
length was informed by studies recommending that optimal
instruction periods last 15–20 minutes [11].

The inherent modularity of the lesson design affords computer-
based education the unique potential to adapt lessons to vary-
ing student needs, abilities, and goals. Current ITS systems
commonly require students to work through problem sub-
steps and continuously assess student achievement [46], which
might be used to adapt content based on student performance.
One potential means of adapting educational content is in the
form of custom content review. Since each lesson module rep-
resents a general learning “goal” that the student must master,
a post-hoc review of modules that lost student interest and
attention might reinforce educational concepts that had been
missed along the way.

Reviewing material has been described as an effective teach-
ing strategy that can augment learning and break up lecture
monotony [37]. However, review periods must be confined in
scope due to limitations in the time allotted for education and
because excessive review might be ineffective, bore the stu-
dent, or cause negative perceptions regarding the interaction.
Our design, based on the notion that students might benefit the
most from review on subtopics to which they paid the least
attention, attempts to optimize content review time for indi-
vidual students. Consequently, the system required a means
of monitoring how well students paid attention to each lesson
module to determine which subtopic a student might benefit
the most from reviewing.



Attention Monitoring
Several technologies are currently available for monitoring
user attention and engagement with computer interfaces includ-
ing gaze and eye-tracking systems, video recording devices,
and a variety of sensors for measuring users’ biological data.

Literature in human factors, particularly on adaptive automa-
tion, informed the development of the attention monitoring
component of our design. Monitoring user attention is par-
ticularly important in adaptive automation, which considers
the user as a system operator who supervises tasks such as
air traffic control [24, 34], air navigation [33], and human-
robot teams [27]. Researchers have developed many new
technologies for monitoring operator cognitive workload and
attention in these contexts, including heart-rate variability [5],
galvanic skin response [4], and electroencephalography (EEG)
[8, 36, 51]. From these potential technologies, EEG was cho-
sen as the basis of the attention monitoring component due to
the promise studies have shown of utilizing neural signals to
identify subtle shifts in user alertness, attention, perception,
and workload in laboratory, simulation, and real-world con-
texts [3,8,12,32,41,44,45,48,51]. ITS research has previously
identified EEG as a potential signal from which to infer the
difficulty of the instructional material [7, 30].

EEG Technology
EEG technology utilizes electrodes placed on the scalp to mea-
sure electrical activity created by positive and negative charges
in the cerebral cortex following changes in membrane conduc-
tance as neurotransmitters are released. One of the advantages
of using EEG is high temporal resolution, which offers the
ability to correlate EEG data with stimuli in the external world.
Unfortunately, EEG offers low spatial resolution, making it dif-
ficult to determine which part of the brain created the signals.
Further, because EEG data represents a vast generalization
of actual brain activity, small changes in user states can be
difficult to perceive. Finally, in non-invasive, commercially
available EEG headsets that are more appropriate for end-user
applications such as education, electrode signals are highly
susceptible to noise as well as to influence by extraneous sig-
nals such as electromyography (EMG)—electrical signals that
originate from muscles in the scalp and face. Despite these
disadvantages, EEG data, generally sequenced into frequency
bands, has been shown to provide insight into cognitive states,
including task engagement/attention, working modality, and
perception of user/machine errors [12, 15, 36, 51], as well as
user mood and emotions, such as anxiety, surprise, pleasure,
and frustration [8, 14, 28].

By designing technology that can measure and react to such
neural signals, researchers hope to create “bio-cybernetic
loops” [36], in which users can either give direct mental com-
mands to active systems or have a passive system respond
and adapt itself to shifts in user states. Although research into
active brain-computer interfaces (BCIs) has succeeded in vari-
ous ways such as allowing users to control a mouse cursor or
wheelchair, these systems often require extensive tuning and
training on both the part of the system and the user, are slower
than traditional input methods, and are rarely generalizable
across multiple users [2,35]. As a result, active BCIs are gener-
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Figure 4. The supervisor system filters and averages EEG levels to produce
attention scores for each subtopic within a lecture. User data shown here
indicates that the Impressionism module should be reviewed.

ally only used by individuals with disabilities who are unable
to use standard input methods and for whom the time and
effort required for training have a significant payoff. Research
into passive BCIs, in which brain activity is monitored to gain
additional context into user activity and current state, appears
more promising for typical users. Passive BCI systems have
already been built that can aid in the detection of user and
machine errors and support varying levels of user cognitive
load [14,51]. Further, our previous work has demonstrated the
promise of utilizing passive BCI to support education through
instructional agents that can re-engage users following drops
in their attention [44]. Our current work extends research into
BCIs by using EEG as a tool for monitoring student attention
in online educational environments found in flipped classroom
and MOOC scenarios.

Attention-Monitoring Hardware
In this research, it was paramount that all aspects of the system
could feasibly be used in both actual classroom scenarios and
self-directed, media-based learning settings. As a result, the
attention monitoring component uses the low-cost Neurosky
Mindwave headset as a means of measuring user EEG data.
The wireless headset is relatively low-fidelity compared with
alternative BCI devices; the Mindwave gathers data using a
single electrode for signal input and an additional electrode
for grounding. However, the Mindwave is significantly more
practical for real-world scenarios, as both electrodes can re-
main dry ensuring that the headset can quickly and easily be
put on and taken off, as opposed to other devices, which often
require the placement of many more electrodes and the use of
special conductive gels.

The Mindwave gathers EEG measurements from the FP1 re-
gion of the cortex which is known to manage learning, mental
states, and concentration [16]. The hardware uses the A1 re-
gion for grounding and filtering the signal via common-mode
rejection and additionally utilizes notch filters, analog and
digital low- and high-pass filters, and proprietary algorithms
to remove EMG artifacts and other noise. The effectiveness
of this filtering was verified through pretests that assessed the
presence of common artifacts such as eye-blinks. The device
samples at a rate of 512 Hz and is sensitive to frequencies
in the range of 3–100 Hz, which are broken into alpha, beta,
theta, and gamma waves using Fast Fourier Transforms.



Supervisor
The supervisor software system uses the output from the Mind-
wave EEG headset to monitor user attention during the presen-
tation of educational material and select review content based
on low attention scores. First, EEG levels for alpha, beta, and
theta frequencies were sampled from the attention monitoring
component at 512 Hz, averaged across a one-second window
to produce 1 Hz signals, and combined to form an attention
index using the formula A =β/(α+θ) [12, 36, 44]. This atten-
tion index was filtered using median filtering to remove values
likely produced by EMG artifacts and other noise:

A(t) = Ṽw

where A(t) is the attention index at time t, calculated by taking
the median of V , a vector of the previously measured indices
across a given time window w (in this research a time window
of 5 recordings, corresponding to measurements from the
previous 5 seconds, was used based on pre-test results).

The index was further smoothed using an exponentially-
weighted moving average (EWMA) to enable the software
to pick out general attentional trends as opposed to moment-
by-moment changes in attention or those produced by artifacts:

S(t) = { A(t) : t = 1
c∗A(t –1)+(1–c)∗S(t –1) : t > 1

where S corresponds to the smoothed attention value produced
using an EWMA, t is time, A is the median-filtered index, and
c is a regularization constant that is inversely proportional to
the relative weighting of less recent events (a value of .2 was
used in this study based on pre-test results).

Using the smoothed attention index, the system is able to infer
student attention levels during the presentation of educational
material, provided that the presentation contains sections de-
lineated a priori. To determine the student attention level for
a given module of educational content, the supervisor calcu-
lates the mean of the attention indices recorded during the
presentation of that section. This information can be passed
to computer systems or even human instructors to help them
gauge the effectiveness of lessons. In our proof-of-concept
design, the supervisor component uses attention information
to select review topic by choosing the lesson module with the
lowest average attention values (Figure 4).

HYPOTHESES
Our design was based on the premise that reviewing con-
tent to which students paid the least attention will improve
student learning. The hypotheses below seek to capture the
relationships between various methods of reviewing content
and student learning.

Hypothesis 1. In a given learning task, a review focused on top-
ics that had low EEG-monitored attention levels will increase
learning performance compared with a no review baseline,
while a review focused on topics that had high EEG-monitored
attention levels will not increase learning performance over
this baseline.

Hypothesis 2. In a given learning task, a review focused on
topics that had low EEG-monitored attention levels will match
learning performance gains achieved by a full review of lesson
topics in less time; a review focused on topics that had high
EEG-monitored attention levels will not produce an increase in
learning performance equivalent to a full review of all topics.

EVALUATION
To investigate the effects of adaptive content review on educa-
tional outcomes, we implemented three alternative education
systems designed around various methods of providing content
review. The first design provides no content review, the second
provides maladaptive content review based on reviewing con-
cepts to which students initially paid the most attention, and
the third provided a full review of all lesson concepts. These
baselines were developed as parallels to current MOOC sys-
tem capabilities; after viewing an online lecture, students can
choose to review nothing, watch the entire presentation again,
or choose to view individual parts of the lecture. A laboratory
experiment evaluated the effectiveness of the adaptive design
compared with these three alternatives.

Experimental Design
To test our hypotheses, we designed and conducted a gender-
balanced 4×2 between-participants study, which manipulated
the content review of a computer-based educational system
that instructed participants regarding four topics within a given
lecture. Independent variables included the type of review
received and participant gender. Dependent variables included
participants’ cognitive learning performance measured by their
recall of the lesson content, their perceptions of the educational
software, and their self-reported learning.

In the experiment, the instruction component taught art his-
tory, chosen as a lesson topic that participants were unlikely
to have strong prior familiarity with, while still represent-
ing a real-world learning task. Four modules comprised the
lecture: neoclassicism, romanticism, impressionism, and post-
impressionism. In all conditions, the computer-based educa-
tional system presented each topic for four minutes, leading
to a total instructional time of 16 minutes. Each four minute
module consisted of a two minute segment giving an overview
of the topic itself, followed by two one-minute segments high-
lighting a single painting from that art period. The system
used text, images, and a prerecorded female voice to provide
participants with lecture content.

The experiment manipulated how a computer-based educa-
tion system presented a review period following the initial
instructional period. In order to alter review periods across
participants, we created four one-minute review segments,
each of which corresponded to one of the four lesson mod-
ules. No new information was presented during the review
segments. Instead, each review segment gave a brief overview
of the important points initially taught during the correspond-
ing module and included both paintings presented for that art
period.

Using these review segments, the independent review variable
included four levels: (1) no review, (2) maladaptive review,
which presented the review segment on the topic that had



the highest average EEG attention levels, (3) adaptive review,
which presented the review segment on the topic that had the
lowest average EEG attention levels, and (4) full review, which
presented all four review segments. In order to control for time
differences between the no review, maladaptive review, and
adaptive review conditions, participants in the no review condi-
tion were instructed to listen to one minute of classical music
instead of spending one minute on review. Time differences
were not controlled for participants in the full review condi-
tion, thus participants who received the full review interacted
with the system for three additional minutes. Student prior
knowledge of the lecture material was controlled for by means
of an initial quiz prior to receiving instruction.

Experimental Procedure
The experimental protocol consisted of eight main phases:
(1) introduction, (2) initial quiz, (3) instruction, (4) distractor,
(5) review, (6) distractor, (7) evaluation, and (8) survey. In
the first phase, following informed consent, the researcher
gave the participant a brief description of the experiment and
brought the participant into a sound-controlled room. Here,
the researcher familiarized the participant with the Maeda
Path Game5, which was used later on in the experiment as
a distractor task. Each participant was given the chance to
complete one level of the game and to ask any questions re-
garding playing the game. Once the participant indicated they
understood how to play the game, the researcher aided the
participant in putting on the wireless EEG headset and en-
sured good connectivity. The researcher then left the room
and the participant started interacting with the computer-based
educational software, which guided the participant through
the next seven phases.

First, the software welcomed the user and gave an overview
of the lesson plan. Next, the participant was instructed to
take a ten-question, multiple-choice quiz with randomized
question order to assess their prior knowledge of art history
during the four art periods covered by the lesson plan. The
instruction phase followed the initial quiz, represented by a
lecture consisting of four minutes of instruction for each art
period.

After the instruction phase, participants played the Maeda
Path Game for two minutes as a distractor task. A game
task was chosen due to the popularity of such online games
with Millennial students [38], and to simulate how, in most
educational settings, review does not immediately follow the
initial presentation of educational material.

A brief review period followed the first distractor phase. Dur-
ing this time, in the no review condition, participants simply
listened to one minute of “Adagio un Poco Mosso,” a piece
by Beethoven whom participants were told was a contempo-
rary of many of the painters they had learned about. In the
other three conditions, participants received review according
to their condition, as described in the experimental design.
Following the review period, participants played the Maeda
Path Game for an additional two minutes as a further distractor

5 http://www.levitated.net/daily/levMaedaPath.html

Figure 5. A participant in our experiment interacts with the educational
technology, which monitors user attention to an art history lecture.

task to separate the review period from the evaluation which
followed.

In the evaluation, participants took a 25-question, multiple-
choice quiz, which tested their ability to recall the information
presented to them during the instruction and review phases.
The quiz consisted of five questions for each art period and
five generalized questions that required knowledge of at least
two art periods to answer correctly. As an example, the lec-
ture instructed students that Neoclassicism began during the
Age of Enlightenment, and one of the evaluation questions
was: “In which of the following periods did Neoclassicism
begin?” Question order was randomized for each participant,
and no question appeared in both initial and final quizzes.
Following the recall evaluation, each participant took a post-
experiment questionnaire to obtain subjective evaluations of
participant experiences, as well as demographic information.
After questionnaire, the researcher re-entered the room, asked
the participant to remove the headset, debriefed the participant,
and compensated the participant $5 for their time. The entire
procedure took approximately 30 minutes.

Participants
A total of 48 participants (24 males and 24 females) took
part in this experiment. Each of the four conditions was gen-
der balanced (six males and six females). All participants
were native English speakers recruited from the University
of Wisconsin–Madison campus. Average participant age was
24.25 (SD = 8.84) with a range of 18–60. On a seven-point
item, participants reported a moderate prior familiarity with
computer-based or online education (M = 4.04, SD = 1.75), in-
dicating the increasing prevalence of such technology. Figure
5 shows a participant interacting with our software.

Measurement and Analysis
Objective and subjective measurements captured the outcomes
of the manipulations described above. Objective measure-
ments included information recall, the percentage of correct
answers on the post-experiment quiz, and learning, the nor-
malized percentage difference in scores between the number
of correct answers on the initial and final quizzes. Participant
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Figure 6. Results illustrate that adaptive review had a positive effect on learning and recall regardless of gender, while a maladaptive review system produced no
effect. A full review improved learning and recall results overall, but was not effective across genders, leading to low learning, recall, and perceived learning scores
for females. Only marginal and significant p values are reported. (†), (∗), (∗∗), and (∗∗∗) denote p < .10, p < .05, p < .01, and p < .001, respectively.

EEG measurements were analyzed to complete a preliminary
evaluation regarding the assumptions underlying our design.
Subjective measurements used seven-point rating items to mea-
sure participant responses on a post-experiment questionnaire,
which asked participants to rate the perceived competency of
instruction, the usefulness of the review, their perceived learn-
ing, and whether participants would like to use the system
again in the future.

An analysis of the data from objective and subjective measure-
ments evaluated the hypotheses using a two-way analysis of
variance (ANOVA), with the main experimental manipulation
and participant gender as two fixed effects. Scheffé’s method
was used for contrast tests. To control for Type II errors for
establishing a “no difference” in comparisons, we followed
guidelines suggested by [18], in particular an alpha level of
0.25 (i.e., p > .25).

Results6

Our experiment was based on the concept that different forms
of content review would effect learning, thus we first con-
firmed the main effect of review content on student cog-
nitive performance. An analysis of objective data found a
significant main effect of type of review on information re-
call, F(3,40) = 3.18, p = .034, η2

p = .193, and a marginal
main effect of type of review on learning, F(3,40) = 2.53,
p = .071, η2

p = .160. Information recall scores were on aver-
age 45.33% (SD = 14.30%), 45.33% (SD = 19.25%), 58.33%
(SD = 11.11%), and 58.33% (SD = 18.25%) in the no re-
view, maladaptive review, adaptive review, and full review
conditions, respectively. Average learning scores between
conditions were 39.71% (SD = 19.77%), 43.14% (SD =
26.23%), 57.35% (SD = 16.85%), and 58.33% (SD = 29.51%)
in the no review, maladaptive review, adaptive review, and
full review conditions, respectively. We additionally ana-
lyzed the data for effects of gender and found a marginal
effect of gender on both information recall, F(1,40) = 3.92,
p = .055, η2

p = .089, and learning, F(1,40) = 3.06, p = .088,
η2

p = .071. Males performed marginally better in both mea-
sures, averaging 56.00% (SD = 18.61%) in information recall

6 Figure 6 highlights the major results of the study. Only marginal
and significant effects are reported.

and 54.90% (SD = 26.52%) in learning, while females aver-
aged 47.67% (SD = 14.10%) in information recall and 44.36%
(SD = 21.24%) in learning. The results demonstrated a sig-
nificant interaction between type of review and gender on
information recall, F(3,40) = 3.16, p = .035, η2

p = .191, and on
learning, F(3,40) = 4.44, p = .009, η2

p = .266. Prior familiarity
with the material used in the experiment was low; the average
pre-instruction quiz score was 1.52 (SD = 1.53). No significant
differences in pre-instruction quiz scores were found across
conditions or genders.

We utilized contrast tests to confirm our hypotheses. Hypothe-
sis 1 predicted that participants who received adaptive content
review would demonstrate increased cognitive learning per-
formance over participants who received no review, while
maladaptive review would not produce any learning gains over
the no review baseline. The results confirmed both aspects of
this hypothesis. Contrast tests revealed a significant difference
in information recall between participants who received adap-
tive review and those that received no review, F(1,40) = 4.77,
p = .035, η2

p = .107, with participants in the adaptive condi-
tion outperforming those with no review by 29%, regardless
of gender. Participants who received adaptive reviewed also
significantly outperformed those who received no review in
learning, F(1,40) = 4.29, p = .045, η2

p = .097, regardless of gen-
der. Participants in the no review and maladaptive conditions
did not perform significantly differently in terms of informa-
tion recall, F(1,40) = 0.00, p = 1.00, η2

p = 0.00, or learning,
F(1,40) = 0.16, p = .689, η2

p = .004.

Hypothesis 2 predicted that participants who received an adap-
tive review of topics would achieve equivalent learning results
to those who received a full review of all topics. Addition-
ally, Hypothesis 2 predicted that participants who received a
full review would outperform those who received no review
and those who received a maladaptive review. The analysis
partially supported this hypothesis. No significant difference
was found between participants in adaptive and full review
conditions in measures of information recall, F(1,40) = 0.00,
p = 1.00, η2

p = 0.00, or learning, F(1,40) = 0.01, p = .909,
η2

p = 0.00. These results demonstrate that students who re-
ceived adaptive review were able to achieve equivalent perfor-



mance results as those who received a review of all content,
even though they spent 75% less time on review. As predicted
by Hypothesis 2, the analysis revealed significant differences
between full and maladaptive review in information recall
F(1,40) = 4.77, p = .035, η2

p = .107. However, the results
showed only a marginal difference between full and maladap-
tive review in learning, F(1,40) = 3.18, p = .082, η2

p = .074,
providing partial support for the hypothesis.

Contrast tests across types of review and gender found that,
while full review helped males, it led to the lowest scores of in-
formation recall and learning across all conditions for females.
Males significantly outperformed females in the full review
condition in information recall, F(1,40) = 12.70, p = .001,
η2

p = .241, and in learning, F(1,40) = 15.88, p < .001, η2
p = .284.

Female learning in the adaptive condition marginally sur-
passed that in the full condition, F(1,40) = 3.81, p = .058,
η2

p = .087, although no significant difference was found be-
tween these conditions in information recall, F(1,40) = 2.77,
p = .104, η2

p = .065. A full review of lesson material did not
lead to significant differences for females compared with no re-
view in information recall, F(1,40) = .006, p = .937, η2

p = 0.00,
or learning, F(1,40) = 0.11, p = .747, η2

p = .003, nor were any
differences were found for females between full and maladap-
tive review conditions in information recall, F(1,40) = 0.23,
p = .637, η2

p = .006, or learning, F(1,40) = 1.12, p = .297,
η2

p = .027.

A preliminary analysis evaluated the underlying assumption
that an attention index could provide a good predictor of which
lecture sections students might benefit from reviewing. Re-
gression analysis, using average EEG attention values as a
predictor variable for recall scores, assessed this premise. This
analysis only included EEG values for participants in the no
review condition because the previous analysis revealed that
the additional review content received in the other three con-
ditions might significantly alter student recall abilities. In
constructing the model, the analysis normalized the EEG
predictor variable and applied a log transformation to both
predictor and response variables to obtain linearity. For stu-
dents in the no review condition, EEG-monitored attention
levels accounted for 25.19% of the variance in student recall
abilities and served as a marginal predictor of recall scores,
β = .187, t(10) = 2.17,p = .055, providing partial support for
our premise.

Overall, we found no significant main effects of type of review
and gender on students’ perceived learning, their perceptions
regarding the competence of the instruction, whether they
found the review to be useful, and their willingness to use
the system again. However, we found a marginal interaction
effect between type of review and gender on perceived learn-
ing, F(3,40) = 2.83, p = .051, η2

p = .141. This effect mirrored
the gender differences in objective cognitive performance sur-
rounding the full review condition, with males reporting sig-
nificantly higher learning than females in the full review con-
dition, F(1,40) = 8.40, p = .006, η2

p = .140, and females in
the full review condition reporting significantly less learning
than those in the adaptive review condition, F(1,40) = 5.39,
p = .026, η2

p = .094. Moreover, females reported learning

significantly less after receiving full review compared with
maladaptive review, F(1,40) = 8.40, p = .006, η2

p = .140, and
when comparing full review with no review, F(1,40) = 5.38,
p = .026, η2

p = .094, even though there were no significant ob-
jective differences in learning performance for females across
these conditions.

DISCUSSION
Our results confirmed Hypothesis 1 as adaptive review signifi-
cantly increased recall and learning gains compared with the
no review baseline, while students who received maladaptive
review did not achieve cognitive performance gains over the
baseline in these measures. Hypothesis 2 was partially con-
firmed; our results found no difference in learning or recall
between the full and adaptive conditions, while a significant
difference was found between full review and maladaptive
review in terms of recall. However, our results reported only
a marginally significant difference between full review and
maladaptive review in terms of learning.

The results demonstrate that simply reviewing material is not
enough to improve student learning. We found no difference
between the no review and maladaptive review conditions,
likely because participants in the maladaptive condition re-
ceived a review of material to which they had initially paid
attention, and thus did not require review on. Reviewing un-
necessary material might have detrimental effects on student
learning, leading to boredom or frustration, which could be
one factor behind females having the least recall in the full
review condition. This objectively poor performance by fe-
males after full review, noted by females in their subjective,
perceived learning reports, highlights the notion that reviewing
everything is also a non-optimal strategy. The experimental re-
sults support the hypothesis that adaptively reviewing content
optimizes the time spent on review as adaptive content review
led to high learning results in both genders.

Limitations & Future Work
While the technology achieved its intended goal of improving
student learning by monitoring user attention in real time
and optimizing review content based on lapses in attention,
open questions remain regarding the assumptions underlying
the design, attention monitoring system, and current review
abilities.

The design is based on the underlying premise that the op-
timal review topic for a student will be the topic to which
they paid the least attention. While the experimental results
provide initial support for this premise, it may not always hold.
For instance, one factor behind a student losing interest in
a lecture topic might be that the lesson is covering material
with which the student is already familiar. In such conditions,
reviewing material based on low attention values may not al-
ways be optimal. Future work might attempt to confirm that
students lost attention not because of prior existing knowledge
by combining our method with other embedded assessment
techniques.

Due to technological limitations inherent in EEG, the attention
monitoring component is prone to be affected by other signals
such as muscle artifacts. Although the monitoring system



employed filters to remove such artifacts and the supervisor
used smoothing and averaging techniques to create long term
trends, which should alleviate problems due to short-term sig-
nal variations caused by EMG, more investigation is necessary
to validate that the attention index indeed represents under-
lying cognitive activity free from extraneous signals. Our
preliminary analysis reveals that EEG attention levels were a
marginal predictor for student recall abilities, however a means
of fully validating EEG levels for use in such contexts has yet
to be determined. The capabilities of our technology might
be increased by exploring other means of determining review
content instead of simply averaging attention across prede-
fined lesson subsections. Future technology might benefit
from more robust signal analysis methods including examin-
ing EEG slopes, regression lines, or height and frequency of
local maxima and minima.

The current design requires lessons to be divided into
subtopics, requires a pre-recorded content review section
for each subtopic, and only selects a single topic for review.
Although many lessons and textbooks do follow a modular
paradigm, adapting complex and creative lessons to this format
may not always be easy. Further, in certain circumstances stu-
dents might benefit from a review of multiple topics, or even
from no review at all if sufficient attention was initially paid
to the lecture. These limitations reflect the proof-of-concept
system status and might be addressed by future research in
several ways. First, advances in intelligent summarization
technology could work toward creating automatic sub-topic
review sections based on pre-existing educational content. Fur-
ther, robust supervisor systems might benefit from baseline
attention measurements, allowing the system to select multi-
ple review topics whose attention values fall below baseline
levels. Finally, future systems may not necessarily require
pre-demarcated subtopics. Instead, systems may identify in-
dividual content items across the entire learning process and
merge them into a coherent review, creating a truly customized
educational experience.

Our experiment represented a limited interaction consisting of
a single lecture based on a single method of gauging student at-
tention. To more fully explore the potential benefits in utilizing
EEG-based review technology, future studies might examine
long-term learning effects or incorporate additional measure-
ments such as gaze or traditional embedded assessment to
corroborate the EEG signal. Additionally, future studies might
investigate differences in learning across subtopics for students
receiving adaptive EEG-based review. Although we found no
significant differences across topics within the adaptive condi-
tion, we note that this analysis is limited due to our sample size
and the lack of a priori knowledge regarding which subtopic
students in the adaptive condition would review.

Our design represents a prototype that highlights one potential
means for technology to support novel educational contexts.
One final avenue for future research might include designing
tools that can visualize student attention data for the use of
human educators, rather than computer systems. Such tech-
nology would be of immense value for teachers who could use
it to evaluate and improve their own lessons as well as gain

insights into individual student and class needs. Additional vi-
sualization methods for large-scale data will aid in developing
these tools.

Research and Design Implications
This work has important theoretical, methodological, and prac-
tical design implications for education researchers and devel-
opers who wish to explore the use of technology to support
novel educational paradigms such as flipped learning. First,
the results, in which adaptive content review achieved signifi-
cant learning performance while maladaptive review proved
no better than having no review at all, demonstrate an ap-
parent link between levels of attention and test performance.
Additional analysis, which revealed a marginal association
between EEG attention values and information recall, further
strengthen this theory. Second, the design methodology out-
lines an effective strategy for developing educational tools
modeled after human educator behaviors, as well as demon-
strating the potential of using novel technologies such as EEG
to facilitate learning in self-directed education. Finally, this
research might inform future explorations into self-directed
learning technologies by providing a model for a practical
system to improve student learning that could be deployed in
real-world contexts.

CONCLUSION
The rise of online media and computer-based education is fun-
damentally altering education, creating a novel design space
for human-computer interaction researchers. This research
sought to explore how novel technologies might support learn-
ing in the new design space offered by flipped classroom and
MOOC settings. Our work presents the design and imple-
mentation of a novel system that utilizes real-time attention
monitoring to adaptively determine optimal content review
for students. This design significantly improved learning out-
comes, demonstrating the potential for adaptive educational
software in creating effective user interactions.
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